TY - JOUR AB - Quantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >104 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we show entanglement between propagating microwave and optical fields in the continuous variable domain. This achievement not only paves the way for entanglement between superconducting circuits and telecom wavelength light, but also has wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing, and cross-platform verification. AU - Sahu, Rishabh AU - Qiu, Liu AU - Hease, William J AU - Arnold, Georg M AU - Minoguchi, Y. AU - Rabl, P. AU - Fink, Johannes M ID - 13106 IS - 6646 JF - Science KW - Multidisciplinary SN - 0036-8075 TI - Entangling microwaves with light VL - 380 ER - TY - GEN AB - Data for submitted article "Entangling microwaves with light" at arXiv:2301.03315v1 AU - Sahu, Rishabh ID - 13122 TI - Entangling microwaves with light ER - TY - THES AB - About a 100 years ago, we discovered that our universe is inherently noisy, that is, measuring any physical quantity with a precision beyond a certain point is not possible because of an omnipresent inherent noise. We call this - the quantum noise. Certain physical processes allow this quantum noise to get correlated in conjugate physical variables. These quantum correlations can be used to go beyond the potential of our inherently noisy universe and obtain a quantum advantage over the classical applications. Quantum noise being inherent also means that, at the fundamental level, the physical quantities are not well defined and therefore, objects can stay in multiple states at the same time. For example, the position of a particle not being well defined means that the particle is in multiple positions at the same time. About 4 decades ago, we started exploring the possibility of using objects which can be in multiple states at the same time to increase the dimensionality in computation. Thus, the field of quantum computing was born. We discovered that using quantum entanglement, a property closely related to quantum correlations, can be used to speed up computation of certain problems, such as factorisation of large numbers, faster than any known classical algorithm. Thus began the pursuit to make quantum computers a reality. Till date, we have explored quantum control over many physical systems including photons, spins, atoms, ions and even simple circuits made up of superconducting material. However, there persists one ubiquitous theme. The more readily a system interacts with an external field or matter, the more easily we can control it. But this also means that such a system can easily interact with a noisy environment and quickly lose its coherence. Consequently, such systems like electron spins need to be protected from the environment to ensure the longevity of their coherence. Other systems like nuclear spins are naturally protected as they do not interact easily with the environment. But, due to the same reason, it is harder to interact with such systems. After decades of experimentation with various systems, we are convinced that no one type of quantum system would be the best for all the quantum applications. We would need hybrid systems which are all interconnected - much like the current internet where all sorts of devices can all talk to each other - but now for quantum devices. A quantum internet. Optical photons are the best contenders to carry information for the quantum internet. They can carry quantum information cheaply and without much loss - the same reasons which has made them the backbone of our current internet. Following this direction, many systems, like trapped ions, have already demonstrated successful quantum links over a large distances using optical photons. However, some of the most promising contenders for quantum computing which are based on microwave frequencies have been left behind. This is because high energy optical photons can adversely affect fragile low-energy microwave systems. In this thesis, we present substantial progress on this missing quantum link between microwave and optics using electrooptical nonlinearities in lithium niobate. The nonlinearities are enhanced by using resonant cavities for all the involved modes leading to observation of strong direct coupling between optical and microwave frequencies. With this strong coupling we are not only able to achieve almost 100\% internal conversion efficiency with low added noise, thus presenting a quantum-enabled transducer, but also we are able to observe novel effects such as cooling of a microwave mode using optics. The strong coupling regime also leads to direct observation of dynamical backaction effect between microwave and optical frequencies which are studied in detail here. Finally, we also report first observation of microwave-optics entanglement in form of two-mode squeezed vacuum squeezed 0.7dB below vacuum level. With this new bridge between microwave and optics, the