--- _id: '11879' abstract: - lang: eng text: "As the overall global mean surface temperature is increasing due to climate change, plant\r\nadaptation to those stressful conditions is of utmost importance for their survival. Plants are\r\nsessile organisms, thus to compensate for their lack of mobility, they evolved a variety of\r\nmechanisms enabling them to flexibly adjust their physiological, growth and developmental\r\nprocesses to fluctuating temperatures and to survive in harsh environments. While these unique\r\nadaptation abilities provide an important evolutionary advantage, overall modulation of plant\r\ngrowth and developmental program due to non-optimal temperature negatively affects biomass\r\nproduction, crop productivity or sensitivity to pathogens. Thus, understanding molecular\r\nprocesses underlying plant adaptation to increased temperature can provide important\r\nresources for breeding strategies to ensure sufficient agricultural food production.\r\nAn increase in ambient temperature by a few degrees leads to profound changes in organ growth\r\nincluding enhanced hypocotyl elongation, expansion of petioles, hyponastic growth of leaves and\r\ncotyledons, collectively named thermomorphogenesis (Casal & Balasubramanian, 2019). Auxin,\r\none of the best-studied growth hormones, plays an essential role in this process by direct\r\nactivation of transcriptional and non-transcriptional processes resulting in elongation growth\r\n(Majda & Robert, 2018).To modulate hypocotyl growth in response to high ambient temperature\r\n(hAT), auxin needs to be redistributed accordingly. PINs, auxin efflux transporters, are key\r\ncomponents of the polar auxin transport (PAT) machinery, which controls the amount and\r\ndirection of auxin translocated in the plant tissues and organs(Adamowski & Friml, 2015). Hence,\r\nPIN-mediated transport is tightly linked with thermo-morphogenesis, and interference with PAT\r\nthrough either chemical or genetic means dramatically affecting the adaptive responses to hAT.\r\nIntriguingly, despite the key role of PIN mediated transport in growth response to hAT, whether\r\nand how PINs at the level of expression adapt to fluctuation in temperature is scarcely\r\nunderstood.\r\nWith genetic, molecular and advanced bio-imaging approaches, we demonstrate the role of PIN\r\nauxin transporters in the regulation of hypocotyl growth in response to hAT. We show that via\r\nadjustment of PIN3, PIN4 and PIN7 expression in cotyledons and hypocotyls, auxin distribution is modulated thereby determining elongation pattern of epidermal cells at hAT. Furthermore, we\r\nidentified three Zinc-Finger (ZF) transcription factors as novel molecular components of the\r\nthermo-regulatory network, which through negative regulation of PIN transcription adjust the\r\ntransport of auxin at hAT. Our results suggest that the ZF-PIN module might be a part of the\r\nnegative feedback loop attenuating the activity of the thermo-sensing pathway to restrain\r\nexaggerated growth and developmental responses to hAT." acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: SSU acknowledgement: I would like to acknowledge ISTA and all the people from the Scientific Service Units and at ISTA, in particular Dorota Jaworska for excellent technical and scientific support as well as ÖAW for funding my research for over 3 years (DOC ÖAW Fellowship PR1022OEAW02). alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner citation: ama: Artner C. Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. 2022. doi:10.15479/at:ista:11879 apa: Artner, C. (2022). Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11879 chicago: Artner, Christina. “Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11879. ieee: C. Artner, “Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature,” Institute of Science and Technology Austria, 2022. ista: Artner C. 2022. Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature. Institute of Science and Technology Austria. mla: Artner, Christina. Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11879. short: C. Artner, Modulation of Auxin Transport via ZF Proteins Adjust Plant Response to High Ambient Temperature, Institute of Science and Technology Austria, 2022. date_created: 2022-08-17T07:58:53Z date_published: 2022-08-17T00:00:00Z date_updated: 2023-09-09T22:30:04Z day: '17' ddc: - '580' degree_awarded: PhD department: - _id: GradSch - _id: EvBe doi: 10.15479/at:ista:11879 file: - access_level: open_access checksum: a2c2fdc28002538840490bfa6a08b2cb content_type: application/pdf creator: cartner date_created: 2022-08-17T12:08:49Z date_updated: 2023-09-09T22:30:03Z embargo: 2023-09-08 file_id: '11907' file_name: ChristinaArtner_PhD_Thesis_2022.pdf file_size: 11113608 relation: main_file - access_level: closed checksum: 66b461c074b815fbe63481b3f46a9f43 content_type: application/octet-stream creator: cartner date_created: 2022-08-17T12:08:59Z date_updated: 2023-09-09T22:30:03Z embargo_to: open_access file_id: '11908' file_name: ChristinaArtner_PhD_Thesis_2022.7z file_size: 19097730 relation: source_file file_date_updated: 2023-09-09T22:30:03Z has_accepted_license: '1' keyword: - high ambient temperature - auxin - PINs - Zinc-Finger proteins - thermomorphogenesis - stress language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '128' project: - _id: 2685A872-B435-11E9-9278-68D0E5697425 name: Hormonal regulation of plant adaptive responses to environmental signals publication_identifier: isbn: - 978-3-99078-022-0 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 title: Modulation of auxin transport via ZF proteins adjust plant response to high ambient temperature type: dissertation user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '9212' abstract: - lang: eng text: Plant fitness is largely dependent on the root, the underground organ, which, besides its anchoring function, supplies the plant body with water and all nutrients necessary for growth and development. To exploit the soil effectively, roots must constantly integrate environmental signals and react through adjustment of growth and development. Important components of the root management strategy involve a rapid modulation of the root growth kinetics and growth direction, as well as an increase of the root system radius through formation of lateral roots (LRs). At the molecular level, such a fascinating growth and developmental flexibility of root organ requires regulatory networks that guarantee stability of the developmental program but also allows integration of various environmental inputs. The plant hormone auxin is one of the principal endogenous regulators of root system architecture by controlling primary root growth and formation of LR. In this review, we discuss recent progress in understanding molecular networks where auxin is one of the main players shaping the root system and acting as mediator between endogenous cues and environmental factors. acknowledgement: We apologize to all the authors whose scientific work could not be cited and discussed because of space restrictions. We thank Dr. Inge Verstraeten (ISTAustria) and Dr. Juan Carlos Montesinos-Lopez (ETH Zürich) for helpful suggestions. This work was supported by the DOC Fellowship Programme of the Austrian Academy of Sciences (25008) to C.A. article_number: a039941 article_processing_charge: No article_type: original author: - first_name: Nicola full_name: Cavallari, Nicola id: 457160E6-F248-11E8-B48F-1D18A9856A87 last_name: Cavallari - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Cavallari N, Artner C, Benková E. Auxin-regulated lateral root organogenesis. Cold Spring Harbor Perspectives in Biology. 2021;13(7). doi:10.1101/cshperspect.a039941 apa: Cavallari, N., Artner, C., & Benková, E. (2021). Auxin-regulated lateral root organogenesis. Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/cshperspect.a039941 chicago: Cavallari, Nicola, Christina Artner, and Eva Benková. “Auxin-Regulated Lateral Root Organogenesis.” Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory Press, 2021. https://doi.org/10.1101/cshperspect.a039941. ieee: N. Cavallari, C. Artner, and E. Benková, “Auxin-regulated lateral root organogenesis,” Cold Spring Harbor Perspectives in Biology, vol. 13, no. 7. Cold Spring Harbor Laboratory Press, 2021. ista: Cavallari N, Artner C, Benková E. 2021. Auxin-regulated lateral root organogenesis. Cold Spring Harbor Perspectives in Biology. 