--- _id: '14240' abstract: - lang: eng text: This paper introduces a novel method for simulating large bodies of water as a height field. At the start of each time step, we partition the waves into a bulk flow (which approximately satisfies the assumptions of the shallow water equations) and surface waves (which approximately satisfy the assumptions of Airy wave theory). We then solve the two wave regimes separately using appropriate state-of-the-art techniques, and re-combine the resulting wave velocities at the end of each step. This strategy leads to the first heightfield wave model capable of simulating complex interactions between both deep and shallow water effects, like the waves from a boat wake sloshing up onto a beach, or a dam break producing wave interference patterns and eddies. We also analyze the numerical dispersion created by our method and derive an exact correction factor for waves at a constant water depth, giving us a numerically perfect re-creation of theoretical water wave dispersion patterns. acknowledged_ssus: - _id: ScienComp acknowledgement: "We thank Georg Sperl for helping with early research for this paper, Mickael Ly and Yi-Lu Chen for proofreading, and members of the ISTA Visual Computing Group for general feedback. This project was funded in part by the European Research Council (ERC Consolidator Grant 101045083 CoDiNA).\r\nThe motorboat and sailboat were modeled by Sergei and the palmtrees by YadroGames. The environment map was created by Emil Persson." article_number: '83' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. 2023;42(4). doi:10.1145/3592098 apa: Jeschke, S., & Wojtan, C. (2023). Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. Association for Computing Machinery. https://doi.org/10.1145/3592098 chicago: Jeschke, Stefan, and Chris Wojtan. “Generalizing Shallow Water Simulations with Dispersive Surface Waves.” ACM Transactions on Graphics. Association for Computing Machinery, 2023. https://doi.org/10.1145/3592098. ieee: S. Jeschke and C. Wojtan, “Generalizing shallow water simulations with dispersive surface waves,” ACM Transactions on Graphics, vol. 42, no. 4. Association for Computing Machinery, 2023. ista: Jeschke S, Wojtan C. 2023. Generalizing shallow water simulations with dispersive surface waves. ACM Transactions on Graphics. 42(4), 83. mla: Jeschke, Stefan, and Chris Wojtan. “Generalizing Shallow Water Simulations with Dispersive Surface Waves.” ACM Transactions on Graphics, vol. 42, no. 4, 83, Association for Computing Machinery, 2023, doi:10.1145/3592098. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 42 (2023). date_created: 2023-08-27T22:01:17Z date_published: 2023-08-01T00:00:00Z date_updated: 2024-01-02T09:35:55Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/3592098 external_id: isi: - '001044671300049' file: - access_level: open_access checksum: 1d178bb2f8011d9f5aedda6427e18c7a content_type: video/mp4 creator: sjeschke date_created: 2023-12-21T12:26:40Z date_updated: 2023-12-21T12:26:40Z file_id: '14704' file_name: PaperVideo_final.mp4 file_size: 511572575 relation: main_file success: 1 - access_level: open_access checksum: a49b2e744d5cd1276bb8b2e0ce6dc638 content_type: application/pdf creator: dernst date_created: 2024-01-02T09:34:27Z date_updated: 2024-01-02T09:34:27Z file_id: '14725' file_name: 2023_ACMToG_Jeschke.pdf file_size: 7469177 relation: main_file success: 1 file_date_updated: 2024-01-02T09:34:27Z has_accepted_license: '1' intvolume: ' 42' isi: 1 issue: '4' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 34bc2376-11ca-11ed-8bc3-9a3b3961a088 grant_number: '101045083' name: Computational Discovery of Numerical Algorithms for Animation and Simulation of Natural Phenomena publication: ACM Transactions on Graphics publication_identifier: eissn: - 1557-7368 issn: - 0730-0301 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Generalizing shallow water simulations with dispersive surface waves tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2023' ... --- _id: '8766' abstract: - lang: eng text: "The “procedural” approach to animating ocean waves is the dominant algorithm for animating larger bodies of water in\r\ninteractive applications as well as in off-line productions — it provides high visual quality with a low computational demand. In this paper, we widen the applicability of procedural water wave animation with an extension that guarantees the satisfaction of boundary conditions imposed by terrain while still approximating physical wave behavior. In combination with a particle system that models wave breaking, foam, and spray, this allows us to naturally model waves interacting with beaches and rocks. Our system is able to animate waves at large scales at interactive frame rates on a commodity PC." article_processing_charge: No article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christian full_name: Hafner, Christian id: 400429CC-F248-11E8-B48F-1D18A9856A87 last_name: Hafner - first_name: Nuttapong full_name: Chentanez, Nuttapong last_name: Chentanez - first_name: Miles full_name: Macklin, Miles last_name: Macklin - first_name: Matthias full_name: Müller-Fischer, Matthias last_name: Müller-Fischer - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Hafner C, Chentanez N, Macklin M, Müller-Fischer M, Wojtan C. Making procedural water waves boundary-aware. Computer Graphics forum. 