--- _id: '1191' abstract: - lang: eng text: Variation in genotypes may be responsible for differences in dispersal rates, directional biases, and growth rates of individuals. These traits may favor certain genotypes and enhance their spatiotemporal spreading into areas occupied by the less advantageous genotypes. We study how these factors influence the speed of spreading in the case of two competing genotypes under the assumption that spatial variation of the total population is small compared to the spatial variation of the frequencies of the genotypes in the population. In that case, the dynamics of the frequency of one of the genotypes is approximately described by a generalized Fisher–Kolmogorov–Petrovskii–Piskunov (F–KPP) equation. This generalized F–KPP equation with (nonlinear) frequency-dependent diffusion and advection terms admits traveling wave solutions that characterize the invasion of the dominant genotype. Our existence results generalize the classical theory for traveling waves for the F–KPP with constant coefficients. Moreover, in the particular case of the quadratic (monostable) nonlinear growth–decay rate in the generalized F–KPP we study in detail the influence of the variance in diffusion and mean displacement rates of the two genotypes on the minimal wave propagation speed. acknowledgement: "We thank Nick Barton, Katarína Bod’ová, and Sr\r\n-\r\ndan Sarikas for constructive feed-\r\nback and support. Furthermore, we would like to express our deep gratitude to the anonymous referees (one\r\nof whom, Jimmy Garnier, agreed to reveal his identity) and the editor Max Souza, for very helpful and\r\ndetailed comments and suggestions that significantly helped us to improve the manuscript. This project has\r\nreceived funding from the European Union’s Seventh Framework Programme for research, technological\r\ndevelopment and demonstration under Grant Agreement 618091 Speed of Adaptation in Population Genet-\r\nics and Evolutionary Computation (SAGE) and the European Research Council (ERC) Grant No. 250152\r\n(SN), from the Scientific Grant Agency of the Slovak Republic under the Grant 1/0459/13 and by the Slovak\r\nResearch and Development Agency under the Contract No. APVV-14-0378 (RK). RK would also like to\r\nthank IST Austria for its hospitality during the work on this project." author: - first_name: Richard full_name: Kollár, Richard last_name: Kollár - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak citation: ama: Kollár R, Novak S. Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. 2017;79(3):525-559. doi:10.1007/s11538-016-0244-3 apa: Kollár, R., & Novak, S. (2017). Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. Springer. https://doi.org/10.1007/s11538-016-0244-3 chicago: Kollár, Richard, and Sebastian Novak. “Existence of Traveling Waves for the Generalized F–KPP Equation.” Bulletin of Mathematical Biology. Springer, 2017. https://doi.org/10.1007/s11538-016-0244-3. ieee: R. Kollár and S. Novak, “Existence of traveling waves for the generalized F–KPP equation,” Bulletin of Mathematical Biology, vol. 79, no. 3. Springer, pp. 525–559, 2017. ista: Kollár R, Novak S. 2017. Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. 79(3), 525–559. mla: Kollár, Richard, and Sebastian Novak. “Existence of Traveling Waves for the Generalized F–KPP Equation.” Bulletin of Mathematical Biology, vol. 79, no. 3, Springer, 2017, pp. 525–59, doi:10.1007/s11538-016-0244-3. short: R. Kollár, S. Novak, Bulletin of Mathematical Biology 79 (2017) 525–559. date_created: 2018-12-11T11:50:38Z date_published: 2017-03-01T00:00:00Z date_updated: 2021-01-12T06:48:58Z day: '01' department: - _id: NiBa doi: 10.1007/s11538-016-0244-3 ec_funded: 1 intvolume: ' 79' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.00944 month: '03' oa: 1 oa_version: Preprint page: 525-559 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Bulletin of Mathematical Biology publication_status: published publisher: Springer publist_id: '6160' quality_controlled: '1' scopus_import: 1 status: public title: Existence of traveling waves for the generalized F–KPP equation type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 79 year: '2017' ... --- _id: '9849' abstract: - lang: eng text: This text provides additional information about the model, a derivation of the analytic results in Eq (4), and details about simulations of an additional parameter set. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Modelling and simulation details. 2017. doi:10.1371/journal.pcbi.1005609.s001 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Modelling and simulation details. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s001 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Modelling and Simulation Details.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s001. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Modelling and simulation details.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Modelling and simulation details, Public Library of Science, 10.1371/journal.pcbi.1005609.s001. mla: Lukacisinova, Marta, et al. Modelling and Simulation Details. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s001. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:02:34Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: NiBa - _id: CaGu doi: 10.1371/journal.pcbi.1005609.s001 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Modelling and simulation details type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9850' abstract: - lang: eng text: In this text, we discuss how a cost of resistance and the possibility of lethal mutations impact our model. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Extensions of the model. 2017. doi:10.1371/journal.pcbi.1005609.s002 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Extensions of the model. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s002 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Extensions of the Model.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s002. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Extensions of the model.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Extensions of the model, Public Library of Science, 10.1371/journal.pcbi.1005609.s002. mla: Lukacisinova, Marta, et al. Extensions of the Model. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s002. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:05:24Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: CaGu - _id: NiBa doi: 10.1371/journal.pcbi.1005609.s002 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Extensions of the model type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9851' abstract: - lang: eng text: Based on the intuitive derivation of the dynamics of SIM allele frequency pM in the main text, we present a heuristic prediction for the long-term SIM allele frequencies with χ > 1 stresses and compare it to numerical simulations. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Heuristic prediction for multiple stresses. 2017. doi:10.1371/journal.pcbi.1005609.s003 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Heuristic prediction for multiple stresses. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s003 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Heuristic Prediction for Multiple Stresses.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s003. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Heuristic prediction for multiple stresses.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Heuristic prediction for multiple stresses, Public Library of Science, 10.1371/journal.pcbi.1005609.s003. mla: Lukacisinova, Marta, et al. Heuristic Prediction for Multiple Stresses. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s003. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:08:14Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: CaGu - _id: NiBa doi: 10.1371/journal.pcbi.1005609.s003 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Heuristic prediction for multiple stresses type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9852' abstract: - lang: eng text: We show how different combination strategies affect the fraction of individuals that are multi-resistant. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Resistance frequencies for different combination strategies. 2017. doi:10.1371/journal.pcbi.1005609.s004 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Resistance frequencies for different combination strategies. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s004 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Resistance Frequencies for Different Combination Strategies.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s004. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Resistance frequencies for different combination strategies.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Resistance frequencies for different combination strategies, Public Library of Science, 10.1371/journal.pcbi.1005609.s004. mla: Lukacisinova, Marta, et al. Resistance Frequencies for Different Combination Strategies. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s004. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:11:40Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: CaGu - _id: NiBa doi: 10.1371/journal.pcbi.1005609.s004 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Resistance frequencies for different combination strategies type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '1169' abstract: - lang: eng text: Dispersal is a crucial factor in natural evolution, since it determines the habitat experienced by any population and defines the spatial scale of interactions between individuals. There is compelling evidence for systematic differences in dispersal characteristics within the same population, i.e., genotype-dependent dispersal. The consequences of genotype-dependent dispersal on other evolutionary phenomena, however, are poorly understood. In this article we investigate the effect of genotype-dependent dispersal on spatial gene frequency patterns, using a generalization of the classical diffusion model of selection and dispersal. Dispersal is characterized by the variance of dispersal (diffusion coefficient) and the mean displacement (directional advection term). We demonstrate that genotype-dependent dispersal may change the qualitative behavior of Fisher waves, which change from being “pulled” to being “pushed” wave fronts as the discrepancy in dispersal between genotypes increases. The speed of any wave is partitioned into components due to selection, genotype-dependent variance of dispersal, and genotype-dependent mean displacement. We apply our findings to wave fronts maintained by selection against heterozygotes. Furthermore, we identify a benefit of increased variance of dispersal, quantify its effect on the speed of the wave, and discuss the implications for the evolution of dispersal strategies. article_processing_charge: No author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak orcid: 0000-0002-2519-824X - first_name: Richard full_name: Kollár, Richard last_name: Kollár citation: ama: Novak S, Kollár R. Spatial gene frequency waves under genotype dependent dispersal. Genetics. 