microwave-based quantum technologies can finally be a part of a quantum network which is based on optical photons - putting us one step closer to a future with quantum internet. AU - Sahu, Rishabh ID - 13175 KW - quantum optics KW - electrooptics KW - quantum networks KW - quantum communication KW - transduction SN - 2663 - 337X TI - Cavity quantum electrooptics ER - TY - THES AB - About a 100 years ago, we discovered that our universe is inherently noisy, that is, measuring any physical quantity with a precision beyond a certain point is not possible because of an omnipresent inherent noise. We call this - the quantum noise. Certain physical processes allow this quantum noise to get correlated in conjugate physical variables. These quantum correlations can be used to go beyond the potential of our inherently noisy universe and obtain a quantum advantage over the classical applications. Quantum noise being inherent also means that, at the fundamental level, the physical quantities are not well defined and therefore, objects can stay in multiple states at the same time. For example, the position of a particle not being well defined means that the particle is in multiple positions at the same time. About 4 decades ago, we started exploring the possibility of using objects which can be in multiple states at the same time to increase the dimensionality in computation. Thus, the field of quantum computing was born. We discovered that using quantum entanglement, a property closely related to quantum correlations, can be used to speed up computation of certain problems, such as factorisation of large numbers, faster than any known classical algorithm. Thus began the pursuit to make quantum computers a reality. Till date, we have explored quantum control over many physical systems including photons, spins, atoms, ions and even simple circuits made up of superconducting material. However, there persists one ubiquitous theme. The more readily a system interacts with an external field or matter, the more easily we can control it. But this also means that such a system can easily interact with a noisy environment and quickly lose its coherence. Consequently, such systems like electron spins need to be protected from the environment to ensure the longevity of their coherence. Other systems like nuclear spins are naturally protected as they do not interact easily with the environment. But, due to the same reason, it is harder to interact with such systems. After decades of experimentation with various systems, we are convinced that no one type of quantum system would be the best for all the quantum applications. We would need hybrid systems which are all interconnected - much like the current internet where all sorts of devices can all talk to each other - but now for quantum devices. A quantum internet. Optical photons are the best contenders to carry information for the quantum internet. They can carry quantum information cheaply and without much loss - the same reasons which has made them the backbone of our current internet. Following this direction, many systems, like trapped ions, have already demonstrated successful quantum links over a large distances using optical photons. However, some of the most promising contenders for quantum computing which are based on microwave frequencies have been left behind. This is because high energy optical photons can adversely affect fragile low-energy microwave systems. In this thesis, we present substantial progress on this missing quantum link between microwave and optics using electrooptical nonlinearities in lithium niobate. The nonlinearities are enhanced by using resonant cavities for all the involved modes leading to observation of strong direct coupling between optical and microwave frequencies. With this strong coupling we are not only able to achieve almost 100\% internal conversion efficiency with low added noise, thus presenting a quantum-enabled transducer, but also we are able to observe novel effects such as cooling of a microwave mode using optics. The strong coupling regime also leads to direct observation of dynamical backaction effect between microwave and optical frequencies which are studied in detail here. Finally, we also report first observation of microwave-optics entanglement in form of two-mode squeezed vacuum squeezed 0.7dB below vacuum level. With this new bridge between microwave and optics, the microwave-based quantum technologies can finally be a part of a quantum network which is based on optical photons - putting us one step closer to a future with quantum internet. AU - Sahu, Rishabh ID - 12900 KW - quantum optics KW - electrooptics KW - quantum networks KW - quantum communication KW - transduction SN - 2663 - 337X TI - Cavity quantum electrooptics ER - TY - JOUR AB - Recent quantum technologies have established precise quantum control of various microscopic systems using electromagnetic waves. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling as well as quasi-particles induced by the pump laser. Here we report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature with near-unity cooperativity. Both the stationary and instantaneous responses of the microwave and optical modes comply with the coherent electro-optical interaction, and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration enables wide ranges of applications beyond quantum transductions, from squeezing and quantum non-demolition measurements of microwave fields, to entanglement generation and hybrid quantum networks. AU - Qiu, Liu AU - Sahu, Rishabh AU - Hease, William J AU - Arnold, Georg M AU - Fink, Johannes M ID - 13200 JF - Nature Communications TI - Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action VL - 14 ER - TY - CONF AB - We entangled microwave and optical photons for the first time as verified by a measured two-mode vacuum squeezing of 0.7 dB. This electro-optic entanglement is the key resource needed to connect cryogenic quantum circuits. AU - Sahu, Rishabh AU - Qiu, Liu AU - Hease, William J AU - Arnold, Georg M AU - Minoguchi, Yuri AU - Rabl, Peter AU - Fink, Johannes M ID - 14872 SN - 9781957171296 T2 - Frontiers in Optics + Laser Science 2023 TI - Entangling microwaves and telecom wavelength light ER - TY - CONF AB - We present a quantum-enabled microwave-telecom interface with bidirectional conversion efficiencies up to 15% and added input noise quanta as low as 0.16. Moreover, we observe evidence for electro-optic laser cooling and vacuum amplification. AU - Sahu, Rishabh AU - Hease, William J AU - Rueda Sanchez, Alfredo R AU - Arnold, Georg M AU - Qiu, Liu AU - Fink, Johannes M ID - 12088 SN - 9781557528209 T2 - Conference on Lasers and Electro-Optics TI - Realizing a quantum-enabled interconnect between microwave and telecom light ER - TY - JOUR AB - Solid-state microwave systems offer strong interactions for fast quantum logic and sensing but photons at telecom wavelength are the ideal choice for high-density low-loss quantum interconnects. A general-purpose interface that can make use of single photon effects requires < 1 input noise quanta, which has remained elusive due to either low efficiency or pump induced heating. Here we demonstrate coherent electro-optic modulation on nanosecond-timescales with only 0.16+0.02−0.01 microwave input noise photons with a total bidirectional transduction efficiency of 8.7% (or up to 15% with 0.41+0.02−0.02), as required for near-term heralded quantum network protocols. The use of short and high-power optical pump pulses also enables near-unity cooperativity of the electro-optic interaction leading to an internal pure conversion efficiency of up to 99.5%. Together with the low mode occupancy this provides evidence for electro-optic laser cooling and vacuum amplification as predicted a decade ago. AU - Sahu, Rishabh AU - Hease, William J AU - Rueda Sanchez, Alfredo R AU - Arnold, Georg M AU - Qiu, Liu AU - Fink, Johannes M ID - 10924 JF - Nature Communications TI - Quantum-enabled operation of a microwave-optical interface VL - 13 ER - TY - JOUR AB - Microwave photonics lends the advantages of fiber optics to electronic sensing and communication systems. In contrast to nonlinear optics, electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a microwave mode occupancy as low as 0.025 ± 0.005 and an added output noise of less than or equal to 0.074 photons. This is facilitated by radiative cooling and a triply resonant ultra-low-loss transducer operating at millikelvin temperatures. The high bandwidth of 10.7 MHz and total (internal) photon conversion efficiency of 0.03% (0.67%) combined with the extremely slow heating rate of 1.1 added output noise photons per second for the highest available pump power of 1.48 mW puts near-unity efficiency pulsed quantum transduction within reach. Together with the non-Gaussian resources of superconducting qubits this might provide the practical foundation to extend the range and scope of current quantum networks in analogy to electrical repeaters in classical fiber optic communication. AU - Hease, William J AU - Rueda Sanchez, Alfredo R AU - Sahu, Rishabh AU - Wulf, Matthias AU - Arnold, Georg M AU - Schwefel, Harald G.L. AU - Fink, Johannes M ID - 9114 IS - 2 JF - PRX Quantum SN - 2691-3399 TI - Bidirectional electro-optic wavelength conversion in the quantum ground state VL - 1 ER - TY - GEN AB - This dataset comprises all data shown in the plots of the main part of the submitted article "Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State". Additional raw data are available from the corresponding author on reasonable request. AU - Hease, William J AU - Rueda Sanchez, Alfredo R AU - Sahu, Rishabh AU - Wulf, Matthias AU - Arnold, Georg M AU - Schwefel, Harald AU - Fink, Johannes M ID - 13071 TI - Bidirectional electro-optic wavelength conversion in the quantum ground state ER -