2020;39(8):47-54. doi:10.1111/cgf.14100 apa: 'Jeschke, S., Hafner, C., Chentanez, N., Macklin, M., Müller-Fischer, M., & Wojtan, C. (2020). Making procedural water waves boundary-aware. Computer Graphics Forum. Online Symposium: Wiley. https://doi.org/10.1111/cgf.14100' chicago: Jeschke, Stefan, Christian Hafner, Nuttapong Chentanez, Miles Macklin, Matthias Müller-Fischer, and Chris Wojtan. “Making Procedural Water Waves Boundary-Aware.” Computer Graphics Forum. Wiley, 2020. https://doi.org/10.1111/cgf.14100. ieee: S. Jeschke, C. Hafner, N. Chentanez, M. Macklin, M. Müller-Fischer, and C. Wojtan, “Making procedural water waves boundary-aware,” Computer Graphics forum, vol. 39, no. 8. Wiley, pp. 47–54, 2020. ista: Jeschke S, Hafner C, Chentanez N, Macklin M, Müller-Fischer M, Wojtan C. 2020. Making procedural water waves boundary-aware. Computer Graphics forum. 39(8), 47–54. mla: Jeschke, Stefan, et al. “Making Procedural Water Waves Boundary-Aware.” Computer Graphics Forum, vol. 39, no. 8, Wiley, 2020, pp. 47–54, doi:10.1111/cgf.14100. short: S. Jeschke, C. Hafner, N. Chentanez, M. Macklin, M. Müller-Fischer, C. Wojtan, Computer Graphics Forum 39 (2020) 47–54. conference: end_date: 2020-10-09 location: Online Symposium name: 'SCA: Symposium on Computer Animation' start_date: 2020-10-06 date_created: 2020-11-17T10:47:48Z date_published: 2020-12-01T00:00:00Z date_updated: 2024-02-28T13:58:11Z day: '01' department: - _id: ChWo - _id: BeBi doi: 10.1111/cgf.14100 ec_funded: 1 external_id: isi: - '000591780400005' intvolume: ' 39' isi: 1 issue: '8' language: - iso: eng month: '12' oa_version: None page: 47-54 project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 24F9549A-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715767' name: 'MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling' publication: Computer Graphics forum publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Making procedural water waves boundary-aware type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2020' ... --- _id: '134' abstract: - lang: eng text: "The current state of the art in real-time two-dimensional water wave simulation requires developers to choose between efficient Fourier-based methods, which lack interactions with moving obstacles, and finite-difference or finite element methods, which handle environmental interactions but are significantly more expensive. This paper attempts to bridge this long-standing gap between complexity and performance, by proposing a new wave simulation method that can faithfully simulate wave interactions with moving obstacles in real time while simultaneously preserving minute details and accommodating very large simulation domains.\r\n\r\nPrevious methods for simulating 2D water waves directly compute the change in height of the water surface, a strategy which imposes limitations based on the CFL condition (fast moving waves require small time steps) and Nyquist's limit (small wave details require closely-spaced simulation variables). This paper proposes a novel wavelet transformation that discretizes the liquid motion in terms of amplitude-like functions that vary over space, frequency, and direction, effectively generalizing Fourier-based methods to handle local interactions. Because these new variables change much more slowly over space than the original water height function, our change of variables drastically reduces the limitations of the CFL condition and Nyquist limit, allowing us to simulate highly detailed water waves at very large visual resolutions. Our discretization is amenable to fast summation and easy to parallelize. We also present basic extensions like pre-computed wave paths and two-way solid fluid coupling. Finally, we argue that our discretization provides a convenient set of variables for artistic manipulation, which we illustrate with a novel wave-painting interface." acknowledged_ssus: - _id: ScienComp alternative_title: - SIGGRAPH article_number: '94' article_processing_charge: No author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Tomas full_name: Skrivan, Tomas id: 486A5A46-F248-11E8-B48F-1D18A9856A87 last_name: Skrivan - first_name: Matthias full_name: Mueller Fischer, Matthias last_name: Mueller Fischer - first_name: Nuttapong full_name: Chentanez, Nuttapong last_name: Chentanez - first_name: Miles full_name: Macklin, Miles last_name: Macklin - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Skrivan T, Mueller Fischer M, Chentanez N, Macklin M, Wojtan C. Water surface wavelets. ACM Transactions on Graphics. 2018;37(4). doi:10.1145/3197517.3201336 apa: Jeschke, S., Skrivan, T., Mueller Fischer, M., Chentanez, N., Macklin, M., & Wojtan, C. (2018). Water surface wavelets. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3197517.3201336 chicago: Jeschke, Stefan, Tomas Skrivan, Matthias Mueller Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan. “Water Surface Wavelets.” ACM Transactions on Graphics. ACM, 2018. https://doi.org/10.1145/3197517.3201336. ieee: S. Jeschke, T. Skrivan, M. Mueller Fischer, N. Chentanez, M. Macklin, and C. Wojtan, “Water surface wavelets,” ACM Transactions on Graphics, vol. 37, no. 4. ACM, 2018. ista: Jeschke S, Skrivan T, Mueller Fischer M, Chentanez N, Macklin M, Wojtan C. 2018. Water surface wavelets. ACM Transactions on Graphics. 