--- _id: '11160' abstract: - lang: eng text: Mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are a frequent cause of autism spectrum disorder (ASD). While its phenotypic spectrum often encompasses macrocephaly, implicating cortical abnormalities, how CHD8 haploinsufficiency affects neurodevelopmental is unclear. Here, employing human cerebral organoids, we find that CHD8 haploinsufficiency disrupted neurodevelopmental trajectories with an accelerated and delayed generation of, respectively, inhibitory and excitatory neurons that yields, at days 60 and 120, symmetrically opposite expansions in their proportions. This imbalance is consistent with an enlargement of cerebral organoids as an in vitro correlate of patients’ macrocephaly. Through an isogenic design of patient-specific mutations and mosaic organoids, we define genotype-phenotype relationships and uncover their cell-autonomous nature. Our results define cell-type-specific CHD8-dependent molecular defects related to an abnormal program of proliferation and alternative splicing. By identifying cell-type-specific effects of CHD8 mutations, our study uncovers reproducible developmental alterations that may be employed for neurodevelopmental disease modeling. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: We thank Farnaz Freeman for technical assistance. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Bioimaging Facility (BIF) and the Life Science Facility (LSF). This work supported by the European Union’s Horizon 2020 research and innovation program (ERC) grant 715508 to G.N. (REVERSEAUTISM) and grant 825759 to G.T. (ENDpoiNTs); the Fondazione Cariplo 2017-0886 to A.L.T.; E-Rare-3 JTC 2018 IMPACT to M. Gabriele; and the Austrian Science Fund FWF I 4205-B to G.N. Graphical abstract and figures were created using BioRender.com. article_number: '110615' article_processing_charge: Yes article_type: original author: - first_name: Carlo Emanuele full_name: Villa, Carlo Emanuele last_name: Villa - first_name: Cristina full_name: Cheroni, Cristina last_name: Cheroni - first_name: Christoph full_name: Dotter, Christoph id: 4C66542E-F248-11E8-B48F-1D18A9856A87 last_name: Dotter orcid: 0000-0002-9033-9096 - first_name: Alejandro full_name: López-Tóbon, Alejandro last_name: López-Tóbon - first_name: Bárbara full_name: Oliveira, Bárbara id: 3B03AA1A-F248-11E8-B48F-1D18A9856A87 last_name: Oliveira - first_name: Roberto full_name: Sacco, Roberto id: 42C9F57E-F248-11E8-B48F-1D18A9856A87 last_name: Sacco - first_name: Aysan Çerağ full_name: Yahya, Aysan Çerağ id: 365A65F8-F248-11E8-B48F-1D18A9856A87 last_name: Yahya - first_name: Jasmin full_name: Morandell, Jasmin id: 4739D480-F248-11E8-B48F-1D18A9856A87 last_name: Morandell - first_name: Michele full_name: Gabriele, Michele last_name: Gabriele - first_name: Mojtaba full_name: Tavakoli, Mojtaba id: 3A0A06F4-F248-11E8-B48F-1D18A9856A87 last_name: Tavakoli orcid: 0000-0002-7667-6854 - first_name: Julia full_name: Lyudchik, Julia id: 46E28B80-F248-11E8-B48F-1D18A9856A87 last_name: Lyudchik - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Mariano full_name: Gabitto, Mariano last_name: Gabitto - first_name: Johann G full_name: Danzl, Johann G id: 42EFD3B6-F248-11E8-B48F-1D18A9856A87 last_name: Danzl orcid: 0000-0001-8559-3973 - first_name: Giuseppe full_name: Testa, Giuseppe last_name: Testa - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Villa CE, Cheroni C, Dotter C, et al. CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Reports. 