2017;205(1):367-374. doi:10.1534/genetics.116.193946 apa: Novak, S., & Kollár, R. (2017). Spatial gene frequency waves under genotype dependent dispersal. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.116.193946 chicago: Novak, Sebastian, and Richard Kollár. “Spatial Gene Frequency Waves under Genotype Dependent Dispersal.” Genetics. Genetics Society of America, 2017. https://doi.org/10.1534/genetics.116.193946. ieee: S. Novak and R. Kollár, “Spatial gene frequency waves under genotype dependent dispersal,” Genetics, vol. 205, no. 1. Genetics Society of America, pp. 367–374, 2017. ista: Novak S, Kollár R. 2017. Spatial gene frequency waves under genotype dependent dispersal. Genetics. 205(1), 367–374. mla: Novak, Sebastian, and Richard Kollár. “Spatial Gene Frequency Waves under Genotype Dependent Dispersal.” Genetics, vol. 205, no. 1, Genetics Society of America, 2017, pp. 367–74, doi:10.1534/genetics.116.193946. short: S. Novak, R. Kollár, Genetics 205 (2017) 367–374. date_created: 2018-12-11T11:50:31Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T11:24:21Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1534/genetics.116.193946 ec_funded: 1 external_id: isi: - '000393677300025' file: - access_level: open_access checksum: 7c8ab79cda1f92760bbbbe0f53175bfc content_type: application/pdf creator: system date_created: 2018-12-12T10:10:43Z date_updated: 2020-07-14T12:44:37Z file_id: '4833' file_name: IST-2016-727-v1+1_SFC_Genetics_final.pdf file_size: 361500 relation: main_file file_date_updated: 2020-07-14T12:44:37Z has_accepted_license: '1' intvolume: ' 205' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 367 - 374 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Genetics publication_identifier: issn: - '00166731' publication_status: published publisher: Genetics Society of America publist_id: '6188' pubrep_id: '727' quality_controlled: '1' scopus_import: '1' status: public title: Spatial gene frequency waves under genotype dependent dispersal type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 205 year: '2017' ... --- _id: '910' abstract: - lang: eng text: "Frequency-independent selection is generally considered as a force that acts to reduce the genetic variation in evolving populations, yet rigorous arguments for this idea are scarce. When selection fluctuates in time, it is unclear whether frequency-independent selection may maintain genetic polymorphism without invoking additional mechanisms. We show that constant frequency-independent selection with arbitrary epistasis on a well-mixed haploid population eliminates genetic variation if we assume linkage equilibrium between alleles. To this end, we introduce the notion of frequency-independent selection at the level of alleles, which is sufficient to prove our claim and contains the notion of frequency-independent selection on haploids. When selection and recombination are weak but of the same order, there may be strong linkage disequilibrium; numerical calculations show that stable equilibria are highly unlikely. Using the example of a diallelic two-locus model, we then demonstrate that frequency-independent selection that fluctuates in time can maintain stable polymorphism if linkage disequilibrium changes its sign periodically. We put our findings in the context of results from the existing literature and point out those scenarios in which the possible role of frequency-independent selection in maintaining genetic variation remains unclear.\r\n" article_processing_charge: No author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak orcid: 0000-0002-2519-824X - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Novak S, Barton NH. When does frequency-independent selection maintain genetic variation? Genetics. 2017;207(2):653-668. doi:10.1534/genetics.117.300129 apa: Novak, S., & Barton, N. H. (2017). When does frequency-independent selection maintain genetic variation? Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.117.300129 chicago: Novak, Sebastian, and Nicholas H Barton. “When Does Frequency-Independent Selection Maintain Genetic Variation?” Genetics. Genetics Society of America, 2017. https://doi.org/10.1534/genetics.117.300129. ieee: S. Novak and N. H. Barton, “When does frequency-independent selection maintain genetic variation?,” Genetics, vol. 207, no. 2. Genetics Society of America, pp. 653–668, 2017. ista: Novak S, Barton NH. 2017. When does frequency-independent selection maintain genetic variation? Genetics. 