37(4), 94. mla: Jeschke, Stefan, et al. “Water Surface Wavelets.” ACM Transactions on Graphics, vol. 37, no. 4, 94, ACM, 2018, doi:10.1145/3197517.3201336. short: S. Jeschke, T. Skrivan, M. Mueller Fischer, N. Chentanez, M. Macklin, C. Wojtan, ACM Transactions on Graphics 37 (2018). date_created: 2018-12-11T11:44:48Z date_published: 2018-07-30T00:00:00Z date_updated: 2024-02-28T13:58:51Z day: '30' ddc: - '000' department: - _id: ChWo doi: 10.1145/3197517.3201336 ec_funded: 1 external_id: isi: - '000448185000055' file: - access_level: open_access checksum: db75ebabe2ec432bf41389e614d6ef62 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:59:23Z date_updated: 2020-07-14T12:44:45Z file_id: '5744' file_name: 2018_ACM_Jeschke.pdf file_size: 22185016 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' intvolume: ' 37' isi: 1 issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '7789' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-water-simulation-captures-small-details-even-in-large-scenes/ scopus_import: '1' status: public title: Water surface wavelets tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 volume: 37 year: '2018' ... --- _id: '470' abstract: - lang: eng text: This paper presents a method for simulating water surface waves as a displacement field on a 2D domain. Our method relies on Lagrangian particles that carry packets of water wave energy; each packet carries information about an entire group of wave trains, as opposed to only a single wave crest. Our approach is unconditionally stable and can simulate high resolution geometric details. This approach also presents a straightforward interface for artistic control, because it is essentially a particle system with intuitive parameters like wavelength and amplitude. Our implementation parallelizes well and runs in real time for moderately challenging scenarios. acknowledged_ssus: - _id: ScienComp article_number: '103' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Water wave packets. ACM Transactions on Graphics. 2017;36(4). doi:10.1145/3072959.3073678 apa: Jeschke, S., & Wojtan, C. (2017). Water wave packets. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/3072959.3073678 chicago: Jeschke, Stefan, and Chris Wojtan. “Water Wave Packets.” ACM Transactions on Graphics. ACM, 2017. https://doi.org/10.1145/3072959.3073678. ieee: S. Jeschke and C. Wojtan, “Water wave packets,” ACM Transactions on Graphics, vol. 36, no. 4. ACM, 2017. ista: Jeschke S, Wojtan C. 2017. Water wave packets. ACM Transactions on Graphics. 36(4), 103. mla: Jeschke, Stefan, and Chris Wojtan. “Water Wave Packets.” ACM Transactions on Graphics, vol. 36, no. 4, 103, ACM, 2017, doi:10.1145/3072959.3073678. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 36 (2017). date_created: 2018-12-11T11:46:39Z date_published: 2017-07-01T00:00:00Z date_updated: 2023-02-23T12:20:26Z day: '01' ddc: - '006' department: - _id: ChWo doi: 10.1145/3072959.3073678 ec_funded: 1 file: - access_level: open_access checksum: 82a3b2bfeee4ddef16ecc21675d1a48a content_type: application/pdf creator: wojtan date_created: 2020-01-24T09:32:35Z date_updated: 2020-07-14T12:46:34Z file_id: '7359' file_name: wavepackets_final.pdf file_size: 13131683 relation: main_file file_date_updated: 2020-07-14T12:46:34Z has_accepted_license: '1' intvolume: ' 36' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_identifier: issn: - '07300301' publication_status: published publisher: ACM publist_id: '7350' quality_controlled: '1' scopus_import: 1 status: public title: Water wave packets type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2017' ... --- _id: '1413' abstract: - lang: eng text: This paper generalizes the well-known Diffusion Curves Images (DCI), which are composed of a set of Bezier curves with colors specified on either side. These colors are diffused as Laplace functions over the image domain, which results in smooth color gradients interrupted by the Bezier curves. Our new formulation allows for more color control away from the boundary, providing a similar expressive power as recent Bilaplace image models without introducing associated issues and computational costs. The new model is based on a special Laplace function blending and a new edge blur formulation. We demonstrate that given some user-defined boundary curves over an input raster image, fitting colors and edge blur from the image to the new model and subsequent editing and animation is equally convenient as with DCIs. Numerous examples and comparisons to DCIs are presented. author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke citation: ama: 'Jeschke S. Generalized diffusion curves: An improved vector representation for smooth-shaded images. Computer Graphics Forum. 2016;35(2):71-79. doi:10.1111/cgf.12812' apa: 'Jeschke, S. (2016). Generalized diffusion curves: An improved vector representation for smooth-shaded images. Computer Graphics Forum. Wiley-Blackwell. https://doi.org/10.1111/cgf.12812' chicago: 'Jeschke, Stefan. “Generalized Diffusion Curves: An Improved Vector Representation for Smooth-Shaded Images.” Computer Graphics Forum. Wiley-Blackwell, 2016. https://doi.org/10.1111/cgf.12812.' ieee: 'S. Jeschke, “Generalized diffusion curves: An improved vector representation for smooth-shaded images,” Computer Graphics Forum, vol. 35, no. 2. Wiley-Blackwell, pp. 71–79, 2016.' ista: 'Jeschke S. 2016. Generalized diffusion curves: An improved vector representation for smooth-shaded images. Computer Graphics Forum. 