@article{7791,
abstract = {Extending a result of Milena Radnovic and Serge Tabachnikov, we establish conditionsfor two different non-symmetric norms to define the same billiard reflection law.},
author = {Akopyan, Arseniy and Karasev, Roman},
issn = {21996768},
journal = {European Journal of Mathematics},
publisher = {Springer Nature},
title = {{When different norms lead to same billiard trajectories?}},
doi = {10.1007/s40879-020-00405-0},
year = {2020},
}
@inbook{74,
abstract = {We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class
of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.
We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian
measures.},
author = {Akopyan, Arseniy and Karasev, Roman},
booktitle = {Geometric Aspects of Functional Analysis},
editor = {Klartag, Bo'az and Milman, Emanuel},
isbn = {9783030360191},
issn = {16179692},
pages = {1--27},
publisher = {Springer Nature},
title = {{Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures}},
doi = {10.1007/978-3-030-36020-7_1},
volume = {2256},
year = {2020},
}
@article{6419,
abstract = {Characterizing the fitness landscape, a representation of fitness for a large set of genotypes, is key to understanding how genetic information is interpreted to create functional organisms. Here we determined the evolutionarily-relevant segment of the fitness landscape of His3, a gene coding for an enzyme in the histidine synthesis pathway, focusing on combinations of amino acid states found at orthologous sites of extant species. Just 15% of amino acids found in yeast His3 orthologues were always neutral while the impact on fitness of the remaining 85% depended on the genetic background. Furthermore, at 67% of sites, amino acid replacements were under sign epistasis, having both strongly positive and negative effect in different genetic backgrounds. 46% of sites were under reciprocal sign epistasis. The fitness impact of amino acid replacements was influenced by only a few genetic backgrounds but involved interaction of multiple sites, shaping a rugged fitness landscape in which many of the shortest paths between highly fit genotypes are inaccessible.},
author = {Pokusaeva, Victoria and Usmanova, Dinara R. and Putintseva, Ekaterina V. and Espinar, Lorena and Sarkisyan, Karen and Mishin, Alexander S. and Bogatyreva, Natalya S. and Ivankov, Dmitry and Akopyan, Arseniy and Avvakumov, Sergey and Povolotskaya, Inna S. and Filion, Guillaume J. and Carey, Lucas B. and Kondrashov, Fyodor},
issn = {15537404},
journal = {PLoS Genetics},
number = {4},
publisher = {Public Library of Science},
title = {{An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape}},
doi = {10.1371/journal.pgen.1008079},
volume = {15},
year = {2019},
}
@article{6793,
abstract = {The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry.},
author = {Akopyan, Arseniy and Izmestiev, Ivan},
issn = {14692120},
journal = {Bulletin of the London Mathematical Society},
number = {5},
pages = {765--775},
publisher = {London Mathematical Society},
title = {{The Regge symmetry, confocal conics, and the Schläfli formula}},
doi = {10.1112/blms.12276},
volume = {51},
year = {2019},
}
@article{6050,
abstract = {We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. },
author = {Akopyan, Arseniy and Fedorov, Roman},
journal = {Proceedings of the American Mathematical Society},
pages = {91--102},
publisher = {AMS},
title = {{Two circles and only a straightedge}},
doi = {10.1090/proc/14240},
volume = {147},
year = {2019},
}
@article{6634,
abstract = {In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.},
author = {Akopyan, Arseniy and Hubard, Alfredo and Karasev, Roman},
journal = {Topological Methods in Nonlinear Analysis},
number = {2},
pages = {457--490},
publisher = {Akademicka Platforma Czasopism},
title = {{Lower and upper bounds for the waists of different spaces}},
doi = {10.12775/TMNA.2019.008},
volume = {53},
year = {2019},
