@article{8338,
abstract = {Canonical parametrisations of classical confocal coordinate systems are introduced and exploited to construct non-planar analogues of incircular (IC) nets on individual quadrics and systems of confocal quadrics. Intimate connections with classical deformations of quadrics that are isometric along asymptotic lines and circular cross-sections of quadrics are revealed. The existence of octahedral webs of surfaces of Blaschke type generated by asymptotic and characteristic lines that are diagonally related to lines of curvature is proved theoretically and established constructively. Appropriate samplings (grids) of these webs lead to three-dimensional extensions of non-planar IC nets. Three-dimensional octahedral grids composed of planes and spatially extending (checkerboard) IC-nets are shown to arise in connection with systems of confocal quadrics in Minkowski space. In this context, the Laguerre geometric notion of conical octahedral grids of planes is introduced. The latter generalise the octahedral grids derived from systems of confocal quadrics in Minkowski space. An explicit construction of conical octahedral grids is presented. The results are accompanied by various illustrations which are based on the explicit formulae provided by the theory.},
author = {Akopyan, Arseniy and Bobenko, Alexander I. and Schief, Wolfgang K. and Techter, Jan},
issn = {14320444},
journal = {Discrete and Computational Geometry},
publisher = {Springer Nature},
title = {{On mutually diagonal nets on (confocal) quadrics and 3-dimensional webs}},
doi = {10.1007/s00454-020-00240-w},
year = {2020},
}
@article{8538,
abstract = {We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.},
author = {Akopyan, Arseniy and Schwartz, Richard and Tabachnikov, Serge},
issn = {21996768},
journal = {European Journal of Mathematics},
publisher = {Springer Nature},
title = {{Billiards in ellipses revisited}},
doi = {10.1007/s40879-020-00426-9},
year = {2020},
}
@inbook{74,
abstract = {We study the Gromov waist in the sense of t-neighborhoods for measures in the Euclidean space, motivated by the famous theorem of Gromov about the waist of radially symmetric Gaussian measures. In particular, it turns our possible to extend Gromov’s original result to the case of not necessarily radially symmetric Gaussian measure. We also provide examples of measures having no t-neighborhood waist property, including a rather wide class
of compactly supported radially symmetric measures and their maps into the Euclidean space of dimension at least 2.
We use a simpler form of Gromov’s pancake argument to produce some estimates of t-neighborhoods of (weighted) volume-critical submanifolds in the spirit of the waist theorems, including neighborhoods of algebraic manifolds in the complex projective space. In the appendix of this paper we provide for reader’s convenience a more detailed explanation of the Caffarelli theorem that we use to handle not necessarily radially symmetric Gaussian
measures.},
author = {Akopyan, Arseniy and Karasev, Roman},
booktitle = {Geometric Aspects of Functional Analysis},
editor = {Klartag, Bo'az and Milman, Emanuel},
isbn = {9783030360191},
issn = {16179692},
pages = {1--27},
publisher = {Springer Nature},
title = {{Gromov's waist of non-radial Gaussian measures and radial non-Gaussian measures}},
doi = {10.1007/978-3-030-36020-7_1},
volume = {2256},
year = {2020},
}
@article{7791,
abstract = {Extending a result of Milena Radnovic and Serge Tabachnikov, we establish conditionsfor two different non-symmetric norms to define the same billiard reflection law.},
author = {Akopyan, Arseniy and Karasev, Roman},
issn = {21996768},
journal = {European Journal of Mathematics},
publisher = {Springer Nature},
title = {{When different norms lead to same billiard trajectories?}},
doi = {10.1007/s40879-020-00405-0},
year = {2020},
}
@article{9156,
abstract = {The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.},
author = {Akopyan, Arseniy and Edelsbrunner, Herbert},
issn = {2544-7297},
journal = {Computational and Mathematical Biophysics},
number = {1},
pages = {74--88},
publisher = {Walter de Gruyter},
title = {{The weighted Gaussian curvature derivative of a space-filling diagram}},
doi = {10.1515/cmb-2020-0101},
volume = {8},
year = {2020},
}
@article{9157,
abstract = {Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.},
author = {Akopyan, Arseniy and Edelsbrunner, Herbert},
issn = {2544-7297},
journal = {Computational and Mathematical Biophysics},
number = {1},
pages = {51--67},
publisher = {Walter de Gruyter},
title = {{The weighted mean curvature derivative of a space-filling diagram}},
doi = {10.1515/cmb-2020-0100},
volume = {8},
year = {2020},
}
@article{6050,
abstract = {We answer a question of David Hilbert: given two circles it is not possible in general to construct their centers using only a straightedge. On the other hand, we give infinitely many families of pairs of circles for which such construction is possible. },
author = {Akopyan, Arseniy and Fedorov, Roman},
journal = {Proceedings of the American Mathematical Society},
pages = {91--102},
publisher = {AMS},
title = {{Two circles and only a straightedge}},
doi = {10.1090/proc/14240},
volume = {147},
year = {2019},
}
@article{6419,