35(2), 71–79.' mla: 'Jeschke, Stefan. “Generalized Diffusion Curves: An Improved Vector Representation for Smooth-Shaded Images.” Computer Graphics Forum, vol. 35, no. 2, Wiley-Blackwell, 2016, pp. 71–79, doi:10.1111/cgf.12812.' short: S. Jeschke, Computer Graphics Forum 35 (2016) 71–79. date_created: 2018-12-11T11:51:53Z date_published: 2016-05-01T00:00:00Z date_updated: 2021-01-12T06:50:34Z day: '01' department: - _id: ChWo doi: 10.1111/cgf.12812 intvolume: ' 35' issue: '2' language: - iso: eng month: '05' oa_version: None page: 71 - 79 project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication: Computer Graphics Forum publication_status: published publisher: Wiley-Blackwell publist_id: '5794' quality_controlled: '1' scopus_import: 1 status: public title: 'Generalized diffusion curves: An improved vector representation for smooth-shaded images' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1630' abstract: - lang: eng text: We present a method to learn and propagate shape placements in 2D polygonal scenes from a few examples provided by a user. The placement of a shape is modeled as an oriented bounding box. Simple geometric relationships between this bounding box and nearby scene polygons define a feature set for the placement. The feature sets of all example placements are then used to learn a probabilistic model over all possible placements and scenes. With this model, we can generate a new set of placements with similar geometric relationships in any given scene. We introduce extensions that enable propagation and generation of shapes in 3D scenes, as well as the application of a learned modeling session to large scenes without additional user interaction. These concepts allow us to generate complex scenes with thousands of objects with relatively little user interaction. acknowledgement: This publication is based upon work supported by the KAUST Office of Competitive Research Funds (OCRF) under Award No. 62140401, the KAUST Visual Computing Center and the Austrian Science Fund (FWF) projects DEEP PICTURES (no. P24352-N23) and Data-Driven Procedural Modeling of Interiors (no. P24600-N23). article_number: '108' author: - first_name: Paul full_name: Guerrero, Paul last_name: Guerrero - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Peter full_name: Wonka, Peter last_name: Wonka citation: ama: 'Guerrero P, Jeschke S, Wimmer M, Wonka P. Learning shape placements by example. In: Vol 34. ACM; 2015. doi:10.1145/2766933' apa: 'Guerrero, P., Jeschke, S., Wimmer, M., & Wonka, P. (2015). Learning shape placements by example (Vol. 34). Presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States: ACM. https://doi.org/10.1145/2766933' chicago: Guerrero, Paul, Stefan Jeschke, Michael Wimmer, and Peter Wonka. “Learning Shape Placements by Example,” Vol. 34. ACM, 2015. https://doi.org/10.1145/2766933. ieee: 'P. Guerrero, S. Jeschke, M. Wimmer, and P. Wonka, “Learning shape placements by example,” presented at the SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques, Los Angeles, CA, United States, 2015, vol. 34, no. 4.' ista: 'Guerrero P, Jeschke S, Wimmer M, Wonka P. 2015. Learning shape placements by example. SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques vol. 34, 108.' mla: Guerrero, Paul, et al. Learning Shape Placements by Example. Vol. 34, no. 4, 108, ACM, 2015, doi:10.1145/2766933. short: P. Guerrero, S. Jeschke, M. Wimmer, P. Wonka, in:, ACM, 2015. conference: end_date: 2015-08-13 location: Los Angeles, CA, United States name: 'SIGGRAPH: Special Interest Group on Computer Graphics and Interactive Techniques' start_date: 2015-08-09 date_created: 2018-12-11T11:53:08Z date_published: 2015-07-27T00:00:00Z date_updated: 2021-01-12T06:52:07Z day: '27' ddc: - '000' department: - _id: ChWo doi: 10.1145/2766933 file: - access_level: open_access checksum: 8b05a51e372c9b0b5af9a00098a9538b content_type: application/pdf creator: system date_created: 2018-12-12T10:07:49Z date_updated: 2020-07-14T12:45:07Z file_id: '4647' file_name: IST-2016-576-v1+1_guerrero-2015-lsp-paper.pdf file_size: 11902290 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 34' issue: '4' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication_status: published publisher: ACM publist_id: '5525' pubrep_id: '576' quality_controlled: '1' scopus_import: 1 status: public title: Learning shape placements by example type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1814' abstract: - lang: eng text: 'We present an efficient wavefront tracking algorithm for animating bodies of water that interact with their environment. Our contributions include: a novel wavefront tracking technique that enables dispersion, refraction, reflection, and diffraction in the same simulation; a unique multivalued function interpolation method that enables our simulations to elegantly sidestep the Nyquist limit; a dispersion approximation for efficiently amplifying the number of simulated waves by several orders of magnitude; and additional extensions that allow for time-dependent effects and interactive artistic editing of the resulting animation. Our contributions combine to give us multitudes more wave details than similar algorithms, while maintaining high frame rates and allowing close camera zooms.' article_number: '27' author: - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Christopher J full_name: Wojtan, Christopher J id: 3C61F1D2-F248-11E8-B48F-1D18A9856A87 last_name: Wojtan orcid: 0000-0001-6646-5546 citation: ama: Jeschke S, Wojtan C. Water wave animation via wavefront parameter interpolation. ACM Transactions on Graphics. 2015;34(3). doi:10.1145/2714572 apa: Jeschke, S., & Wojtan, C. (2015). Water wave animation via wavefront parameter interpolation. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2714572 chicago: Jeschke, Stefan, and Chris Wojtan. “Water Wave Animation via Wavefront Parameter Interpolation.” ACM Transactions on Graphics. ACM, 2015. https://doi.org/10.1145/2714572. ieee: S. Jeschke and C. Wojtan, “Water wave animation via wavefront parameter interpolation,” ACM Transactions on Graphics, vol. 34, no. 3. ACM, 2015. ista: Jeschke S, Wojtan C. 2015. Water wave animation via wavefront parameter interpolation. ACM Transactions on Graphics. 34(3), 27. mla: Jeschke, Stefan, and Chris Wojtan. “Water Wave Animation via Wavefront Parameter Interpolation.” ACM Transactions on Graphics, vol. 34, no. 3, 27, ACM, 2015, doi:10.1145/2714572. short: S. Jeschke, C. Wojtan, ACM Transactions on Graphics 34 (2015). date_created: 2018-12-11T11:54:09Z date_published: 2015-04-01T00:00:00Z date_updated: 2023-02-23T10:15:40Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2714572 ec_funded: 1 file: - access_level: open_access checksum: 67c9f4fa370def68cdf31299e48bc91f content_type: application/pdf creator: system date_created: 2018-12-12T10:12:15Z date_updated: 2020-07-14T12:45:17Z file_id: '4933' file_name: IST-2016-575-v1+1_wavefront_preprint.pdf file_size: 23712153 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' intvolume: ' 34' issue: '3' language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '5292' pubrep_id: '575' quality_controlled: '1' scopus_import: 1 status: public title: Water wave animation via wavefront parameter interpolation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2015' ... --- _id: '1629' abstract: - lang: eng text: We propose a method for propagating edit operations in 2D vector graphics, based on geometric relationship functions. These functions quantify the geometric relationship of a point to a polygon, such as the distance to the boundary or the direction to the closest corner vertex. The level sets of the relationship functions describe points with the same relationship to a polygon. For a given query point, we first determine a set of relationships to local features, construct all level sets for these relationships, and accumulate them. The maxima of the resulting distribution are points with similar geometric relationships. We show extensions to handle mirror symmetries, and discuss the use of relationship functions as local coordinate systems. Our method can be applied, for example, to interactive floorplan editing, and it is especially useful for large layouts, where individual edits would be cumbersome. We demonstrate populating 2D layouts with tens to hundreds of objects by propagating relatively few edit operations. article_number: '15' author: - first_name: Paul full_name: Guerrero, Paul last_name: Guerrero - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Peter full_name: Wonka, Peter last_name: Wonka citation: ama: Guerrero P, Jeschke S, Wimmer M, Wonka P. Edit propagation using geometric relationship functions. ACM Transactions on Graphics. 2014;33(2). doi:10.1145/2591010 apa: Guerrero, P., Jeschke, S., Wimmer, M., & Wonka, P. (2014). Edit propagation using geometric relationship functions. ACM Transactions on Graphics. ACM. https://doi.org/10.1145/2591010 chicago: Guerrero, Paul, Stefan Jeschke, Michael Wimmer, and Peter Wonka. “Edit Propagation Using Geometric Relationship Functions.” ACM Transactions on Graphics. ACM, 2014. https://doi.org/10.1145/2591010. ieee: P. Guerrero, S. Jeschke, M. Wimmer, and P. Wonka, “Edit propagation using geometric relationship functions,” ACM Transactions on Graphics, vol. 33, no. 2. ACM, 2014. ista: Guerrero P, Jeschke S, Wimmer M, Wonka P. 2014. Edit propagation using geometric relationship functions. ACM Transactions on Graphics. 33(2), 15. mla: Guerrero, Paul, et al. “Edit Propagation Using Geometric Relationship Functions.” ACM Transactions on Graphics, vol. 33, no. 2, 15, ACM, 2014, doi:10.1145/2591010. short: P. Guerrero, S. Jeschke, M. Wimmer, P. Wonka, ACM Transactions on Graphics 33 (2014). date_created: 2018-12-11T11:53:08Z date_published: 2014-03-01T00:00:00Z date_updated: 2021-01-12T06:52:06Z day: '01' ddc: - '000' department: - _id: ChWo doi: 10.1145/2591010 file: - access_level: open_access checksum: 7f91e588a4e888610313b98271e6418e content_type: application/pdf creator: system date_created: 2018-12-12T10:11:22Z date_updated: 2020-07-14T12:45:07Z file_id: '4876' file_name: IST-2016-577-v1+1_2014.TOG.Paul.EditingPropagation.final.pdf file_size: 9832561 relation: main_file file_date_updated: 2020-07-14T12:45:07Z has_accepted_license: '1' intvolume: ' 33' issue: '2' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version publication: ACM Transactions on Graphics publication_status: published publisher: ACM publist_id: '5526' pubrep_id: '577' quality_controlled: '1' status: public title: Edit propagation using geometric relationship functions type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2014' ... --- _id: '1854' abstract: - lang: eng text: In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching. In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-linear mapping is established between the query regions and these matches, which allows the automatic transfer of editing operations such as texturing. This is achieved by a two-step approach. First, pointwise correspondences between the query region and the whole shape are established. The transformation parameters of these correspondences are registered in an appropriate transformation space. For transformations between similar regions, these parameters form surfaces in transformation space, which are extracted in the second step of our method. The extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching. author: - first_name: Paul full_name: Guerrero, Paul last_name: Guerrero - first_name: Thomas full_name: Auzinger, Thomas id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke citation: ama: Guerrero P, Auzinger T, Wimmer M, Jeschke S. Partial shape matching using transformation parameter similarity. Computer Graphics Forum. 