TY - JOUR AB - Theoretical foundations of chaos have been predominantly laid out for finite-dimensional dynamical systems, such as the three-body problem in classical mechanics and the Lorenz model in dissipative systems. In contrast, many real-world chaotic phenomena, e.g., weather, arise in systems with many (formally infinite) degrees of freedom, which limits direct quantitative analysis of such systems using chaos theory. In the present work, we demonstrate that the hydrodynamic pilot-wave systems offer a bridge between low- and high-dimensional chaotic phenomena by allowing for a systematic study of how the former connects to the latter. Specifically, we present experimental results, which show the formation of low-dimensional chaotic attractors upon destabilization of regular dynamics and a final transition to high-dimensional chaos via the merging of distinct chaotic regions through a crisis bifurcation. Moreover, we show that the post-crisis dynamics of the system can be rationalized as consecutive scatterings from the nonattracting chaotic sets with lifetimes following exponential distributions. AU - Choueiri, George H AU - Suri, Balachandra AU - Merrin, Jack AU - Serbyn, Maksym AU - Hof, Björn AU - Budanur, Nazmi B ID - 12259 IS - 9 JF - Chaos: An Interdisciplinary Journal of Nonlinear Science KW - Applied Mathematics KW - General Physics and Astronomy KW - Mathematical Physics KW - Statistical and Nonlinear Physics SN - 1054-1500 TI - Crises and chaotic scattering in hydrodynamic pilot-wave experiments VL - 32 ER - TY - JOUR AB - In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and frequently visited UPOs differ only by a few percent. AU - Suri, Balachandra AU - Kageorge, Logan AU - Grigoriev, Roman O. AU - Schatz, Michael F. ID - 8634 IS - 6 JF - Physical Review Letters KW - General Physics and Astronomy SN - 0031-9007 TI - Capturing turbulent dynamics and statistics in experiments with unstable periodic orbits VL - 125 ER - TY - JOUR AB - Recent studies suggest that unstable recurrent solutions of the Navier-Stokes equation provide new insights into dynamics of turbulent flows. In this study, we compute an extensive network of dynamical connections between such solutions in a weakly turbulent quasi-two-dimensional Kolmogorov flow that lies in the inversion symmetric subspace. In particular, we find numerous isolated heteroclinic connections between different types of solutions—equilibria, periodic, and quasiperiodic orbits—as well as continua of connections forming higher-dimensional connecting manifolds. We also compute a homoclinic connection of a periodic orbit and provide strong evidence that the associated homoclinic tangle forms the chaotic repeller that underpins transient turbulence in the symmetric subspace. AU - Suri, Balachandra AU - Pallantla, Ravi Kumar AU - Schatz, Michael F. AU - Grigoriev, Roman O. ID - 6779 IS - 1 JF - Physical Review E SN - 2470-0045 TI - Heteroclinic and homoclinic connections in a Kolmogorov-like flow VL - 100 ER - TY - JOUR AB - Recent studies suggest that unstable, nonchaotic solutions of the Navier-Stokes equation may provide deep insights into fluid turbulence. In this article, we present a combined experimental and numerical study exploring the dynamical role of unstable equilibrium solutions and their invariant manifolds in a weakly turbulent, electromagnetically driven, shallow fluid layer. Identifying instants when turbulent evolution slows down, we compute 31 unstable equilibria of a realistic two-dimensional model of the flow. We establish the dynamical relevance of these unstable equilibria by showing that they are closely visited by the turbulent flow. We also establish the dynamical relevance of unstable manifolds by verifying that they are shadowed by turbulent trajectories departing from the neighborhoods of unstable equilibria over large distances in state space. AU - Suri, Balachandra AU - Tithof, Jeffrey AU - Grigoriev, Roman AU - Schatz, Michael ID - 136 IS - 2 JF - Physical Review E TI - Unstable equilibria and invariant manifolds in quasi-two-dimensional Kolmogorov-like flow VL - 98 ER -