207(2), 653–668. mla: Novak, Sebastian, and Nicholas H. Barton. “When Does Frequency-Independent Selection Maintain Genetic Variation?” Genetics, vol. 207, no. 2, Genetics Society of America, 2017, pp. 653–68, doi:10.1534/genetics.117.300129. short: S. Novak, N.H. Barton, Genetics 207 (2017) 653–668. date_created: 2018-12-11T11:49:09Z date_published: 2017-10-01T00:00:00Z date_updated: 2023-09-26T15:49:15Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1534/genetics.117.300129 ec_funded: 1 external_id: isi: - '000412232600019' file: - access_level: open_access checksum: f7c32dabf52e6d9e709d9203761e39fd content_type: application/pdf creator: system date_created: 2018-12-12T10:17:12Z date_updated: 2020-07-14T12:48:15Z file_id: '5264' file_name: IST-2018-974-v1+1_manuscript.pdf file_size: 494268 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 207' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 653 - 668 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '6533' pubrep_id: '974' quality_controlled: '1' scopus_import: '1' status: public title: When does frequency-independent selection maintain genetic variation? type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 207 year: '2017' ... --- _id: '696' abstract: - lang: eng text: Mutator strains are expected to evolve when the availability and effect of beneficial mutations are high enough to counteract the disadvantage from deleterious mutations that will inevitably accumulate. As the population becomes more adapted to its environment, both availability and effect of beneficial mutations necessarily decrease and mutation rates are predicted to decrease. It has been shown that certain molecular mechanisms can lead to increased mutation rates when the organism finds itself in a stressful environment. While this may be a correlated response to other functions, it could also be an adaptive mechanism, raising mutation rates only when it is most advantageous. Here, we use a mathematical model to investigate the plausibility of the adaptive hypothesis. We show that such a mechanism can be mantained if the population is subjected to diverse stresses. By simulating various antibiotic treatment schemes, we find that combination treatments can reduce the effectiveness of second-order selection on stress-induced mutagenesis. We discuss the implications of our results to strategies of antibiotic therapy. article_number: e1005609 article_type: original author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak orcid: 0000-0002-2519-824X - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: 'Lukacisinova M, Novak S, Paixao T. Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Computational Biology. 2017;13(7). doi:10.1371/journal.pcbi.1005609' apa: 'Lukacisinova, M., Novak, S., & Paixao, T. (2017). Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609' chicago: 'Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Stress Induced Mutagenesis: Stress Diversity Facilitates the Persistence of Mutator Genes.” PLoS Computational Biology. Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.' ieee: 'M. Lukacisinova, S. Novak, and T. Paixao, “Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes,” PLoS Computational Biology, vol. 13, no. 7. Public Library of Science, 2017.' ista: 'Lukacisinova M, Novak S, Paixao T. 2017. Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Computational Biology. 13(7), e1005609.' mla: 'Lukacisinova, Marta, et al. “Stress Induced Mutagenesis: Stress Diversity Facilitates the Persistence of Mutator Genes.” PLoS Computational Biology, vol. 13, no. 7, e1005609, Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.' short: M. Lukacisinova, S. Novak, T. Paixao, PLoS Computational Biology 13 (2017). date_created: 2018-12-11T11:47:58Z date_published: 2017-07-18T00:00:00Z date_updated: 2024-03-28T23:30:28Z day: '18' ddc: - '576' department: - _id: ToBo - _id: NiBa - _id: CaGu doi: 10.1371/journal.pcbi.1005609 ec_funded: 1 file: - access_level: open_access checksum: 9143c290fa6458ed2563bff4b295554a content_type: application/pdf creator: system date_created: 2018-12-12T10:15:01Z date_updated: 2020-07-14T12:47:46Z file_id: '5117' file_name: IST-2017-894-v1+1_journal.pcbi.1005609.pdf file_size: 3775716 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 13' issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: PLoS Computational Biology publication_identifier: issn: - 1553734X publication_status: published publisher: Public Library of Science publist_id: '7004' pubrep_id: '894' quality_controlled: '1' related_material: record: - id: '9849' relation: research_data status: public - id: '9850' relation: research_data status: public - id: '9851' relation: research_data status: public - id: '9852' relation: research_data status: public - id: '6263' relation: dissertation_contains status: public scopus_import: 1 status: public title: 'Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2017' ... --- _id: '1125' abstract: - lang: eng text: "Natural environments are never constant but subject to spatial and temporal change on\r\nall scales, increasingly so due to human activity. Hence, it is crucial to understand the\r\nimpact of environmental variation on evolutionary processes. In this thesis, I present\r\nthree topics that share the common theme of environmental variation, yet illustrate its\r\neffect from different perspectives.\r\nFirst, I show how a temporally fluctuating environment gives rise to second-order\r\nselection on a modifier for stress-induced mutagenesis. Without fluctuations, when\r\npopulations are adapted to their environment, mutation rates are minimized. I argue\r\nthat a stress-induced mutator mechanism may only be maintained if the population is\r\nrepeatedly subjected to diverse environmental challenges, and I outline implications of\r\nthe presented results to antibiotic treatment strategies.\r\nSecond, I discuss my work on the evolution of dispersal. Besides reproducing\r\nknown results about the effect of heterogeneous habitats on dispersal, it identifies\r\nspatial changes in dispersal type frequencies as a source for selection for increased\r\npropensities to disperse. This concept contains effects of relatedness that are known\r\nto promote dispersal, and I explain how it identifies other forces selecting for dispersal\r\nand puts them on a common scale.