13(7), a039941. mla: Cavallari, Nicola, et al. “Auxin-Regulated Lateral Root Organogenesis.” Cold Spring Harbor Perspectives in Biology, vol. 13, no. 7, a039941, Cold Spring Harbor Laboratory Press, 2021, doi:10.1101/cshperspect.a039941. short: N. Cavallari, C. Artner, E. Benková, Cold Spring Harbor Perspectives in Biology 13 (2021). date_created: 2021-03-01T10:08:32Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-09-27T06:44:06Z day: '01' department: - _id: EvBe doi: 10.1101/cshperspect.a039941 external_id: isi: - '000692069100001' pmid: - '33558367' intvolume: ' 13' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/cshperspect.a039941 month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2685A872-B435-11E9-9278-68D0E5697425 name: Hormonal regulation of plant adaptive responses to environmental signals publication: Cold Spring Harbor Perspectives in Biology publication_identifier: issn: - 1943-0264 publication_status: published publisher: Cold Spring Harbor Laboratory Press quality_controlled: '1' scopus_import: '1' status: public title: Auxin-regulated lateral root organogenesis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2021' ... --- _id: '9010' abstract: - lang: eng text: Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments. acknowledged_ssus: - _id: Bio acknowledgement: 'We acknowledge Gergely Molnar for critical reading of the manuscript, Alexander Johnson for language editing and Yulija Salanenka for technical assistance. Work in the Benkova laboratory was supported by the Austrian Science Fund (FWF01_I1774S) to KO, RA and EB. Work in the Benkova laboratory was supported by the Austrian Science Fund (FWF01_I1774S) to KO, RA and EB and by the DOC Fellowship Programme of the AustrianAcademy of Sciences (25008) to C.A. Work in the Wabnik laboratory was supported by the Programa de Atraccion de Talento 2017 (Comunidad deMadrid, 2017-T1/BIO-5654 to K.W.), Severo Ochoa Programme for Centres of Excellence in R&D from the Agencia Estatal de Investigacion of Spain (grantSEV-2016-0672 (2017-2021) to K.W. via the CBGP) and Programa Estatal de Generacion del Conocimiento y Fortalecimiento Científico y Tecnologico del Sistema de I+D+I 2019 (PGC2018-093387-A-I00) from MICIU (to K.W.). M.M.was supported by a postdoctoral contract associated to SEV-2016-0672.We acknowledge the Bioimaging Facility in IST-Austria and the Advanced Microscopy Facility of the Vienna Bio Center Core Facilities, member of the Vienna Bio Center Austria, for use of the OMX v43D SIM microscope. AJ was supported by the Austrian Science Fund (FWF): I03630 to J.F' article_number: e106862 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Krisztina full_name: Ötvös, Krisztina id: 29B901B0-F248-11E8-B48F-1D18A9856A87 last_name: Ötvös orcid: 0000-0002-5503-4983 - first_name: Marco full_name: Marconi, Marco last_name: Marconi - first_name: Andrea full_name: Vega, Andrea last_name: Vega - first_name: Jose full_name: O’Brien, Jose last_name: O’Brien - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Rashed full_name: Abualia, Rashed id: 4827E134-F248-11E8-B48F-1D18A9856A87 last_name: Abualia orcid: 0000-0002-9357-9415 - first_name: Livio full_name: Antonielli, Livio last_name: Antonielli - first_name: Juan C full_name: Montesinos López, Juan C id: 310A8E3E-F248-11E8-B48F-1D18A9856A87 last_name: Montesinos López orcid: 0000-0001-9179-6099 - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Candela full_name: Cuesta, Candela id: 33A3C818-F248-11E8-B48F-1D18A9856A87 last_name: Cuesta orcid: 0000-0003-1923-2410 - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Eleonore full_name: Bouguyon, Eleonore last_name: Bouguyon - first_name: Alain full_name: Gojon, Alain last_name: Gojon - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Rodrigo A. full_name: Gutiérrez, Rodrigo A. last_name: Gutiérrez - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Ötvös K, Marconi M, Vega A, et al. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO Journal. 