abstract = {Characterizing the fitness landscape, a representation of fitness for a large set of genotypes, is key to understanding how genetic information is interpreted to create functional organisms. Here we determined the evolutionarily-relevant segment of the fitness landscape of His3, a gene coding for an enzyme in the histidine synthesis pathway, focusing on combinations of amino acid states found at orthologous sites of extant species. Just 15% of amino acids found in yeast His3 orthologues were always neutral while the impact on fitness of the remaining 85% depended on the genetic background. Furthermore, at 67% of sites, amino acid replacements were under sign epistasis, having both strongly positive and negative effect in different genetic backgrounds. 46% of sites were under reciprocal sign epistasis. The fitness impact of amino acid replacements was influenced by only a few genetic backgrounds but involved interaction of multiple sites, shaping a rugged fitness landscape in which many of the shortest paths between highly fit genotypes are inaccessible.},
author = {Pokusaeva, Victoria and Usmanova, Dinara R. and Putintseva, Ekaterina V. and Espinar, Lorena and Sarkisyan, Karen and Mishin, Alexander S. and Bogatyreva, Natalya S. and Ivankov, Dmitry and Akopyan, Arseniy and Avvakumov, Sergey and Povolotskaya, Inna S. and Filion, Guillaume J. and Carey, Lucas B. and Kondrashov, Fyodor},
issn = {15537404},
journal = {PLoS Genetics},
number = {4},
publisher = {Public Library of Science},
title = {{An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape}},
doi = {10.1371/journal.pgen.1008079},
volume = {15},
year = {2019},
}
@article{6634,
abstract = {In this paper we prove several new results around Gromov's waist theorem. We give a simple proof of Vaaler's theorem on sections of the unit cube using the Borsuk-Ulam-Crofton technique, consider waists of real and complex projective spaces, flat tori, convex bodies in Euclidean space; and establish waist-type results in terms of the Hausdorff measure.},
author = {Akopyan, Arseniy and Hubard, Alfredo and Karasev, Roman},
journal = {Topological Methods in Nonlinear Analysis},
number = {2},
pages = {457--490},
publisher = {Akademicka Platforma Czasopism},
title = {{Lower and upper bounds for the waists of different spaces}},
doi = {10.12775/TMNA.2019.008},
volume = {53},
year = {2019},
}
@article{6793,
abstract = {The Regge symmetry is a set of remarkable relations between two tetrahedra whose edge lengths are related in a simple fashion. It was first discovered as a consequence of an asymptotic formula in mathematical physics. Here, we give a simple geometric proof of Regge symmetries in Euclidean, spherical, and hyperbolic geometry.},
author = {Akopyan, Arseniy and Izmestiev, Ivan},
issn = {14692120},
journal = {Bulletin of the London Mathematical Society},
number = {5},
pages = {765--775},
publisher = {London Mathematical Society},
title = {{The Regge symmetry, confocal conics, and the Schläfli formula}},
doi = {10.1112/blms.12276},
volume = {51},
year = {2019},
}
@unpublished{75,
abstract = {We prove that any convex body in the plane can be partitioned into m convex parts of equal areas and perimeters for any integer m≥2; this result was previously known for prime powers m=pk. We also give a higher-dimensional generalization.},
author = {Akopyan, Arseniy and Avvakumov, Sergey and Karasev, Roman},
pages = {11},
publisher = {arXiv},
title = {{Convex fair partitions into arbitrary number of pieces}},
year = {2018},
}
@article{58,
abstract = {Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.},
author = {Akopyan, Arseniy and Segal Halevi, Erel},
journal = {SIAM Journal on Discrete Mathematics},
number = {3},
pages = {2242 -- 2257},
publisher = {Society for Industrial and Applied Mathematics },
title = {{Counting blanks in polygonal arrangements}},
doi = {10.1137/16M110407X},
volume = {32},
year = {2018},
}
@article{6355,
abstract = {We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The smoothness condition is not required if the quadrilateral is a rectangle.},
author = {Akopyan, Arseniy and Avvakumov, Sergey},
issn = {2050-5094},
journal = {Forum of Mathematics, Sigma},
publisher = {Cambridge University Press},
title = {{Any cyclic quadrilateral can be inscribed in any closed convex smooth curve}},
doi = {10.1017/fms.2018.7},
volume = {6},
year = {2018},
}
@article{692,
abstract = {We consider families of confocal conics and two pencils of Apollonian circles having the same foci. We will show that these families of curves generate trivial 3-webs and find the exact formulas describing them.},
author = {Akopyan, Arseniy},
journal = {Geometriae Dedicata},
number = {1},
pages = {55 -- 64},
publisher = {Springer},
title = {{3-Webs generated by confocal conics and circles}},
doi = {10.1007/s10711-017-0265-6},
volume = {194},
year = {2018},
}
@article{106,
