TY - JOUR AB - Dose–response relationships are a general concept for quantitatively describing biological systems across multiple scales, from the molecular to the whole-cell level. A clinically relevant example is the bacterial growth response to antibiotics, which is routinely characterized by dose–response curves. The shape of the dose–response curve varies drastically between antibiotics and plays a key role in treatment, drug interactions, and resistance evolution. However, the mechanisms shaping the dose–response curve remain largely unclear. Here, we show in Escherichia coli that the distinctively shallow dose–response curve of the antibiotic trimethoprim is caused by a negative growth-mediated feedback loop: Trimethoprim slows growth, which in turn weakens the effect of this antibiotic. At the molecular level, this feedback is caused by the upregulation of the drug target dihydrofolate reductase (FolA/DHFR). We show that this upregulation is not a specific response to trimethoprim but follows a universal trend line that depends primarily on the growth rate, irrespective of its cause. Rewiring the feedback loop alters the dose–response curve in a predictable manner, which we corroborate using a mathematical model of cellular resource allocation and growth. Our results indicate that growth-mediated feedback loops may shape drug responses more generally and could be exploited to design evolutionary traps that enable selection against drug resistance. AU - Angermayr, Andreas AU - Pang, Tin Yau AU - Chevereau, Guillaume AU - Mitosch, Karin AU - Lercher, Martin J AU - Bollenbach, Mark Tobias ID - 12261 IS - 9 JF - Molecular Systems Biology KW - Applied Mathematics KW - Computational Theory and Mathematics KW - General Agricultural and Biological Sciences KW - General Immunology and Microbiology KW - General Biochemistry KW - Genetics and Molecular Biology KW - Information Systems TI - Growth‐mediated negative feedback shapes quantitative antibiotic response VL - 18 ER - TY - JOUR AB - Cyanobacteria are mostly engineered to be sustainable cell-factories by genetic manipulations alone. Here, by modulating the concentration of allosteric effectors, we focus on increasing product formation without further burdening the cells with increased expression of enzymes. Resorting to a novel 96-well microplate cultivation system for cyanobacteria, and using lactate-producing strains of Synechocystis PCC6803 expressing different l-lactate dehydrogenases (LDH), we titrated the effect of 2,5-anhydro-mannitol supplementation. The latter acts in cells as a nonmetabolizable analogue of fructose 1,6-bisphosphate, a known allosteric regulator of one of the tested LDHs. In this strain (SAA023), we achieved over 2-fold increase of lactate productivity. Furthermore, we observed that as carbon is increasingly deviated during growth toward product formation, there is an increased fixation rate in the population of spontaneous mutants harboring an impaired production pathway. This is a challenge in the development of green cell factories, which may be countered by the incorporation in biotechnological processes of strategies such as the one pioneered here. AU - Du, Wei AU - Angermayr, Andreas AU - Jongbloets, Joeri AU - Molenaar, Douwe AU - Bachmann, Herwig AU - Hellingwerf, Klaas AU - Branco Dos Santos, Filipe ID - 520 IS - 3 JF - ACS Synthetic Biology SN - 21615063 TI - Nonhierarchical flux regulation exposes the fitness burden associated with lactate production in Synechocystis sp. PCC6803 VL - 6 ER - TY - JOUR AB - Background: Metabolic engineering and synthetic biology of cyanobacteria offer a promising sustainable alternative approach for fossil-based ethylene production, by using sunlight via oxygenic photosynthesis, to convert carbon dioxide directly into ethylene. Towards this, both well-studied cyanobacteria, i.e., Synechocystis sp PCC 6803 and Synechococcus elongatus PCC 7942, have been engineered to produce ethylene by introducing the ethylene-forming enzyme (Efe) from Pseudomonas syringae pv. phaseolicola PK2 (the Kudzu strain), which catalyzes the conversion of the ubiquitous tricarboxylic acid cycle intermediate 2-oxoglutarate into ethylene. Results: This study focuses on Synechocystis sp PCC 6803 and shows stable ethylene production through the integration of a codon-optimized version of the efe gene under control of the Ptrc promoter and the core Shine-Dalgarno sequence (5\'-AGGAGG-3\') as the ribosome-binding site (RBS), at the slr0168 neutral site. We have increased ethylene production twofold by RBS screening and further investigated improving ethylene production from a single gene copy of efe, using multiple tandem promoters and by putting our best construct on an RSF1010-based broad-host-self-replicating plasmid, which has a higher copy number than the genome. Moreover, to raise the intracellular amounts of the key Efe substrate, 2-oxoglutarate, from which ethylene is formed, we constructed a glycogen-synthesis knockout mutant (glgC) and introduced the ethylene biosynthetic pathway in it. Under nitrogen limiting conditions, the glycogen knockout strain has increased intracellular 2-oxoglutarate levels; however, surprisingly, ethylene