2014;34(1):239-252. doi:10.1111/cgf.12509 apa: Guerrero, P., Auzinger, T., Wimmer, M., & Jeschke, S. (2014). Partial shape matching using transformation parameter similarity. Computer Graphics Forum. Wiley. https://doi.org/10.1111/cgf.12509 chicago: Guerrero, Paul, Thomas Auzinger, Michael Wimmer, and Stefan Jeschke. “Partial Shape Matching Using Transformation Parameter Similarity.” Computer Graphics Forum. Wiley, 2014. https://doi.org/10.1111/cgf.12509. ieee: P. Guerrero, T. Auzinger, M. Wimmer, and S. Jeschke, “Partial shape matching using transformation parameter similarity,” Computer Graphics Forum, vol. 34, no. 1. Wiley, pp. 239–252, 2014. ista: Guerrero P, Auzinger T, Wimmer M, Jeschke S. 2014. Partial shape matching using transformation parameter similarity. Computer Graphics Forum. 34(1), 239–252. mla: Guerrero, Paul, et al. “Partial Shape Matching Using Transformation Parameter Similarity.” Computer Graphics Forum, vol. 34, no. 1, Wiley, 2014, pp. 239–52, doi:10.1111/cgf.12509. short: P. Guerrero, T. Auzinger, M. Wimmer, S. Jeschke, Computer Graphics Forum 34 (2014) 239–252. date_created: 2018-12-11T11:54:22Z date_published: 2014-11-05T00:00:00Z date_updated: 2021-01-12T06:53:38Z day: '05' ddc: - '000' department: - _id: ChWo doi: 10.1111/cgf.12509 file: - access_level: open_access checksum: 91946bfc509c77f5fd3151a3ff2b2c8f content_type: application/pdf creator: system date_created: 2018-12-12T10:15:58Z date_updated: 2020-07-14T12:45:19Z file_id: '5182' file_name: IST-2016-574-v1+1_Guerrero-2014-TPS-paper.pdf file_size: 24817484 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 34' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 239 - 252 publication: Computer Graphics Forum publication_status: published publisher: Wiley publist_id: '5246' pubrep_id: '574' quality_controlled: '1' scopus_import: 1 status: public title: Partial shape matching using transformation parameter similarity type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2014' ... --- _id: '1906' abstract: - lang: eng text: In this paper, we introduce a novel scene representation for the visualization of large-scale point clouds accompanied by a set of high-resolution photographs. Many real-world applications deal with very densely sampled point-cloud data, which are augmented with photographs that often reveal lighting variations and inaccuracies in registration. Consequently, the high-quality representation of the captured data, i.e., both point clouds and photographs together, is a challenging and time-consuming task. We propose a two-phase approach, in which the first (preprocessing) phase generates multiple overlapping surface patches and handles the problem of seamless texture generation locally for each patch. The second phase stitches these patches at render-time to produce a high-quality visualization of the data. As a result of the proposed localization of the global texturing problem, our algorithm is more than an order of magnitude faster than equivalent mesh-based texturing techniques. Furthermore, since our preprocessing phase requires only a minor fraction of the whole data set at once, we provide maximum flexibility when dealing with growing data sets. acknowledgement: This research was supported by the Austrian Research Promotion Agency (FFG) project REPLICATE (no. 835948), the EU FP7 project HARVEST4D (no. 323567). author: - first_name: Murat full_name: Arikan, Murat last_name: Arikan - first_name: Reinhold full_name: Preiner, Reinhold last_name: Preiner - first_name: Claus full_name: Scheiblauer, Claus last_name: Scheiblauer - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer citation: ama: Arikan M, Preiner R, Scheiblauer C, Jeschke S, Wimmer M. Large-scale point-cloud visualization through localized textured surface reconstruction. IEEE Transactions on Visualization and Computer Graphics. 2014;20(9):1280-1292. doi:10.1109/TVCG.2014.2312011 apa: Arikan, M., Preiner, R., Scheiblauer, C., Jeschke, S., & Wimmer, M. (2014). Large-scale point-cloud visualization through localized textured surface reconstruction. IEEE Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10.1109/TVCG.2014.2312011 chicago: Arikan, Murat, Reinhold Preiner, Claus Scheiblauer, Stefan Jeschke, and Michael Wimmer. “Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.” IEEE Transactions on Visualization and Computer Graphics. IEEE, 2014. https://doi.org/10.1109/TVCG.2014.2312011. ieee: M. Arikan, R. Preiner, C. Scheiblauer, S. Jeschke, and M. Wimmer, “Large-scale point-cloud visualization through localized textured surface reconstruction,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 9. IEEE, pp. 1280–1292, 2014. ista: Arikan M, Preiner R, Scheiblauer C, Jeschke S, Wimmer M. 2014. Large-scale point-cloud visualization through localized textured surface reconstruction. IEEE Transactions on Visualization and Computer Graphics. 20(9), 1280–1292. mla: Arikan, Murat, et al. “Large-Scale Point-Cloud Visualization through Localized Textured Surface Reconstruction.” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 9, IEEE, 2014, pp. 1280–92, doi:10.1109/TVCG.2014.2312011. short: M. Arikan, R. Preiner, C. Scheiblauer, S. Jeschke, M. Wimmer, IEEE Transactions on Visualization and Computer Graphics 20 (2014) 1280–1292. date_created: 2018-12-11T11:54:39Z date_published: 2014-09-09T00:00:00Z date_updated: 2021-01-12T06:53:59Z day: '09' ddc: - '000' department: - _id: ChWo doi: 10.1109/TVCG.2014.2312011 file: - access_level: open_access checksum: 5bf58942d2eb20adf03c7f9ea2e68124 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:41Z date_updated: 2020-07-14T12:45:20Z file_id: '5297' file_name: IST-2016-573-v1+1_arikan-2014-pcvis-draft.pdf file_size: 13594598 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 20' issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 1280 - 1292 project: - _id: 25357BD2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 24352-N23 name: 'Deep Pictures: Creating Visual and Haptic Vector Images' publication: IEEE Transactions on Visualization and Computer Graphics publication_status: published publisher: IEEE publist_id: '5189' pubrep_id: '573' scopus_import: 1 status: public title: Large-scale point-cloud visualization through localized textured surface reconstruction type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2014' ... --- _id: '2269' abstract: - lang: eng text: This paper presents a parallel, implementation-friendly analytic visibility method for triangular meshes. Together with an analytic filter convolution, it allows for a fully analytic solution to anti-aliased 3D mesh rendering on parallel hardware. Building on recent works in computational geometry, we present a new edge-triangle intersection algorithm and a novel method to complete the boundaries of all visible triangle regions after a hidden line elimination step. All stages of the method are embarrassingly parallel and easily implementable on parallel hardware. A GPU implementation is discussed and performance characteristics of the method are shown and compared to traditional sampling-based rendering methods. acknowledgement: "Funding was provided by the FWF grant P20768-N13.\nWe want to thank the reviewers for their insightful and helpful remarks and Gernot Ziegler for providing help with CUDA. " author: - first_name: Thomas full_name: Thomas Auzinger id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer - first_name: Stefan full_name: Stefan Jeschke id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke citation: ama: 'Auzinger T, Wimmer M, Jeschke S. Analytic Visibility on the GPU. Computer Graphics Forum. 2013;32(124):409-418. doi:DOI: 10.1111/cgf.12061' apa: 'Auzinger, T., Wimmer, M., & Jeschke, S. (2013). Analytic Visibility on the GPU. Computer Graphics Forum. Wiley-Blackwell. https://doi.org/DOI: 10.1111/cgf.12061' chicago: 'Auzinger, Thomas, Michael Wimmer, and Stefan Jeschke. “Analytic Visibility on the GPU.” Computer Graphics Forum. Wiley-Blackwell, 2013. https://doi.org/DOI: 10.1111/cgf.12061.' ieee: T. Auzinger, M. Wimmer, and S. Jeschke, “Analytic Visibility on the GPU,” Computer Graphics Forum, vol. 32, no. 124. Wiley-Blackwell, pp. 409–418, 2013. ista: Auzinger T, Wimmer M, Jeschke S. 2013. Analytic Visibility on the GPU. Computer Graphics Forum. 32(124), 409–418. mla: 'Auzinger, Thomas, et al. “Analytic Visibility on the GPU.” Computer Graphics Forum, vol. 32, no. 124, Wiley-Blackwell, 2013, pp. 409–18, doi:DOI: 10.1111/cgf.12061.' short: T. Auzinger, M. Wimmer, S. Jeschke, Computer Graphics Forum 32 (2013) 409–418. date_created: 2018-12-11T11:56:40Z date_published: 2013-05-06T00:00:00Z date_updated: 2021-01-12T06:56:25Z day: '06' doi: 'DOI: 10.1111/cgf.12061' extern: 1 intvolume: ' 32' issue: 124 month: '05' page: 409 - 418 publication: Computer Graphics Forum publication_status: published publisher: Wiley-Blackwell publist_id: '4675' quality_controlled: 0 status: public title: Analytic Visibility on the GPU type: journal_article volume: 32 year: '2013' ... --- _id: '2267' abstract: - lang: eng text: 'Capturing real-world objects with laser-scanning technology has become an everyday task. Recently, the acquisition of dynamic scenes at interactive frame rates has become feasible. A high-quality visualization of the resulting point cloud stream would require a per-frame reconstruction of object surfaces. Unfortunately, reconstruction computations are still too time-consuming to be applied interactively. In this paper we present a local surface reconstruction and visualization technique that provides interactive feedback for reasonably sized point clouds, while achieving high image quality. Our method is performed entirely on the GPU and in screen pace, exploiting the efficiency of the common rasterization pipeline. The approach is very general, as no assumption is made about point connectivity or sampling density. This naturally allows combining the outputs of multiple scanners in a single visualization, which is useful for many virtual and augmented reality applications. ' author: - first_name: Reinhold full_name: Preiner, Reinhold last_name: Preiner - first_name: Stefan full_name: Jeschke, Stefan id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke - first_name: Michael full_name: Wimmer, Michael last_name: Wimmer citation: ama: 'Preiner R, Jeschke S, Wimmer M. Auto splats: Dynamic point cloud visualization on the GPU. In: Eurographics Association; 2012:139-148. doi:10.2312/EGPGV/EGPGV12/139-148' apa: 'Preiner, R., Jeschke, S., & Wimmer, M. (2012). Auto