TY - THES AB - Pattern formation is of great importance for its contribution across different biological behaviours. During developmental processes for example, patterns of chemical gradients are established to determine cell fate and complex tissue patterns emerge to define structures such as limbs and vascular networks. Patterns are also seen in collectively migrating groups, for instance traveling waves of density emerging in moving animal flocks as well as collectively migrating cells and tissues. To what extent these biological patterns arise spontaneously through the local interaction of individual constituents or are dictated by higher level instructions is still an open question however there is evidence for the involvement of both types of process. Where patterns arise spontaneously there is a long standing interest in how far the interplay of mechanics, e.g. force generation and deformation, and chemistry, e.g. gene regulation and signaling, contributes to the behaviour. This is because many systems are able to both chemically regulate mechanical force production and chemically sense mechanical deformation, forming mechano-chemical feedback loops which can potentially become unstable towards spatio and/or temporal patterning. We work with experimental collaborators to investigate the possibility that this type of interaction drives pattern formation in biological systems at different scales. We focus first on tissue-level ERK-density waves observed during the wound healing response across different systems where many previous studies have proposed that patterns depend on polarized cell migration and arise from a mechanical flocking-like mechanism. By combining theory with mechanical and optogenetic perturbation experiments on in vitro monolayers we instead find evidence for mechanochemical pattern formation involving only scalar bilateral feedbacks between ERK signaling and cell contraction. We perform further modeling and experiment to study how this instability couples with polar cell migration in order to produce a robust and efficient wound healing response. In a following chapter we implement ERK-density coupling and cell migration in a 2D active vertex model to investigate the interaction of ERK-density patterning with different tissue rheologies and find that the spatio-temporal dynamics are able to both locally and globally fluidize a tissue across the solid-fluid glass transition. In a last chapter we move towards lower spatial scales in the context of subcellular patterning of the cell cytoskeleton where we investigate the transition between phases of spatially homogeneous temporal oscillations and chaotic spatio-temporal patterning in the dynamics of myosin and ROCK activities (a motor component of the actomyosin cytoskeleton and its activator). Experimental evidence supports an intrinsic chemical oscillator which we encode in a reaction model and couple to a contractile active gel description of the cell cortex. The model exhibits phases of chemical oscillations and contractile spatial patterning which reproduce many features of the dynamics seen in Drosophila oocyte epithelia in vivo. However, additional pharmacological perturbations to inhibit myosin contractility leaves the role of contractile instability unclear. We discuss alternative hypotheses and investigate the possibility of reaction-diffusion instability. AU - Boocock, Daniel R ID - 12964 SN - 2663-337X TI - Mechanochemical pattern formation across biological scales ER - TY - JOUR AB - Living tissues are characterized by an intrinsically mechanochemical interplay of active physical forces and complex biochemical signaling pathways. Either feature alone can give rise to complex emergent phenomena, for example, mechanically driven glassy dynamics and rigidity transitions, or chemically driven reaction-diffusion instabilities. An important question is how to quantitatively assess the contribution of these different cues to the large-scale dynamics of biological materials. We address this in Madin-Darby canine kidney (MDCK) monolayers, considering both mechanochemical feedback between extracellular signal-regulated kinase (ERK) signaling activity and cellular density as well as a mechanically active tissue rheology via a self-propelled vertex model. We show that the relative strength of active migration forces to mechanochemical couplings controls a transition from a uniform active glass to periodic spatiotemporal waves. We parametrize the model from published experimental data sets on MDCK monolayers and use it to make new predictions on the correlation functions of cellular dynamics and the dynamics of topological defects associated with the oscillatory phase of cells. Interestingly, MDCK monolayers are best described by an intermediary parameter region in which both mechanochemical couplings and noisy active propulsion have a strong influence on the dynamics. Finally, we study how tissue rheology and ERK waves produce feedback on one another and uncover a mechanism via which tissue fluidity can be controlled by mechanochemical waves at both the local and global levels. AU - Boocock, Daniel R AU - Hirashima, Tsuyoshi AU - Hannezo, Edouard B ID - 14277 IS - 1 JF - PRX Life SN - 2835-8279 TI - Interplay between mechanochemical patterning and glassy dynamics in cellular monolayers VL - 1 ER - TY - JOUR AB - Collective cell migration offers a rich field of study for non-equilibrium physics and cellular biology, revealing phenomena such as glassy dynamics, pattern formation and active turbulence. However, how mechanical and chemical signalling are integrated at the cellular level to give rise to such collective behaviours remains unclear. We address this by focusing on the highly conserved phenomenon of spatiotemporal waves of density and extracellular signal-regulated kinase (ERK) activation, which appear both in vitro and in vivo during collective cell migration and wound healing. First, we propose a biophysical theory, backed by mechanical and optogenetic perturbation experiments, showing that patterns can be quantitatively explained by a mechanochemical coupling between active cellular tensions and the mechanosensitive ERK pathway. Next, we demonstrate how this biophysical mechanism can robustly induce long-ranged order and migration in a desired orientation, and we determine the theoretically optimal wavelength and period for inducing maximal migration towards free edges, which fits well with experimentally observed dynamics. We thereby provide a bridge between the biophysical origin of spatiotemporal instabilities and the design principles of robust and efficient long-ranged migration. AU - Boocock, Daniel R AU - Hino, Naoya AU - Ruzickova, Natalia AU - Hirashima, Tsuyoshi AU - Hannezo, Edouard B ID - 8602 JF - Nature Physics SN - 17452473 TI - Theory of mechanochemical patterning and optimal migration in cell monolayers VL - 17 ER -