\r\nThird, I analyse genetic variances of phenotypic traits under multivariate stabilizing\r\nselection. For the case of constant environments, I generalize known formulae of\r\nequilibrium variances to multiple traits and discuss how the genetic variance of a focal\r\ntrait is influenced by selection on background traits. I conclude by presenting ideas and\r\npreliminary work aiming at including environmental fluctuations in the form of moving\r\ntrait optima into the model." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak orcid: 0000-0002-2519-824X citation: ama: Novak S. Evolutionary proccesses in variable emvironments. 2016. apa: Novak, S. (2016). Evolutionary proccesses in variable emvironments. Institute of Science and Technology Austria. chicago: Novak, Sebastian. “Evolutionary Proccesses in Variable Emvironments.” Institute of Science and Technology Austria, 2016. ieee: S. Novak, “Evolutionary proccesses in variable emvironments,” Institute of Science and Technology Austria, 2016. ista: Novak S. 2016. Evolutionary proccesses in variable emvironments. Institute of Science and Technology Austria. mla: Novak, Sebastian. Evolutionary Proccesses in Variable Emvironments. Institute of Science and Technology Austria, 2016. short: S. Novak, Evolutionary Proccesses in Variable Emvironments, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:17Z date_published: 2016-07-01T00:00:00Z date_updated: 2023-09-07T11:55:53Z day: '01' ddc: - '576' degree_awarded: PhD department: - _id: NiBa file: - access_level: closed checksum: 81dcc838dfcf7aa0b1a27ecf4fe2da4e content_type: application/pdf creator: dernst date_created: 2019-08-13T09:01:00Z date_updated: 2019-08-13T09:01:00Z file_id: '6811' file_name: Novak_thesis.pdf file_size: 3564901 relation: main_file - access_level: open_access checksum: 30808d2f7ca920e09f63a95cdc49bffd content_type: application/pdf creator: dernst date_created: 2021-02-22T13:42:47Z date_updated: 2021-02-22T13:42:47Z file_id: '9186' file_name: 2016_Novak_Thesis.pdf file_size: 2814384 relation: main_file success: 1 file_date_updated: 2021-02-22T13:42:47Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '124' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6235' related_material: record: - id: '2023' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Evolutionary proccesses in variable emvironments type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1850' abstract: - lang: eng text: 'Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels.' author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: 'Novak S, Cremer S. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. 2015;372(5):54-64. doi:10.1016/j.jtbi.2015.02.018' apa: 'Novak, S., & Cremer, S. (2015). Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2015.02.018' chicago: 'Novak, Sebastian, and Sylvia Cremer. “Fungal Disease Dynamics in Insect Societies: Optimal Killing Rates and the Ambivalent Effect of High Social Interaction Rates.” Journal of Theoretical Biology. Elsevier, 2015. https://doi.org/10.1016/j.jtbi.2015.02.018.' ieee: 'S. Novak and S. Cremer, “Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates,” Journal of Theoretical Biology, vol. 372, no. 5. Elsevier, pp. 54–64, 2015.' ista: 'Novak S, Cremer S. 2015. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. 372(5), 54–64.' mla: 'Novak, Sebastian, and Sylvia Cremer. “Fungal Disease Dynamics in Insect Societies: Optimal Killing Rates and the Ambivalent Effect of High Social Interaction Rates.” Journal of Theoretical Biology, vol. 372, no. 5, Elsevier, 2015, pp. 54–64, doi:10.1016/j.jtbi.2015.02.018.' short: S. Novak, S. Cremer, Journal of Theoretical Biology 372 (2015) 54–64. date_created: 2018-12-11T11:54:21Z date_published: 2015-05-07T00:00:00Z date_updated: 2021-01-12T06:53:37Z day: '07' ddc: - '576' department: - _id: NiBa - _id: SyCr doi: 10.1016/j.jtbi.2015.02.018 ec_funded: 1 file: - access_level: open_access checksum: 3c0dcacc900bc45cc65a453dfda4ca43 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:07Z date_updated: 2020-07-14T12:45:19Z file_id: '5326' file_name: IST-2015-329-v1+1_manuscript.pdf file_size: 1546914 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 372' issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 54 - 64 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '5251' pubrep_id: '329' quality_controlled: '1' scopus_import: 1 status: public title: 'Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 372 year: '2015' ... --- _id: '1809' abstract: - lang: eng text: 'Background: Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the expression of traits in social partners. Previous studies focused on the evolutionary consequences and evolutionary dynamics of IGEs, using equilibrium solutions to predict phenotypes in subsequent generations. However, whether or not such steady states may be reached may depend on the dynamics of interactions themselves. Results: In our study, we focus on the dynamics of social interactions and indirect genetic effects and investigate how they modify phenotypes over time. Unlike previous IGE studies, we do not analyse evolutionary dynamics; rather we consider within-individual phenotypic changes, also referred to as phenotypic plasticity. We analyse iterative interactions, when individuals interact in a series of discontinuous events, and investigate the stability of steady state solutions and the dependence on model parameters, such as population size, strength, and the nature of interactions. We show that for interactions where a feedback loop occurs, the possible parameter space of interaction strength is fairly limited, affecting the evolutionary consequences of IGEs. We discuss the implications of our results for current IGE model predictions and their limitations.' author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Novak S, Hager R. Indirect genetic effects and the dynamics of social interactions. PLoS One. 2015;10(5). doi:10.1371/journal.pone.0126907 apa: Trubenova, B., Novak, S., & Hager, R. (2015). Indirect genetic effects and the dynamics of social interactions. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0126907 chicago: Trubenova, Barbora, Sebastian Novak, and Reinmar Hager. “Indirect Genetic Effects and the Dynamics of Social Interactions.” PLoS One. Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0126907. ieee: B. Trubenova, S. Novak, and R. Hager, “Indirect genetic effects and the dynamics of social interactions,” PLoS One, vol. 10, no. 5. Public Library of Science, 2015. ista: Trubenova B, Novak S, Hager R. 2015. Indirect genetic effects and the dynamics of social interactions. PLoS One. 10(5). mla: Trubenova, Barbora, et al. “Indirect Genetic Effects and the Dynamics of Social Interactions.” PLoS One, vol. 10, no. 5, Public Library of Science, 2015, doi:10.1371/journal.pone.0126907. short: B. Trubenova, S. Novak, R. Hager, PLoS One 10 (2015). date_created: 2018-12-11T11:54:07Z date_published: 2015-05-18T00:00:00Z date_updated: 2023-02-23T14:07:48Z day: '18' ddc: - '570' - '576' department: - _id: NiBa doi: 10.1371/journal.pone.0126907 file: - access_level: open_access checksum: d3a4a58ef4bd3b3e2f32b7fd7af4a743 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:07Z date_updated: 2020-07-14T12:45:17Z file_id: '4730' file_name: IST-2016-453-v1+1_journal.pone.0126907.pdf file_size: 2748982 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' intvolume: ' 10' issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '5299' pubrep_id: '453' quality_controlled: '1' related_material: record: - id: '9715' relation: research_data status: public - id: '9772' relation: research_data status: public scopus_import: 1 status: public title: Indirect genetic effects and the dynamics of social interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2015' ... --- _id: '9772' article_processing_charge: No author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Novak S, Hager R. Description of the agent based simulations. 2015. doi:10.1371/journal.pone.0126907.s003 apa: Trubenova, B., Novak, S., & Hager, R. (2015). Description of the agent based simulations. Public Library of Science. https://doi.org/10.1371/journal.pone.0126907.s003 chicago: Trubenova, Barbora, Sebastian Novak, and Reinmar Hager. “Description of the Agent Based Simulations.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0126907.s003. ieee: B. Trubenova, S. Novak, and R. Hager, “Description of the agent based simulations.” Public Library of Science, 2015. ista: Trubenova B, Novak S, Hager R. 2015. Description of the agent based simulations, Public Library of Science, 10.1371/journal.pone.0126907.s003. mla: Trubenova, Barbora, et al. Description of the Agent Based Simulations. Public Library of Science, 2015, doi:10.1371/journal.pone.0126907.s003. short: B. Trubenova, S. Novak, R. Hager, (2015). date_created: 2021-08-05T12:55:20Z date_published: 2015-05-18T00:00:00Z date_updated: 2023-02-23T10:15:25Z day: '18' department: - _id: NiBa doi: 10.1371/journal.pone.0126907.s003 month: '05' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1809' relation: used_in_publication status: public status: public title: Description of the agent based simulations type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '9715' article_processing_charge: No author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Novak S, Hager R. Mathematical inference of the results. 2015. doi:10.1371/journal.pone.0126907.s001 apa: Trubenova, B., Novak, S., & Hager, R. (2015). Mathematical inference of the results. Public Library of Science. https://doi.org/10.1371/journal.pone.0126907.s001 chicago: Trubenova, Barbora, Sebastian Novak, and Reinmar Hager. “Mathematical Inference of the Results.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0126907.s001. ieee: B. Trubenova, S. Novak, and R. Hager, “Mathematical inference of the results.” Public Library of Science, 2015. ista: Trubenova B, Novak S, Hager R. 2015. Mathematical inference of the results, Public Library of Science, 10.1371/journal.pone.0126907.s001. mla: Trubenova, Barbora, et al. Mathematical Inference of the Results. Public Library of Science, 2015, doi:10.1371/journal.pone.0126907.s001. short: B. Trubenova, S. Novak, R. Hager, (2015). date_created: 2021-07-23T12:11:30Z date_published: 2015-05-18T00:00:00Z date_updated: 2023-02-23T10:15:25Z day: '18' department: - _id: NiBa doi: 10.1371/journal.pone.0126907.s001 month: '05' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1809' relation: used_in_publication status: public status: public title: Mathematical inference of the results type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '2169' author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Barton NH, Novak S, Paixao T. Diverse forms of selection in evolution and computer science. PNAS. 2014;111(29):10398-10399. doi:10.1073/pnas.1410107111 apa: Barton, N. H., Novak, S., & Paixao, T. (2014). Diverse forms of selection in evolution and computer science. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1410107111 chicago: Barton, Nicholas H, Sebastian Novak, and Tiago Paixao. “Diverse Forms of Selection in Evolution and Computer Science.” PNAS. National Academy of Sciences, 2014. https://doi.org/10.1073/pnas.1410107111. ieee: N. H. Barton, S. Novak, and T. Paixao, “Diverse forms of selection in evolution and computer science,” PNAS, vol. 111, no. 29. National Academy of Sciences, pp. 10398–10399, 2014. ista: Barton NH, Novak S, Paixao T. 2014. Diverse forms of selection in evolution and computer science. PNAS. 111(29), 10398–10399. mla: Barton, Nicholas H., et al. “Diverse Forms of Selection in Evolution and Computer Science.” PNAS, vol. 111, no. 29, National Academy of Sciences, 2014, pp. 10398–99, doi:10.1073/pnas.1410107111. short: N.H. Barton, S. Novak, T. Paixao, PNAS 111 (2014) 10398–10399. date_created: 2018-12-11T11:56:07Z date_published: 2014-07-22T00:00:00Z date_updated: 2021-01-12T06:55:45Z day: '22' department: - _id: NiBa doi: 10.1073/pnas.1410107111 intvolume: ' 111' issue: '29' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115508/ month: '07' oa: 1 oa_version: Submitted Version page: 10398 - 10399 publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '4815' quality_controlled: '1' scopus_import: 1 status: public title: Diverse forms of selection in evolution and computer science type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 111 year: '2014' ... --- _id: '2023' abstract: - lang: eng text: 'Understanding the evolution of dispersal is essential for understanding and predicting the dynamics of natural populations. Two main factors are known to influence dispersal evolution: spatio-temporal variation in the environment and relatedness between individuals. However, the relation between these factors is still poorly understood, and they are usually treated separately. In this article, I present a theoretical framework that contains and connects effects of both environmental variation and relatedness, and reproduces and extends their known features. Spatial habitat variation selects for balanced dispersal strategies, whereby the population is kept at an ideal free distribution. Within this class of dispersal strategies, I explain how increased dispersal is promoted by perturbations to the dispersal type frequencies. An explicit formula shows the magnitude of the selective advantage of increased dispersal in terms of the spatial variability in the frequencies of the different dispersal strategies present. These variances are capable of capturing various sources of stochasticity and hence establish a common scale for their effects on the evolution of dispersal. The results furthermore indicate an alternative approach to identifying effects of relatedness on dispersal evolution.' author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak orcid: 0000-0002-2519-824X citation: ama: Novak S. Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution. Ecology and Evolution. 2014;4(24):4589-4597. doi:10.1002/ece3.1289 apa: Novak, S. (2014). Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution. Ecology and Evolution. Wiley-Blackwell. https://doi.org/10.1002/ece3.1289 chicago: Novak, Sebastian. “Habitat Heterogeneities versus Spatial Type Frequency Variances as Driving Forces of Dispersal Evolution.” Ecology and Evolution. Wiley-Blackwell, 2014. https://doi.org/10.1002/ece3.1289. ieee: S. Novak, “Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution,” Ecology and Evolution, vol. 4, no. 24. Wiley-Blackwell, pp. 4589–4597, 2014. ista: Novak S. 2014. Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution. Ecology and Evolution. 4(24), 4589–4597. mla: Novak, Sebastian. “Habitat Heterogeneities versus Spatial Type Frequency Variances as Driving Forces of Dispersal Evolution.” Ecology and Evolution, vol. 4, no. 24, Wiley-Blackwell, 2014, pp. 4589–97, doi:10.1002/ece3.1289. short: S. Novak, Ecology and Evolution 4 (2014) 4589–4597. date_created: 2018-12-11T11:55:16Z date_published: 2014-11-27T00:00:00Z date_updated: 2023-09-07T11:55:53Z day: '27' ddc: - '570' department: - _id: NiBa doi: 10.1002/ece3.1289 ec_funded: 1 file: - access_level: open_access checksum: 9ab43db1b0fede7bfe560ed77e177b76 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:28Z date_updated: 2020-07-14T12:45:25Z file_id: '4946' file_name: IST-2016-462-v1+1_Novak-2014-Ecology_and_Evolution.pdf file_size: 118813 relation: main_file file_date_updated: 2020-07-14T12:45:25Z has_accepted_license: '1' intvolume: ' 4' issue: '24' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 4589 - 4597 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Ecology and Evolution publication_status: published publisher: Wiley-Blackwell publist_id: '5049' pubrep_id: '462' quality_controlled: '1' related_material: record: - id: '1125' relation: dissertation_contains status: public scopus_import: 1 status: public title: Habitat heterogeneities versus spatial type frequency variances as driving forces of dispersal evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2014' ... --- _id: '2817' abstract: - lang: eng text: The basic idea of evolutionary game theory is that payoff determines reproductive rate. Successful individuals have a higher payoff and produce more offspring. But in evolutionary and ecological situations there is not only reproductive rate but also carrying capacity. Individuals may differ in their exposure to density limiting effects. Here we explore an alternative approach to evolutionary game theory by assuming