TY - CONF AB - In multi-task learning, a learner is given a collection of prediction tasks and needs to solve all of them. In contrast to previous work, which required that annotated training data must be available for all tasks, we consider a new setting, in which for some tasks, potentially most of them, only unlabeled training data is provided. Consequently, to solve all tasks, information must be transferred between tasks with labels and tasks without labels. Focusing on an instance-based transfer method we analyze two variants of this setting: when the set of labeled tasks is fixed, and when it can be actively selected by the learner. We state and prove a generalization bound that covers both scenarios and derive from it an algorithm for making the choice of labeled tasks (in the active case) and for transferring information between the tasks in a principled way. We also illustrate the effectiveness of the algorithm on synthetic and real data. AU - Pentina, Anastasia AU - Lampert, Christoph ID - 999 SN - 9781510855144 TI - Multi-task learning with labeled and unlabeled tasks VL - 70 ER - TY - CONF AB - Better understanding of the potential benefits of information transfer and representation learning is an important step towards the goal of building intelligent systems that are able to persist in the world and learn over time. In this work, we consider a setting where the learner encounters a stream of tasks but is able to retain only limited information from each encountered task, such as a learned predictor. In contrast to most previous works analyzing this scenario, we do not make any distributional assumptions on the task generating process. Instead, we formulate a complexity measure that captures the diversity of the observed tasks. We provide a lifelong learning algorithm with error guarantees for every observed task (rather than on average). We show sample complexity reductions in comparison to solving every task in isolation in terms of our task complexity measure. Further, our algorithmic framework can naturally be viewed as learning a representation from encountered tasks with a neural network. AU - Pentina, Anastasia AU - Urner, Ruth ID - 1098 TI - Lifelong learning with weighted majority votes VL - 29 ER - TY - THES AB - Traditionally machine learning has been focusing on the problem of solving a single task in isolation. While being quite well understood, this approach disregards an important aspect of human learning: when facing a new problem, humans are able to exploit knowledge acquired from previously learned tasks. Intuitively, access to several problems simultaneously or sequentially could also be advantageous for a machine learning system, especially if these tasks are closely related. Indeed, results of many empirical studies have provided justification for this intuition. However, theoretical justifications of this idea are rather limited. The focus of this thesis is to expand the understanding of potential benefits of information transfer between several related learning problems. We provide theoretical analysis for three scenarios of multi-task learning - multiple kernel learning, sequential learning and active task selection. We also provide a PAC-Bayesian perspective on lifelong learning and investigate how the task generation process influences the generalization guarantees in this scenario. In addition, we show how some of the obtained theoretical results can be used to derive principled multi-task and lifelong learning algorithms and illustrate their performance on various synthetic and real-world datasets. AU - Pentina, Anastasia ID - 1126 SN - 2663-337X TI - Theoretical foundations of multi-task lifelong learning ER - TY - CONF AB - In this work we aim at extending the theoretical foundations of lifelong learning. Previous work analyzing this scenario is based on the assumption that learning tasks are sampled i.i.d. from a task environment or limited to strongly constrained data distributions. Instead, we study two scenarios when lifelong learning is possible, even though the observed tasks do not form an i.i.d. sample: first, when they are sampled from the same environment, but possibly with dependencies, and second, when the task environment is allowed to change over time in a consistent way. In the first case we prove a PAC-Bayesian theorem that can be seen as a direct generalization of the analogous previous result for the i.i.d. case. For the second scenario we propose to learn an inductive bias in form of a transfer procedure. We present a generalization bound and show on a toy example how it can be used to identify a beneficial transfer algorithm. AU - Pentina, Anastasia AU - Lampert, Christoph ID - 1425 TI - Lifelong learning with non-i.i.d. tasks VL - 2015 ER - TY - CONF AB - We consider a problem of learning kernels for use in SVM classification in the multi-task and lifelong scenarios and provide generalization bounds on the error of a large margin classifier. Our results show that, under mild conditions on the family of kernels used for learning, solving several related tasks simultaneously is beneficial over single task learning. In particular, as the number of observed tasks grows, assuming that in the considered family of kernels there exists one that yields low approximation error on all tasks, the overhead associated with learning such a kernel vanishes and the complexity converges to that of learning when this good kernel is given to the learner. AU - Pentina, Anastasia AU - Ben David, Shai ID - 1706 TI - Multi-task and lifelong learning of kernels VL - 9355 ER - TY - CONF AB - Sharing information between multiple tasks enables algorithms to achieve good generalization performance even from small amounts of training data. However, in a realistic scenario of multi-task learning not all tasks are equally related to each other, hence it could be advantageous to transfer information only between the most related tasks. In this work we propose an approach that processes multiple tasks in a sequence with sharing between subsequent tasks instead of solving all tasks jointly. Subsequently, we address the question of curriculum learning of tasks, i.e. finding the best order of tasks to be learned. Our approach is based on a generalization bound criterion for choosing the task order that optimizes the average expected classification performance over all tasks. Our experimental results show that learning multiple related tasks sequentially can be more effective than learning them jointly, the order in which tasks are being solved affects the overall performance, and that our model is able to automatically discover the favourable order of tasks. AU - Pentina, Anastasia AU - Sharmanska, Viktoriia AU - Lampert, Christoph ID - 1857 TI - Curriculum learning of multiple tasks ER - TY - CONF AB - Transfer learning has received a lot of attention in the machine learning community over the last years, and several effective algorithms have been developed. However, relatively little is known about their theoretical properties, especially in the setting of lifelong learning, where the goal is to transfer information to tasks for which no data have been observed so far. In this work we study lifelong learning from a theoretical perspective. Our main result is a PAC-Bayesian generalization bound that offers a unified view on existing paradigms for transfer learning, such as the transfer of parameters or the transfer of low-dimensional representations. We also use the bound to derive two principled lifelong learning algorithms, and we show that these yield results comparable with existing methods. AU - Pentina, Anastasia AU - Lampert, Christoph ID - 2160 TI - A PAC-Bayesian bound for Lifelong Learning VL - 32 ER -