2022;39(1). doi:10.1016/j.celrep.2022.110615 apa: Villa, C. E., Cheroni, C., Dotter, C., López-Tóbon, A., Oliveira, B., Sacco, R., … Novarino, G. (2022). CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Reports. Elsevier. https://doi.org/10.1016/j.celrep.2022.110615 chicago: Villa, Carlo Emanuele, Cristina Cheroni, Christoph Dotter, Alejandro López-Tóbon, Bárbara Oliveira, Roberto Sacco, Aysan Çerağ Yahya, et al. “CHD8 Haploinsufficiency Links Autism to Transient Alterations in Excitatory and Inhibitory Trajectories.” Cell Reports. Elsevier, 2022. https://doi.org/10.1016/j.celrep.2022.110615. ieee: C. E. Villa et al., “CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories,” Cell Reports, vol. 39, no. 1. Elsevier, 2022. ista: Villa CE, Cheroni C, Dotter C, López-Tóbon A, Oliveira B, Sacco R, Yahya AÇ, Morandell J, Gabriele M, Tavakoli M, Lyudchik J, Sommer CM, Gabitto M, Danzl JG, Testa G, Novarino G. 2022. CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Reports. 39(1), 110615. mla: Villa, Carlo Emanuele, et al. “CHD8 Haploinsufficiency Links Autism to Transient Alterations in Excitatory and Inhibitory Trajectories.” Cell Reports, vol. 39, no. 1, 110615, Elsevier, 2022, doi:10.1016/j.celrep.2022.110615. short: C.E. Villa, C. Cheroni, C. Dotter, A. López-Tóbon, B. Oliveira, R. Sacco, A.Ç. Yahya, J. Morandell, M. Gabriele, M. Tavakoli, J. Lyudchik, C.M. Sommer, M. Gabitto, J.G. Danzl, G. Testa, G. Novarino, Cell Reports 39 (2022). date_created: 2022-04-15T09:03:10Z date_published: 2022-04-05T00:00:00Z date_updated: 2024-03-28T23:30:45Z day: '05' ddc: - '570' department: - _id: JoDa - _id: GaNo doi: 10.1016/j.celrep.2022.110615 ec_funded: 1 external_id: isi: - '000785983900003' pmid: - '35385734' file: - access_level: open_access checksum: b4e8d68f0268dec499af333e6fd5d8e1 content_type: application/pdf creator: dernst date_created: 2022-04-15T09:06:25Z date_updated: 2022-04-15T09:06:25Z file_id: '11164' file_name: 2022_CellReports_Villa.pdf file_size: '7808644' relation: main_file success: 1 file_date_updated: 2022-04-15T09:06:25Z has_accepted_license: '1' intvolume: ' 39' isi: 1 issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25444568-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '715508' name: Probing the Reversibility of Autism Spectrum Disorders by Employing in vivo and in vitro Models - _id: 2690FEAC-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I04205 name: Identification of converging Molecular Pathways Across Chromatinopathies as Targets for Therapy publication: Cell Reports publication_identifier: issn: - 2211-1247 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '12364' relation: dissertation_contains status: public status: public title: CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 39 year: '2022' ... --- _id: '546' abstract: - lang: eng text: The precise control of neural stem cell (NSC) proliferation and differentiation is crucial for the development and function of the human brain. Here, we review the emerging links between the alteration of embryonic and adult neurogenesis and the etiology of neuropsychiatric disorders (NPDs) such as autism spectrum disorders (ASDs) and schizophrenia (SCZ), as well as the advances in stem cell-based modeling and the novel therapeutic targets derived from these studies. article_processing_charge: No author: - first_name: Roberto full_name: Sacco, Roberto id: 42C9F57E-F248-11E8-B48F-1D18A9856A87 last_name: Sacco - first_name: Emanuele full_name: Cacci, Emanuele last_name: Cacci - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 citation: ama: Sacco R, Cacci E, Novarino G. Neural stem cells in neuropsychiatric disorders. Current Opinion in Neurobiology. 