splats: Dynamic point cloud visualization on the GPU (pp. 139–148). Presented at the EGPGV: Eurographics Symposium on Parallel Graphics and Visualization, Calgari, Italy: Eurographics Association. https://doi.org/10.2312/EGPGV/EGPGV12/139-148' chicago: 'Preiner, Reinhold, Stefan Jeschke, and Michael Wimmer. “Auto Splats: Dynamic Point Cloud Visualization on the GPU,” 139–48. Eurographics Association, 2012. https://doi.org/10.2312/EGPGV/EGPGV12/139-148.' ieee: 'R. Preiner, S. Jeschke, and M. Wimmer, “Auto splats: Dynamic point cloud visualization on the GPU,” presented at the EGPGV: Eurographics Symposium on Parallel Graphics and Visualization, Calgari, Italy, 2012, pp. 139–148.' ista: 'Preiner R, Jeschke S, Wimmer M. 2012. Auto splats: Dynamic point cloud visualization on the GPU. EGPGV: Eurographics Symposium on Parallel Graphics and Visualization, 139–148.' mla: 'Preiner, Reinhold, et al. Auto Splats: Dynamic Point Cloud Visualization on the GPU. Eurographics Association, 2012, pp. 139–48, doi:10.2312/EGPGV/EGPGV12/139-148.' short: R. Preiner, S. Jeschke, M. Wimmer, in:, Eurographics Association, 2012, pp. 139–148. conference: end_date: 2012-05-14 location: Calgari, Italy name: 'EGPGV: Eurographics Symposium on Parallel Graphics and Visualization' start_date: 2012-05-13 date_created: 2018-12-11T11:56:40Z date_published: 2012-05-13T00:00:00Z date_updated: 2021-01-12T06:56:24Z day: '13' ddc: - '000' doi: 10.2312/EGPGV/EGPGV12/139-148 extern: '1' file: - access_level: open_access checksum: 5495bb6ee8662cd401b34afb04dfb40f content_type: application/pdf creator: system date_created: 2018-12-12T10:11:13Z date_updated: 2020-07-14T12:45:35Z file_id: '4866' file_name: IST-2016-572-v1+1_preiner_2012_AS-draft.pdf file_size: 14903860 relation: main_file file_date_updated: 2020-07-14T12:45:35Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 139 - 148 publication_status: published publisher: Eurographics Association publist_id: '4677' pubrep_id: '572' quality_controlled: '1' status: public title: 'Auto splats: Dynamic point cloud visualization on the GPU' type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2012' ... --- _id: '2268' abstract: - lang: eng text: 'This paper presents an analytic formulation for anti-aliased sampling of 2D polygons and 3D polyhedra. Our framework allows the exact evaluation of the convolution integral with a linear function defined on the polytopes. The filter is a spherically symmetric polynomial of any order, supporting approximations to refined variants such as the Mitchell-Netravali filter family. This enables high-quality rasterization of triangles and tetrahedra with linearly interpolated vertex values to regular and non-regular grids. A closed form solution of the convolution is presented and an efficient implementation on the GPU using DirectX and CUDA C is described. ' acknowledgement: |- Funding was provided by the FWF grant P20768-N13. We want to thank the reviewers for their insightful and helpful remarks, Hang Si for making available TetGen and Stefan Bruckner for VolumeShop. alternative_title: - Computer Graphics Forum author: - first_name: Thomas full_name: Thomas Auzinger id: 4718F954-F248-11E8-B48F-1D18A9856A87 last_name: Auzinger orcid: 0000-0002-1546-3265 - first_name: Michael full_name: Guthe, Michael last_name: Guthe - first_name: Stefan full_name: Stefan Jeschke id: 44D6411A-F248-11E8-B48F-1D18A9856A87 last_name: Jeschke citation: ama: 'Auzinger T, Guthe M, Jeschke S. Analytic anti-aliasing of linear functions on polytopes. In: Vol 31. Wiley-Blackwell; 2012:335-344. doi:http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x' apa: 'Auzinger, T., Guthe, M., & Jeschke, S. (2012). Analytic anti-aliasing of linear functions on polytopes (Vol. 31, pp. 335–344). Presented at the EUROGRAPHICS: European Association for Computer Graphics, Wiley-Blackwell. http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x' chicago: Auzinger, Thomas, Michael Guthe, and Stefan Jeschke. “Analytic Anti-Aliasing of Linear Functions on Polytopes,” 31:335–44. Wiley-Blackwell, 2012. http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x. ieee: 'T. Auzinger, M. Guthe, and S. Jeschke, “Analytic anti-aliasing of linear functions on polytopes,” presented at the EUROGRAPHICS: European Association for Computer Graphics, 2012, vol. 31, no. 121, pp. 335–344.' ista: 'Auzinger T, Guthe M, Jeschke S. 2012. Analytic anti-aliasing of linear functions on polytopes. EUROGRAPHICS: European Association for Computer Graphics, Computer Graphics Forum, vol. 31, 335–344.' mla: Auzinger, Thomas, et al. Analytic Anti-Aliasing of Linear Functions on Polytopes. Vol. 31, no. 121, Wiley-Blackwell, 2012, pp. 335–44, doi:http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x. short: T. Auzinger, M. Guthe, S. Jeschke, in:, Wiley-Blackwell, 2012, pp. 335–344. conference: name: 'EUROGRAPHICS: European Association for Computer Graphics' date_created: 2018-12-11T11:56:40Z date_published: 2012-05-13T00:00:00Z date_updated: 2021-01-12T06:56:24Z day: '13' doi: http://dx.doi.org/10.1111/j.1467-8659.2012.03012.x extern: 1 intvolume: ' 31' issue: 121 main_file_link: - open_access: '1' url: https://www.cg.tuwien.ac.at/research/publications/2012/Auzinger_2012_AAA/ month: '05' oa: 1 page: 335 - 344 publication_status: published publisher: Wiley-Blackwell publist_id: '4676' quality_controlled: 0 status: public title: Analytic anti-aliasing of linear functions on polytopes type: conference volume: 31 year: '2012' ...