}
@article{458,
abstract = {We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.},
author = {Akopyan, Arseniy and Bobenko, Alexander},
journal = {Transactions of the American Mathematical Society},
number = {4},
pages = {2825 -- 2854},
publisher = {American Mathematical Society},
title = {{Incircular nets and confocal conics}},
doi = {10.1090/tran/7292},
volume = {370},
year = {2018},
}
@article{106,
abstract = {The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.},
author = {Akopyan, Arseniy and Petrunin, Anton},
journal = {Mathematical Intelligencer},
number = {3},
pages = {26 -- 31},
publisher = {Springer},
title = {{Long geodesics on convex surfaces}},
doi = {10.1007/s00283-018-9795-5},
volume = {40},
year = {2018},
}
@article{409,
abstract = {We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.},
author = {Akopyan, Arseniy},
issn = {1631073X},
journal = {Comptes Rendus Mathematique},
number = {4},
pages = {412--414},
publisher = {Elsevier},
title = {{On the number of non-hexagons in a planar tiling}},
doi = {10.1016/j.crma.2018.03.005},
volume = {356},
year = {2018},
}
@unpublished{75,
abstract = {We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization.},
author = {Akopyan, Arseniy and Avvakumov, Sergey and Karasev, Roman},
booktitle = {ArXiv},
pages = {11},
publisher = {ArXiv},
title = {{Convex fair partitions into arbitrary number of pieces}},
year = {2018},
}
@article{58,
abstract = {Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.},
author = {Akopyan, Arseniy and Segal Halevi, Erel},
journal = {SIAM Journal on Discrete Mathematics},
number = {3},
pages = {2242 -- 2257},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Counting blanks in polygonal arrangements}},
doi = {10.1137/16M110407X},
volume = {32},
year = {2018},
}
@article{6355,
abstract = {We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle.},
author = {Akopyan, Arseniy and Avvakumov, Sergey},
issn = {2050-5094},
journal = {Forum of Mathematics, Sigma},
publisher = {Cambridge University Press},
title = {{Any cyclic quadrilateral can be inscribed in any closed convex smooth curve}},
doi = {10.1017/fms.2018.7},
volume = {6},
year = {2018},
}
@article{692,
abstract = {We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them.},
author = {Akopyan, Arseniy},
journal = {Geometriae Dedicata},
number = {1},
pages = {55 -- 64},
publisher = {Springer},
title = {{3-Webs generated by confocal conics and circles}},
doi = {10.1007/s10711-017-0265-6},
volume = {194},
year = {2018},
}
@article{1064,
abstract = {In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.},
author = {Akopyan, Arseniy and Balitskiy, Alexey and Grigorev, Mikhail},
issn = {14320444},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {1001--1009},
publisher = {Springer},
title = {{On the circle covering theorem by A.W. Goodman and R.E. Goodman}},
doi = {10.1007/s00454-017-9883-x},
volume = {59},
year = {2018},
}
@article{1180,
abstract = {In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.},
author = {Akopyan, Arseniy and Bárány, Imre and Robins, Sinai},
issn = {00018708},
journal = {Advances in Mathematics},
pages = {627 -- 644},
publisher = {Academic Press},
title = {{Algebraic vertices of non-convex polyhedra}},
doi = {10.1016/j.aim.2016.12.026},
volume = {308},
year = {2017},
}
@article{707,
abstract = {We answer a question of M. Gromov on the waist of the unit ball.},
author = {Akopyan, Arseniy and Karasev, Roman},
issn = {00246093},
journal = {Bulletin of the London Mathematical Society},
number = {4},
pages = {690 -- 693},
publisher = {Wiley-Blackwell},
title = {{A tight estimate for the waist of the ball }},
doi = {10.1112/blms.12062},
volume = {49},
year = {2017},
}
@article{909,