2018;48(2):131-138. doi:10.1016/j.conb.2017.12.005 apa: Sacco, R., Cacci, E., & Novarino, G. (2018). Neural stem cells in neuropsychiatric disorders. Current Opinion in Neurobiology. Elsevier. https://doi.org/10.1016/j.conb.2017.12.005 chicago: Sacco, Roberto, Emanuele Cacci, and Gaia Novarino. “Neural Stem Cells in Neuropsychiatric Disorders.” Current Opinion in Neurobiology. Elsevier, 2018. https://doi.org/10.1016/j.conb.2017.12.005. ieee: R. Sacco, E. Cacci, and G. Novarino, “Neural stem cells in neuropsychiatric disorders,” Current Opinion in Neurobiology, vol. 48, no. 2. Elsevier, pp. 131–138, 2018. ista: Sacco R, Cacci E, Novarino G. 2018. Neural stem cells in neuropsychiatric disorders. Current Opinion in Neurobiology. 48(2), 131–138. mla: Sacco, Roberto, et al. “Neural Stem Cells in Neuropsychiatric Disorders.” Current Opinion in Neurobiology, vol. 48, no. 2, Elsevier, 2018, pp. 131–38, doi:10.1016/j.conb.2017.12.005. short: R. Sacco, E. Cacci, G. Novarino, Current Opinion in Neurobiology 48 (2018) 131–138. date_created: 2018-12-11T11:47:06Z date_published: 2018-02-01T00:00:00Z date_updated: 2023-09-13T09:01:56Z day: '01' department: - _id: GaNo doi: 10.1016/j.conb.2017.12.005 external_id: isi: - '000427101600018' intvolume: ' 48' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: 131 - 138 publication: Current Opinion in Neurobiology publication_status: published publisher: Elsevier publist_id: '7268' quality_controlled: '1' scopus_import: '1' status: public title: Neural stem cells in neuropsychiatric disorders type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 48 year: '2018' ... --- _id: '540' abstract: - lang: eng text: RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/-mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host. article_number: e1006758 author: - first_name: Kseniya full_name: Khamina, Kseniya last_name: Khamina - first_name: Alexander full_name: Lercher, Alexander last_name: Lercher - first_name: Michael full_name: Caldera, Michael last_name: Caldera - first_name: Christopher full_name: Schliehe, Christopher last_name: Schliehe - first_name: Bojan full_name: Vilagos, Bojan last_name: Vilagos - first_name: Mehmet full_name: Sahin, Mehmet last_name: Sahin - first_name: Lindsay full_name: Kosack, Lindsay last_name: Kosack - first_name: Anannya full_name: Bhattacharya, Anannya last_name: Bhattacharya - first_name: Peter full_name: Májek, Peter last_name: Májek - first_name: Alexey full_name: Stukalov, Alexey last_name: Stukalov - first_name: Roberto full_name: Sacco, Roberto id: 42C9F57E-F248-11E8-B48F-1D18A9856A87 last_name: Sacco - first_name: Leo full_name: James, Leo last_name: James - first_name: Daniel full_name: Pinschewer, Daniel last_name: Pinschewer - first_name: Keiryn full_name: Bennett, Keiryn last_name: Bennett - first_name: Jörg full_name: Menche, Jörg last_name: Menche - first_name: Andreas full_name: Bergthaler, Andreas last_name: Bergthaler citation: ama: Khamina K, Lercher A, Caldera M, et al. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLoS Pathogens. 2017;13(12). doi:10.1371/journal.ppat.1006758 apa: Khamina, K., Lercher, A., Caldera, M., Schliehe, C., Vilagos, B., Sahin, M., … Bergthaler, A. (2017). Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLoS Pathogens. Public Library of Science. https://doi.org/10.1371/journal.ppat.1006758 chicago: Khamina, Kseniya, Alexander Lercher, Michael Caldera, Christopher Schliehe, Bojan Vilagos, Mehmet Sahin, Lindsay Kosack, et al. “Characterization of Host Proteins Interacting with the Lymphocytic Choriomeningitis Virus L Protein.” PLoS Pathogens. Public Library of Science, 2017. https://doi.org/10.1371/journal.ppat.1006758. ieee: K. Khamina et al., “Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein,” PLoS Pathogens, vol. 13, no. 12. Public Library of Science, 2017. ista: Khamina K, Lercher A, Caldera M, Schliehe C, Vilagos B, Sahin M, Kosack L, Bhattacharya A, Májek P, Stukalov A, Sacco R, James L, Pinschewer D, Bennett K, Menche J, Bergthaler A. 2017. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein. PLoS Pathogens. 13(12), e1006758. mla: Khamina, Kseniya, et al. “Characterization of Host Proteins Interacting with the Lymphocytic Choriomeningitis Virus L Protein.” PLoS Pathogens, vol. 13, no. 12, e1006758, Public Library of Science, 2017, doi:10.1371/journal.ppat.1006758. short: K. Khamina, A. Lercher, M. Caldera, C. Schliehe, B. Vilagos, M. Sahin, L. Kosack, A. Bhattacharya, P. Májek, A. Stukalov, R. Sacco, L. James, D. Pinschewer, K. Bennett, J. Menche, A. Bergthaler, PLoS Pathogens 13 (2017). date_created: 2018-12-11T11:47:03Z date_published: 2017-12-01T00:00:00Z date_updated: 2021-01-12T08:01:48Z day: '01' ddc: - '576' - '616' department: - _id: GaNo doi: 10.1371/journal.ppat.1006758 file: - access_level: open_access checksum: 1aa20f19a1e90664fadce6e7d5284fdc content_type: application/pdf creator: system date_created: 2018-12-12T10:12:26Z date_updated: 2020-07-14T12:46:44Z file_id: '4944' file_name: IST-2018-931-v1+1_journal.ppat.1006758.pdf file_size: 4106772 relation: main_file file_date_updated: 2020-07-14T12:46:44Z has_accepted_license: '1' intvolume: ' 13' issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: PLoS Pathogens publication_identifier: issn: - '15537366' publication_status: published publisher: Public Library of Science publist_id: '7276' pubrep_id: '931' quality_controlled: '1' scopus_import: 1 status: public title: Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2017' ... --- _id: '1228' abstract: - lang: eng text: Since 2006, reprogrammed cells have increasingly been used as a biomedical research technique in addition to neuro-psychiatric methods. These rapidly evolving techniques allow for the generation of neuronal sub-populations, and have sparked interest not only in monogenetic neuro-psychiatric diseases, but also in poly-genetic and poly-aetiological disorders such as schizophrenia (SCZ) and bipolar disorder (BPD). This review provides a summary of 19 publications on reprogrammed adult somatic cells derived from patients with SCZ, and five publications using this technique in patients with BPD. As both disorders are complex and heterogeneous, there is a plurality of hypotheses to be tested in vitro. In SCZ, data on alterations of dopaminergic transmission in vitro are sparse, despite the great explanatory power of the so-called DA hypothesis of SCZ. Some findings correspond to perturbations of cell energy metabolism, and observations in reprogrammed cells suggest neuro-developmental alterations. Some studies also report on the efficacy of medicinal compounds to revert alterations observed in cellular models. However, due to the paucity of replication studies, no comprehensive conclusions can be drawn from studies using reprogrammed cells at the present time. In the future, findings from cell culture methods need to be integrated with clinical, epidemiological, pharmacological and imaging data in order to generate a more comprehensive picture of SCZ and BPD. acknowledgement: This work was supported by grants of the Austrian Science Fund (FWF) P23585B09 to M.W. and F3506 to H.H.S. and the “Wiener Wissenschafts-, Forschungs- und Technologiefonds” (Vienna Science and Technology Fund; WWTF) CS15-033 to M.W. article_processing_charge: No article_type: review author: - first_name: Ulrich full_name: Sauerzopf, Ulrich last_name: Sauerzopf - first_name: Roberto full_name: Sacco, Roberto id: 42C9F57E-F248-11E8-B48F-1D18A9856A87 last_name: Sacco - first_name: Gaia full_name: Novarino, Gaia id: 3E57A680-F248-11E8-B48F-1D18A9856A87 last_name: Novarino orcid: 0000-0002-7673-7178 - first_name: Marco full_name: Niello, Marco last_name: Niello - first_name: Ana full_name: Weidenauer, Ana last_name: Weidenauer - first_name: Nicole full_name: Praschak Rieder, Nicole last_name: Praschak Rieder - first_name: Harald full_name: Sitte, Harald last_name: Sitte - first_name: Matthaeus full_name: Willeit, Matthaeus last_name: Willeit citation: ama: Sauerzopf U, Sacco R, Novarino G, et al. Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence. European Journal of Neuroscience. 2017;45(1):45-57. doi:10.1111/ejn.13418 apa: Sauerzopf, U., Sacco, R., Novarino, G., Niello, M., Weidenauer, A., Praschak Rieder, N., … Willeit, M. (2017). Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence. European Journal of Neuroscience. Wiley-Blackwell. https://doi.org/10.1111/ejn.13418 chicago: Sauerzopf, Ulrich, Roberto Sacco, Gaia Novarino, Marco Niello, Ana Weidenauer, Nicole Praschak Rieder, Harald Sitte, and Matthaeus Willeit. “Are Reprogrammed Cells a Useful Tool for Studying Dopamine Dysfunction in Psychotic Disorders? A Review of the Current Evidence.” European Journal of Neuroscience. Wiley-Blackwell, 2017. https://doi.org/10.1111/ejn.13418. ieee: U. Sauerzopf et al., “Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence,” European Journal of Neuroscience, vol. 45, no. 1. Wiley-Blackwell, pp. 45–57, 2017. ista: Sauerzopf U, Sacco R, Novarino G, Niello M, Weidenauer A, Praschak Rieder N, Sitte H, Willeit M. 2017. Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence. European Journal of Neuroscience. 45(1), 45–57. mla: Sauerzopf, Ulrich, et al. “Are Reprogrammed Cells a Useful Tool for Studying Dopamine Dysfunction in Psychotic Disorders? A Review of the Current Evidence.” European Journal of Neuroscience, vol. 45, no. 1, Wiley-Blackwell, 2017, pp. 45–57, doi:10.1111/ejn.13418. short: U. Sauerzopf, R. Sacco, G. Novarino, M. Niello, A. Weidenauer, N. Praschak Rieder, H. Sitte, M. Willeit, European Journal of Neuroscience 45 (2017) 45–57. date_created: 2018-12-11T11:50:50Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T11:16:01Z day: '01' ddc: - '616' department: - _id: GaNo doi: 10.1111/ejn.13418 external_id: isi: - '000392487100005' pmid: - '27690184' file: - access_level: open_access checksum: c572cf02be8fbb7020cfcfb892182e4c content_type: application/pdf creator: system date_created: 2018-12-12T10:10:48Z date_updated: 2020-07-14T12:44:39Z file_id: '4838' file_name: IST-2017-738-v1+1_Sauerzopf_et_al-2017-European_Journal_of_Neuroscience.pdf file_size: 169145 relation: main_file file_date_updated: 2020-07-14T12:44:39Z has_accepted_license: '1' intvolume: ' 45' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 45 - 57 pmid: 1 publication: European Journal of Neuroscience publication_status: published publisher: Wiley-Blackwell publist_id: '6106' pubrep_id: '738' quality_controlled: '1' scopus_import: '1' status: public title: Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 45 year: '2017' ... --- _id: '460' abstract: - lang: eng text: NF-κB signaling is a central pathway of immunity and integrates signal transduction upon a wide array of inflammatory stimuli. Noncanonical NF-κB signaling is activated by a small subset of TNF family receptors and characterized by NF-κB2/p52 transcriptional activity. The medical relevance of this pathway has recently re-emerged from the discovery of primary immunodeficiency patients that have loss-of-function mutations in the MAP3K14 gene encoding NIK. Nevertheless, knowledge of protein interactions that regulate noncanonical NF-κB signaling is sparse. Here we report a detailed state-of-the-art mass spectrometry-based protein–protein interaction network including the noncanonical NF-κB signaling nodes TRAF2, TRAF3, IKKα, NIK, and NF-κB2/p100. The value of the data set was confirmed by the identification of interactions already known to regulate this pathway. In addition, a remarkable