production was lower in this strain than in the wild-type background. Conclusion: Making use of different RBS sequences, production of ethylene ranging over a 20-fold difference has been achieved. However, a further increase of production through multiple tandem promoters and a broad-host plasmid was not achieved speculating that the transcription strength and the gene copy number are not the limiting factors in our system. AU - Veetil, Vinod AU - Angermayr, Andreas AU - Hellingwerf, Klaas ID - 1061 IS - 1 JF - Microbial Cell Factories SN - 14752859 TI - Ethylene production with engineered Synechocystis sp PCC 6803 strains VL - 16 ER - TY - JOUR AB - Investigating the physiology of cyanobacteria cultured under a diel light regime is relevant for a better understanding of the resulting growth characteristics and for specific biotechnological applications that are foreseen for these photosynthetic organisms. Here, we present the results of a multiomics study of the model cyanobacterium Synechocystis sp. strain PCC 6803, cultured in a lab-scale photobioreactor in physiological conditions relevant for large-scale culturing. The culture was sparged withN2 andCO2, leading to an anoxic environment during the dark period. Growth followed the availability of light. Metabolite analysis performed with 1Hnuclear magnetic resonance analysis showed that amino acids involved in nitrogen and sulfur assimilation showed elevated levels in the light. Most protein levels, analyzed through mass spectrometry, remained rather stable. However, several high-light-response proteins and stress-response proteins showed distinct changes at the onset of the light period. Microarray-based transcript analysis found common patterns of~56% of the transcriptome following the diel regime. These oscillating transcripts could be grouped coarsely into genes that were upregulated and downregulated in the dark period. The accumulated glycogen was degraded in the anaerobic environment in the dark. A small part was degraded gradually, reflecting basic maintenance requirements of the cells in darkness. Surprisingly, the largest part was degraded rapidly in a short time span at the end of the dark period. This degradation could allow rapid formation of metabolic intermediates at the end of the dark period, preparing the cells for the resumption of growth at the start of the light period. AU - Angermayr, Andreas AU - Van Alphen, Pascal AU - Hasdemir, Dicle AU - Kramer, Gertjan AU - Iqbal, Muzamal AU - Van Grondelle, Wilmar AU - Hoefsloot, Huub AU - Choi, Younghae AU - Hellingwerf, Klaas ID - 1218 IS - 14 JF - Applied and Environmental Microbiology TI - Culturing synechocystis sp. Strain pcc 6803 with N2 and CO2 in a diel regime reveals multiphase glycogen dynamics with low maintenance costs VL - 82 ER - TY - JOUR AB - Through metabolic engineering cyanobacteria can be employed in biotechnology. Combining the capacity for oxygenic photosynthesis and carbon fixation with an engineered metabolic pathway allows carbon-based product formation from CO2, light, and water directly. Such cyanobacterial 'cell factories' are constructed to produce biofuels, bioplastics, and commodity chemicals. Efforts of metabolic engineers and synthetic biologists allow the modification of the intermediary metabolism at various branching points, expanding the product range. The new biosynthesis routes 'tap' the metabolism ever more efficiently, particularly through the engineering of driving forces and utilization of cofactors generated during the light reactions of photosynthesis, resulting in higher product titers. High rates of carbon rechanneling ultimately allow an almost-complete allocation of fixed carbon to product above biomass. AU - Angermayr, Andreas AU - Gorchs, Aleix AU - Hellingwerf, Klaas ID - 1586 IS - 6 JF - Trends in Biotechnology TI - Metabolic engineering of cyanobacteria for the synthesis of commodity products VL - 33 ER - TY - JOUR AB - Background Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible. Results We present a method for high-throughput, single-cell analysis and sorting of genetically engineered l-lactate-producing strains of Synechocystis sp. PCC6803. A microfluidic device is used to encapsulate single cells in picoliter droplets, assay the droplets for l-lactate production, and sort strains with high productivity. We demonstrate the separation of low- and high-producing reference strains, as well as enrichment of a more productive l-lactate-synthesizing population after UV-induced mutagenesis. The droplet platform also revealed population heterogeneity in photosynthetic growth and lactate production, as well as the presence of metabolically stalled cells. Conclusions The workflow will facilitate metabolic engineering and directed evolution studies and will be useful in studies of cyanobacteria biochemistry and physiology. AU - Hammar, Petter AU - Angermayr, Andreas AU - Sjostrom, Staffan AU - Van Der Meer, Josefin AU - Hellingwerf, Klaas AU - Hudson, Elton AU - Joensson, Hakaan ID - 1623 IS - 1 JF - Biotechnology for Biofuels TI - Single-cell screening of photosynthetic growth and lactate production by cyanobacteria VL - 8 ER -