abstract = {We study the lengths of curves passing through a fixed number of points on the boundary of a convex shape in the plane. We show that, for any convex shape K, there exist four points on the boundary of K such that the length of any curve passing through these points is at least half of the perimeter of K. It is also shown that the same statement does not remain valid with the additional constraint that the points are extreme points of K. Moreover, the factor ½ cannot be achieved with any fixed number of extreme points. We conclude the paper with a few other inequalities related to the perimeter of a convex shape.},
author = {Akopyan, Arseniy and Vysotsky, Vladislav},
issn = {00029890},
journal = {The American Mathematical Monthly},
number = {7},
pages = {588 -- 596},
publisher = {Mathematical Association of America},
title = {{On the lengths of curves passing through boundary points of a planar convex shape}},
doi = {10.4169/amer.math.monthly.124.7.588},
volume = {124},
year = {2017},
}
@article{1360,
abstract = {We apply the technique of Károly Bezdek and Daniel Bezdek to study billiard trajectories in convex bodies, when the length is measured with a (possibly asymmetric) norm. We prove a lower bound for the length of the shortest closed billiard trajectory, related to the non-symmetric Mahler problem. With this technique we are able to give short and elementary proofs to some known results. },
author = {Akopyan, Arseniy and Balitskiy, Alexey and Karasev, Roman and Sharipova, Anastasia},
journal = {Proceedings of the American Mathematical Society},
number = {10},
pages = {4501 -- 4513},
publisher = {American Mathematical Society},
title = {{Elementary approach to closed billiard trajectories in asymmetric normed spaces}},
doi = {10.1090/proc/13062 },
volume = {144},
year = {2016},
}
@article{1330,
abstract = {In this paper we investigate the existence of closed billiard trajectories in not necessarily smooth convex bodies. In particular, we show that if a body K ⊂ Rd has the property that the tangent cone of every non-smooth point q ∉ ∂K is acute (in a certain sense), then there is a closed billiard trajectory in K.},
author = {Akopyan, Arseniy and Balitskiy, Alexey},
journal = {Israel Journal of Mathematics},
number = {2},
pages = {833 -- 845},
publisher = {Springer},
title = {{Billiards in convex bodies with acute angles}},
doi = {10.1007/s11856-016-1429-z},
volume = {216},
year = {2016},
}
@article{1710,
abstract = {We consider the hollow on the half-plane {(x, y) : y ≤ 0} ⊂ ℝ2 defined by a function u : (-1, 1) → ℝ, u(x) < 0, and a vertical flow of point particles incident on the hollow. It is assumed that u satisfies the so-called single impact condition (SIC): each incident particle is elastically reflected by graph(u) and goes away without hitting the graph of u anymore. We solve the problem: find the function u minimizing the force of resistance created by the flow. We show that the graph of the minimizer is formed by two arcs of parabolas symmetric to each other with respect to the y-axis. Assuming that the resistance of u ≡ 0 equals 1, we show that the minimal resistance equals π/2 - 2arctan(1/2) ≈ 0.6435. This result completes the previously obtained result [SIAM J. Math. Anal., 46 (2014), pp. 2730-2742] stating in particular that the minimal resistance of a hollow in higher dimensions equals 0.5. We additionally consider a similar problem of minimal resistance, where the hollow in the half-space {(x1,...,xd,y) : y ≤ 0} ⊂ ℝd+1 is defined by a radial function U satisfying the SIC, U(x) = u(|x|), with x = (x1,...,xd), u(ξ) < 0 for 0 ≤ ξ < 1, and u(ξ) = 0 for ξ ≥ 1, and the flow is parallel to the y-axis. The minimal resistance is greater than 0.5 (and coincides with 0.6435 when d = 1) and converges to 0.5 as d → ∞.},
author = {Akopyan, Arseniy and Plakhov, Alexander},
journal = {Society for Industrial and Applied Mathematics},
number = {4},
pages = {2754 -- 2769},
publisher = {SIAM},
title = {{Minimal resistance of curves under the single impact assumption}},
doi = {10.1137/140993843},
volume = {47},
year = {2015},
}