number of novel interactors were identified. We provide validation of the novel NIK and IKKα interactor FKBP8, which may regulate processes downstream of noncanonical NF-κB signaling. To understand perturbed noncanonical NF-κB signaling in the context of misregulated NIK in disease, we also provide a differential interactome of NIK mutants that cause immunodeficiency. Altogether, this data set not only provides critical insight into how protein–protein interactions can regulate immune signaling but also offers a novel resource on noncanonical NF-κB signaling. acknowledgement: "Austrian Science Fund (FWF) Lise Meitner Program Fellowship (FWF M-1809, to K.L.W.), FWF Infect-ERA framework (I-1620_B22, to S.K.), European Research Council (ERC StG 310857, to K.B.)\nWe thank Jacques Colinge, André C. Müller, and Peter Májek for fruitful discussions and Elisabeth Salzer and Kate G. Ackermann for critically reading the manuscript. We thank Giulio Superti-Furga for providing pTO-SII-HA-GW plasmids. \n\n" author: - first_name: Katharina full_name: Willmann, Katharina L last_name: Willmann - first_name: Roberto full_name: Roberto Sacco id: 42C9F57E-F248-11E8-B48F-1D18A9856A87 last_name: Sacco - first_name: Rui full_name: Martins, Rui last_name: Martins - first_name: Wojciech full_name: Garncarz, Wojciech last_name: Garncarz - first_name: Ana full_name: Krolo, Ana last_name: Krolo - first_name: Sylvia full_name: Knapp, Sylvia last_name: Knapp - first_name: Keiryn full_name: Bennett, Keiryn L last_name: Bennett - first_name: Kaan full_name: Boztug, Kaan last_name: Boztug citation: ama: Willmann K, Sacco R, Martins R, et al. Expanding the interactome of the noncanonical NF-κB signaling pathway. Journal of Proteome Research. 2016;15(9):2900-2909. doi:10.1021/acs.jproteome.5b01004 apa: Willmann, K., Sacco, R., Martins, R., Garncarz, W., Krolo, A., Knapp, S., … Boztug, K. (2016). Expanding the interactome of the noncanonical NF-κB signaling pathway. Journal of Proteome Research. American Chemical Society. https://doi.org/10.1021/acs.jproteome.5b01004 chicago: Willmann, Katharina, Roberto Sacco, Rui Martins, Wojciech Garncarz, Ana Krolo, Sylvia Knapp, Keiryn Bennett, and Kaan Boztug. “Expanding the Interactome of the Noncanonical NF-ΚB Signaling Pathway.” Journal of Proteome Research. American Chemical Society, 2016. https://doi.org/10.1021/acs.jproteome.5b01004. ieee: K. Willmann et al., “Expanding the interactome of the noncanonical NF-κB signaling pathway,” Journal of Proteome Research, vol. 15, no. 9. American Chemical Society, pp. 2900–2909, 2016. ista: Willmann K, Sacco R, Martins R, Garncarz W, Krolo A, Knapp S, Bennett K, Boztug K. 2016. Expanding the interactome of the noncanonical NF-κB signaling pathway. Journal of Proteome Research. 15(9), 2900–2909. mla: Willmann, Katharina, et al. “Expanding the Interactome of the Noncanonical NF-ΚB Signaling Pathway.” Journal of Proteome Research, vol. 15, no. 9, American Chemical Society, 2016, pp. 2900–09, doi:10.1021/acs.jproteome.5b01004. short: K. Willmann, R. Sacco, R. Martins, W. Garncarz, A. Krolo, S. Knapp, K. Bennett, K. Boztug, Journal of Proteome Research 15 (2016) 2900–2909. date_created: 2018-12-11T11:46:36Z date_published: 2016-07-15T00:00:00Z date_updated: 2021-01-12T08:00:24Z day: '15' doi: 10.1021/acs.jproteome.5b01004 extern: 1 intvolume: ' 15' issue: '9' main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295629/ month: '07' oa: 1 page: 2900 - 2909 publication: Journal of Proteome Research publication_status: published publisher: American Chemical Society publist_id: '7361' quality_controlled: 0 status: public title: Expanding the interactome of the noncanonical NF-κB signaling pathway type: journal_article volume: 15 year: '2016' ...