that the payoff from the game determines the carrying capacity of individual phenotypes. Successful strategies are less affected by density limitation (crowding) and reach higher equilibrium abundance. We demonstrate similarities and differences between our framework and the standard replicator equation. Our equation is defined on the positive orthant, instead of the simplex, but has the same equilibrium points as the replicator equation. Linear stability analysis produces the classical conditions for asymptotic stability of pure strategies, but the stability properties of internal equilibria can differ in the two frameworks. For example, in a two-strategy game with an internal equilibrium that is always stable under the replicator equation, the corresponding equilibrium can be unstable in the new framework resulting in a limit cycle. author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Novak S, Chatterjee K, Nowak M. Density games. Journal of Theoretical Biology. 2013;334:26-34. doi:10.1016/j.jtbi.2013.05.029 apa: Novak, S., Chatterjee, K., & Nowak, M. (2013). Density games. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2013.05.029 chicago: Novak, Sebastian, Krishnendu Chatterjee, and Martin Nowak. “Density Games.” Journal of Theoretical Biology. Elsevier, 2013. https://doi.org/10.1016/j.jtbi.2013.05.029. ieee: S. Novak, K. Chatterjee, and M. Nowak, “Density games,” Journal of Theoretical Biology, vol. 334. Elsevier, pp. 26–34, 2013. ista: Novak S, Chatterjee K, Nowak M. 2013. Density games. Journal of Theoretical Biology. 334, 26–34. mla: Novak, Sebastian, et al. “Density Games.” Journal of Theoretical Biology, vol. 334, Elsevier, 2013, pp. 26–34, doi:10.1016/j.jtbi.2013.05.029. short: S. Novak, K. Chatterjee, M. Nowak, Journal of Theoretical Biology 334 (2013) 26–34. date_created: 2018-12-11T11:59:45Z date_published: 2013-10-07T00:00:00Z date_updated: 2021-01-12T06:59:55Z day: '07' ddc: - '000' department: - _id: NiBa - _id: KrCh doi: 10.1016/j.jtbi.2013.05.029 ec_funded: 1 file: - access_level: open_access checksum: 3c29059ab03a4b8f97a07646b817ddbb content_type: application/pdf creator: system date_created: 2018-12-12T10:14:54Z date_updated: 2020-07-14T12:45:49Z file_id: '5110' file_name: IST-2016-400-v1+1_1-s2.0-S0022519313002609-main.pdf file_size: 834604 relation: main_file file_date_updated: 2020-07-14T12:45:49Z has_accepted_license: '1' intvolume: ' 334' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 26 - 34 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '3984' pubrep_id: '400' quality_controlled: '1' scopus_import: 1 status: public title: Density games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 334 year: '2013' ... --- _id: '1863' abstract: - lang: eng text: The Levene model is the simplest mathematical model to describe the evolution of gene frequencies in spatially subdivided populations. It provides insight into how locally varying selection promotes a population’s genetic diversity. Despite its simplicity, interesting problems have remained unsolved even in the diallelic case. In this paper we answer an open problem by establishing that for two alleles at one locus and J demes, up to 2J−1 polymorphic equilibria may coexist. We first present a proof for the case of stable monomorphisms and then show that the result also holds for protected alleles. These findings allow us to prove that any odd number (up to 2J−1) of equilibria is possible, before we extend the proof to even numbers. We conclude with some numerical results and show that for J>2, the proportion of parameter space affording this maximum is extremely small. acknowledgement: FWF 21305 author: - first_name: Sebastian full_name: Sebastian Novak id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak citation: ama: Novak S. The number of equilibria in the diallelic Levene model with multiple demes. Theoretical Population Biology. 2011;79(3):97-101. doi:10.1016/j.tpb.2010.12.002 apa: Novak, S. (2011). The number of equilibria in the diallelic Levene model with multiple demes. Theoretical Population Biology. Academic Press. https://doi.org/10.1016/j.tpb.2010.12.002 chicago: Novak, Sebastian. “The Number of Equilibria in the Diallelic Levene Model with Multiple Demes.” Theoretical Population Biology. Academic Press, 2011. https://doi.org/10.1016/j.tpb.2010.12.002. ieee: S. Novak, “The number of equilibria in the diallelic Levene model with multiple demes,” Theoretical Population Biology, vol. 79, no. 3. Academic Press, pp. 97–101, 2011. ista: Novak S. 2011. The number of equilibria in the diallelic Levene model with multiple demes. Theoretical Population Biology. 79(3), 97–101. mla: Novak, Sebastian. “The Number of Equilibria in the Diallelic Levene Model with Multiple Demes.” Theoretical Population Biology, vol. 79, no. 3, Academic Press, 2011, pp. 97–101, doi:10.1016/j.tpb.2010.12.002. short: S. Novak, Theoretical Population Biology 79 (2011) 97–101. date_created: 2018-12-11T11:54:25Z date_published: 2011-05-01T00:00:00Z date_updated: 2021-01-12T06:53:42Z day: '01' doi: 10.1016/j.tpb.2010.12.002 extern: 1 intvolume: ' 79' issue: '3' license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' page: 97 - 101 publication: Theoretical Population Biology publication_status: published publisher: Academic Press publist_id: '5236' quality_controlled: 0 status: public title: The number of equilibria in the diallelic Levene model with multiple demes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article volume: 79 year: '2011' ...