2021;40(3). doi:10.15252/embj.2020106862 apa: Ötvös, K., Marconi, M., Vega, A., O’Brien, J., Johnson, A. J., Abualia, R., … Benková, E. (2021). Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO Journal. Embo Press. https://doi.org/10.15252/embj.2020106862 chicago: Ötvös, Krisztina, Marco Marconi, Andrea Vega, Jose O’Brien, Alexander J Johnson, Rashed Abualia, Livio Antonielli, et al. “Modulation of Plant Root Growth by Nitrogen Source-Defined Regulation of Polar Auxin Transport.” EMBO Journal. Embo Press, 2021. https://doi.org/10.15252/embj.2020106862. ieee: K. Ötvös et al., “Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport,” EMBO Journal, vol. 40, no. 3. Embo Press, 2021. ista: Ötvös K, Marconi M, Vega A, O’Brien J, Johnson AJ, Abualia R, Antonielli L, Montesinos López JC, Zhang Y, Tan S, Cuesta C, Artner C, Bouguyon E, Gojon A, Friml J, Gutiérrez RA, Wabnik KT, Benková E. 2021. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO Journal. 40(3), e106862. mla: Ötvös, Krisztina, et al. “Modulation of Plant Root Growth by Nitrogen Source-Defined Regulation of Polar Auxin Transport.” EMBO Journal, vol. 40, no. 3, e106862, Embo Press, 2021, doi:10.15252/embj.2020106862. short: K. Ötvös, M. Marconi, A. Vega, J. O’Brien, A.J. Johnson, R. Abualia, L. Antonielli, J.C. Montesinos López, Y. Zhang, S. Tan, C. Cuesta, C. Artner, E. Bouguyon, A. Gojon, J. Friml, R.A. Gutiérrez, K.T. Wabnik, E. Benková, EMBO Journal 40 (2021). date_created: 2021-01-17T23:01:12Z date_published: 2021-02-01T00:00:00Z date_updated: 2024-03-18T23:30:41Z day: '01' ddc: - '580' department: - _id: JiFr - _id: EvBe doi: 10.15252/embj.2020106862 external_id: isi: - '000604645600001' pmid: - ' 33399250' file: - access_level: open_access checksum: dc55c900f3b061d6c2790b8813d759a3 content_type: application/pdf creator: dernst date_created: 2021-02-11T12:28:29Z date_updated: 2021-02-11T12:28:29Z file_id: '9110' file_name: 2021_Embo_Otvos.pdf file_size: 2358617 relation: main_file success: 1 file_date_updated: 2021-02-11T12:28:29Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development - _id: 2685A872-B435-11E9-9278-68D0E5697425 name: Hormonal regulation of plant adaptive responses to environmental signals - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: EMBO Journal publication_identifier: eissn: - '14602075' issn: - '02614189' publication_status: published publisher: Embo Press quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/a-plants-way-to-its-favorite-food/ record: - id: '10303' relation: dissertation_contains status: public scopus_import: '1' status: public title: Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '8151' abstract: - lang: eng text: The main idea behind the Core Project is to teach first year students at IST scientific communication skills and let them practice by presenting their research within an interdisciplinary environment. Over the course of the first semester, students participated in seminars, where they shared their results with the colleagues from other fields and took part in discussions on relevant subjects. The main focus during this sessions was on delivering the information in a simplified and comprehensible way, going into the very basics of a subject if necessary. At the end, the students were asked to present their research in the written form to exercise their writing skills. The reports were gathered in this document. All of them were reviewed by the teaching assistants and write-ups illustrating unique stylistic features and, in general, an outstanding level of writing skills, were honorably mentioned in the section "Selected Reports". article_processing_charge: No author: - first_name: Mikhail full_name: Maslov, Mikhail id: 2E65BB0E-F248-11E8-B48F-1D18A9856A87 last_name: Maslov orcid: 0000-0003-4074-2570 - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Mike full_name: Hennessey-Wesen, Mike id: 3F338C72-F248-11E8-B48F-1D18A9856A87 last_name: Hennessey-Wesen - first_name: Bor full_name: Kavcic, Bor id: 350F91D2-F248-11E8-B48F-1D18A9856A87 last_name: Kavcic orcid: 0000-0001-6041-254X - first_name: Nick N full_name: Machnik, Nick N id: 3591A0AA-F248-11E8-B48F-1D18A9856A87 last_name: Machnik - first_name: Roshan K full_name: Satapathy, Roshan K id: 46046B7A-F248-11E8-B48F-1D18A9856A87 last_name: Satapathy - first_name: Isabella full_name: Tomanek, Isabella id: 3981F020-F248-11E8-B48F-1D18A9856A87 last_name: Tomanek orcid: 0000-0001-6197-363X citation: ama: Maslov M, Kondrashov F, Artner C, et al. Core Project Proceedings. IST Austria; 2020. apa: Maslov, M., Kondrashov, F., Artner, C., Hennessey-Wesen, M., Kavcic, B., Machnik, N. N., … Tomanek, I. (2020). Core Project Proceedings. IST Austria. chicago: Maslov, Mikhail, Fyodor Kondrashov, Christina Artner, Mike Hennessey-Wesen, Bor Kavcic, Nick N Machnik, Roshan K Satapathy, and Isabella Tomanek. Core Project Proceedings. IST Austria, 2020. ieee: M. Maslov et al., Core Project Proceedings. IST Austria, 2020. ista: Maslov M, Kondrashov F, Artner C, Hennessey-Wesen M, Kavcic B, Machnik NN, Satapathy RK, Tomanek I. 2020. Core Project Proceedings, IST Austria, 425p. mla: Maslov, Mikhail, et al. Core Project Proceedings. IST Austria, 2020. short: M. Maslov, F. Kondrashov, C. Artner, M. Hennessey-Wesen, B. Kavcic, N.N. Machnik, R.K. Satapathy, I. Tomanek, Core Project Proceedings, IST Austria, 2020. date_created: 2020-07-22T14:48:14Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-02-23T13:26:00Z day: '01' ddc: - '510' - '530' - '570' extern: '1' file: - access_level: local content_type: application/pdf creator: dernst date_created: 2020-07-22T14:45:07Z date_updated: 2020-07-22T14:45:07Z file_id: '8152' file_name: Core_Project_Proceedings_mod.pdf file_size: 169620437 relation: main_file file_date_updated: 2020-07-22T14:45:07Z has_accepted_license: '1' language: - iso: eng month: '06' oa_version: None page: '425' publication_status: published publisher: IST Austria status: public title: Core Project Proceedings type: report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '15037' abstract: - lang: eng text: Protein abundance and localization at the plasma membrane (PM) shapes plant development and mediates adaptation to changing environmental conditions. It is regulated by ubiquitination, a post-translational modification crucial for the proper sorting of endocytosed PM proteins to the vacuole for subsequent degradation. To understand the significance and the variety of roles played by this reversible modification, the function of ubiquitin receptors, which translate the ubiquitin signature into a cellular response, needs to be elucidated. In this study, we show that TOL (TOM1-like) proteins function in plants as multivalent ubiquitin receptors, governing ubiquitinated cargo delivery to the vacuole via the conserved Endosomal Sorting Complex Required for Transport (ESCRT) pathway. TOL2 and TOL6 interact with components of the ESCRT machinery and bind to K63-linked ubiquitin via two tandemly arranged conserved ubiquitin-binding domains. Mutation of these domains results not only in a loss of ubiquitin binding but also altered localization, abolishing TOL6 ubiquitin receptor activity. Function and localization of TOL6 is itself regulated by ubiquitination, whereby TOL6 ubiquitination potentially modulates degradation of PM-localized cargoes, assisting in the fine-tuning of the delicate interplay between protein recycling and downregulation. Taken together, our findings demonstrate the function and regulation of a ubiquitin receptor that mediates vacuolar degradation of PM proteins in higher plants. article_processing_charge: No article_type: original author: - first_name: Jeanette full_name: Moulinier-Anzola, Jeanette last_name: Moulinier-Anzola - first_name: Maximilian full_name: Schwihla, Maximilian last_name: Schwihla - first_name: Lucinda full_name: De-Araújo, Lucinda last_name: De-Araújo - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Lisa full_name: Jörg, Lisa last_name: Jörg - first_name: Nataliia full_name: Konstantinova, Nataliia last_name: Konstantinova - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Barbara full_name: Korbei, Barbara last_name: Korbei citation: ama: Moulinier-Anzola J, Schwihla M, De-Araújo L, et al. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. 2020;13(5):717-731. doi:10.1016/j.molp.2020.02.012 apa: Moulinier-Anzola, J., Schwihla, M., De-Araújo, L., Artner, C., Jörg, L., Konstantinova, N., … Korbei, B. (2020). TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2020.02.012 chicago: Moulinier-Anzola, Jeanette, Maximilian Schwihla, Lucinda De-Araújo, Christina Artner, Lisa Jörg, Nataliia Konstantinova, Christian Luschnig, and Barbara Korbei. “TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants.” Molecular Plant. Elsevier, 2020. https://doi.org/10.1016/j.molp.2020.02.012. ieee: J. Moulinier-Anzola et al., “TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants,” Molecular Plant, vol. 13, no. 5. Elsevier, pp. 717–731, 2020. ista: Moulinier-Anzola J, Schwihla M, De-Araújo L, Artner C, Jörg L, Konstantinova N, Luschnig C, Korbei B. 2020. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants. Molecular Plant. 13(5), 717–731. mla: Moulinier-Anzola, Jeanette, et al. “TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants.” Molecular Plant, vol. 13, no. 5, Elsevier, 2020, pp. 717–31, doi:10.1016/j.molp.2020.02.012. short: J. Moulinier-Anzola, M. Schwihla, L. De-Araújo, C. Artner, L. Jörg, N. Konstantinova, C. Luschnig, B. Korbei, Molecular Plant 13 (2020) 717–731. date_created: 2024-02-28T08:55:56Z date_published: 2020-05-04T00:00:00Z date_updated: 2024-02-28T12:41:52Z day: '04' ddc: - '580' department: - _id: EvBe doi: 10.1016/j.molp.2020.02.012 external_id: pmid: - '32087370' file: - access_level: open_access checksum: c538a5008f7827f62d17d40a3bfabe65 content_type: application/pdf creator: dernst date_created: 2024-02-28T12:39:56Z date_updated: 2024-02-28T12:39:56Z file_id: '15038' file_name: 2020_MolecularPlant_MoulinierAnzola.pdf file_size: 3089212 relation: main_file success: 1 file_date_updated: 2024-02-28T12:39:56Z has_accepted_license: '1' intvolume: ' 13' issue: '5' keyword: - Plant Science - Molecular Biology language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 717-731 pmid: 1 publication: Molecular Plant publication_identifier: issn: - 1674-2052 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2020' ... --- _id: '6920' article_processing_charge: No article_type: original author: - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Artner C, Benková E. Ethylene and cytokinin - partners in root growth regulation. Molecular Plant. 2019;12(10):1312-1314. doi:10.1016/j.molp.2019.09.003 apa: Artner, C., & Benková, E. (2019). Ethylene and cytokinin - partners in root growth regulation. Molecular Plant. Cell Press. https://doi.org/10.1016/j.molp.2019.09.003 chicago: Artner, Christina, and Eva Benková. “Ethylene and Cytokinin - Partners in Root Growth Regulation.” Molecular Plant. Cell Press, 2019. https://doi.org/10.1016/j.molp.2019.09.003. ieee: C. Artner and E. Benková, “Ethylene and cytokinin - partners in root growth regulation,” Molecular Plant, vol. 12, no. 10. Cell Press, pp. 1312–1314, 2019. ista: Artner C, Benková E. 2019. Ethylene and cytokinin - partners in root growth regulation. Molecular Plant. 12(10), 1312–1314. mla: Artner, Christina, and Eva Benková. “Ethylene and Cytokinin - Partners in Root Growth Regulation.” Molecular Plant, vol. 12, no. 10, Cell Press, 2019, pp. 1312–14, doi:10.1016/j.molp.2019.09.003. short: C. Artner, E. Benková, Molecular Plant 12 (2019) 1312–1314. date_created: 2019-09-30T10:00:40Z date_published: 2019-10-07T00:00:00Z date_updated: 2023-08-30T06:55:02Z day: '07' department: - _id: EvBe doi: 10.1016/j.molp.2019.09.003 external_id: isi: - '000489132500002' pmid: - '31541740' intvolume: ' 12' isi: 1 issue: '10' language: - iso: eng month: '10' oa_version: None page: 1312-1314 pmid: 1 project: - _id: 2685A872-B435-11E9-9278-68D0E5697425 name: Hormonal regulation of plant adaptive responses to environmental signals publication: Molecular Plant publication_identifier: issn: - 1674-2052 - 1752-9867 publication_status: published publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Ethylene and cytokinin - partners in root growth regulation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2019' ...