abstract = {The goal of this article is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind ourselves that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if, in addition, it has no self-intersections, we call it simple geodesic. A tetrahedron with equal opposite edges is called isosceles. The axiomatic method of Alexandrov geometry allows us to work with the metrics of convex surfaces directly, without approximating it first by a smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is difficult (if at all possible) to apply approximations in the proof of our theorem. On the other hand, a proof in the smooth or polyhedral case usually admits a translation into Alexandrov’s language; such translation makes the result more general. In fact, our proof resembles a translation of the proof given by Protasov. Note that the main theorem implies in particular that a smooth convex surface does not have arbitrarily long simple closed geodesics. However we do not know a proof of this corollary that is essentially simpler than the one presented below.},
author = {Akopyan, Arseniy and Petrunin, Anton},
journal = {Mathematical Intelligencer},
number = {3},
pages = {26 -- 31},
publisher = {Springer},
title = {{Long geodesics on convex surfaces}},
doi = {10.1007/s00283-018-9795-5},
volume = {40},
year = {2018},
}
@article{1064,
abstract = {In 1945, A.W. Goodman and R.E. Goodman proved the following conjecture by P. Erdős: Given a family of (round) disks of radii r1, … , rn in the plane, it is always possible to cover them by a disk of radius R= ∑ ri, provided they cannot be separated into two subfamilies by a straight line disjoint from the disks. In this note we show that essentially the same idea may work for different analogues and generalizations of their result. In particular, we prove the following: Given a family of positive homothetic copies of a fixed convex body K⊂ Rd with homothety coefficients τ1, … , τn> 0 , it is always possible to cover them by a translate of d+12(∑τi)K, provided they cannot be separated into two subfamilies by a hyperplane disjoint from the homothets.},
author = {Akopyan, Arseniy and Balitskiy, Alexey and Grigorev, Mikhail},
issn = {14320444},
journal = {Discrete & Computational Geometry},
number = {4},
pages = {1001--1009},
publisher = {Springer},
title = {{On the circle covering theorem by A.W. Goodman and R.E. Goodman}},
doi = {10.1007/s00454-017-9883-x},
volume = {59},
year = {2018},
}
@article{409,
abstract = {We give a simple proof of T. Stehling's result [4], whereby in any normal tiling of the plane with convex polygons with number of sides not less than six, all tiles except a finite number are hexagons.},
author = {Akopyan, Arseniy},
issn = {1631073X},
journal = {Comptes Rendus Mathematique},
number = {4},
pages = {412--414},
publisher = {Elsevier},
title = {{On the number of non-hexagons in a planar tiling}},
doi = {10.1016/j.crma.2018.03.005},
volume = {356},
year = {2018},
}
@article{458,
abstract = {We consider congruences of straight lines in a plane with the combinatorics of the square grid, with all elementary quadrilaterals possessing an incircle. It is shown that all the vertices of such nets (we call them incircular or IC-nets) lie on confocal conics. Our main new results are on checkerboard IC-nets in the plane. These are congruences of straight lines in the plane with the combinatorics of the square grid, combinatorially colored as a checkerboard, such that all black coordinate quadrilaterals possess inscribed circles. We show how this larger class of IC-nets appears quite naturally in Laguerre geometry of oriented planes and spheres and leads to new remarkable incidence theorems. Most of our results are valid in hyperbolic and spherical geometries as well. We present also generalizations in spaces of higher dimension, called checkerboard IS-nets. The construction of these nets is based on a new 9 inspheres incidence theorem.},
author = {Akopyan, Arseniy and Bobenko, Alexander},
journal = {Transactions of the American Mathematical Society},
number = {4},
pages = {2825 -- 2854},
publisher = {American Mathematical Society},
title = {{Incircular nets and confocal conics}},
doi = {10.1090/tran/7292},
volume = {370},
year = {2018},
}
@article{707,
abstract = {We answer a question of M. Gromov on the waist of the unit ball.},
author = {Akopyan, Arseniy and Karasev, Roman},
issn = {00246093},
journal = {Bulletin of the London Mathematical Society},
number = {4},
pages = {690 -- 693},
publisher = {Wiley-Blackwell},
title = {{A tight estimate for the waist of the ball }},
doi = {10.1112/blms.12062},
volume = {49},
year = {2017},
}
@article{1180,
abstract = {In this article we define an algebraic vertex of a generalized polyhedron and show that the set of algebraic vertices is the smallest set of points needed to define the polyhedron. We prove that the indicator function of a generalized polytope P is a linear combination of indicator functions of simplices whose vertices are algebraic vertices of P. We also show that the indicator function of any generalized polyhedron is a linear combination, with integer coefficients, of indicator functions of cones with apices at algebraic vertices and line-cones. The concept of an algebraic vertex is closely related to the Fourier–Laplace transform. We show that a point v is an algebraic vertex of a generalized polyhedron P if and only if the tangent cone of P, at v, has non-zero Fourier–Laplace transform.},
author = {Akopyan, Arseniy and Bárány, Imre and Robins, Sinai},
issn = {00018708},
journal = {Advances in Mathematics},
pages = {627 -- 644},
publisher = {Academic Press},
title = {{Algebraic vertices of non-convex polyhedra}},
doi = {10.1016/j.aim.2016.12.026},
volume = {308},
year = {2017},
}