--- _id: '308' abstract: - lang: eng text: Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. acknowledged_ssus: - _id: SSU article_processing_charge: No article_type: original author: - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh orcid: 0000-0001-7190-0776 - first_name: Julia full_name: Biebl, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Biebl - first_name: Michael full_name: Smutny, Michael last_name: Smutny - first_name: Jana full_name: Veselá, Jana id: 433253EE-F248-11E8-B48F-1D18A9856A87 last_name: Veselá - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Alessandra M full_name: Casano, Alessandra M id: 3DBA3F4E-F248-11E8-B48F-1D18A9856A87 last_name: Casano orcid: 0000-0002-6009-6804 - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Ratheesh A, Bicher J, Smutny M, et al. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 2018;45(3):331-346. doi:10.1016/j.devcel.2018.04.002 apa: Ratheesh, A., Bicher, J., Smutny, M., Veselá, J., Papusheva, E., Krens, G., … Siekhaus, D. E. (2018). Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2018.04.002 chicago: Ratheesh, Aparna, Julia Bicher, Michael Smutny, Jana Veselá, Ekaterina Papusheva, Gabriel Krens, Walter Kaufmann, Attila György, Alessandra M Casano, and Daria E Siekhaus. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell. Elsevier, 2018. https://doi.org/10.1016/j.devcel.2018.04.002. ieee: A. Ratheesh et al., “Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration,” Developmental Cell, vol. 45, no. 3. Elsevier, pp. 331–346, 2018. ista: Ratheesh A, Bicher J, Smutny M, Veselá J, Papusheva E, Krens G, Kaufmann W, György A, Casano AM, Siekhaus DE. 2018. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 45(3), 331–346. mla: Ratheesh, Aparna, et al. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell, vol. 45, no. 3, Elsevier, 2018, pp. 331–46, doi:10.1016/j.devcel.2018.04.002. short: A. Ratheesh, J. Bicher, M. Smutny, J. Veselá, E. Papusheva, G. Krens, W. Kaufmann, A. György, A.M. Casano, D.E. Siekhaus, Developmental Cell 45 (2018) 331–346. date_created: 2018-12-11T11:45:44Z date_published: 2018-05-07T00:00:00Z date_updated: 2023-09-11T13:22:13Z day: '07' department: - _id: DaSi - _id: CaHe - _id: Bio - _id: EM-Fac - _id: MiSi doi: 10.1016/j.devcel.2018.04.002 ec_funded: 1 external_id: isi: - '000432461400009' pmid: - '29738712' intvolume: ' 45' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.devcel.2018.04.002 month: '05' oa: 1 oa_version: Published Version page: 331 - 346 pmid: 1 project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: Developmental Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/cells-change-tension-to-make-tissue-barriers-easier-to-get-through/ scopus_import: '1' status: public title: Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 45 year: '2018' ... --- _id: '661' abstract: - lang: eng text: During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. acknowledged_ssus: - _id: SSU author: - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Zsuzsa full_name: Ákos, Zsuzsa last_name: Ákos - first_name: Silvia full_name: Grigolon, Silvia last_name: Grigolon - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Verena full_name: Ruprecht, Verena last_name: Ruprecht - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Masazumi full_name: Tada, Masazumi last_name: Tada - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Tamás full_name: Vicsek, Tamás last_name: Vicsek - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Smutny M, Ákos Z, Grigolon S, et al. Friction forces position the neural anlage. Nature Cell Biology. 2017;19:306-317. doi:10.1038/ncb3492 apa: Smutny, M., Ákos, Z., Grigolon, S., Shamipour, S., Ruprecht, V., Capek, D., … Heisenberg, C.-P. J. (2017). Friction forces position the neural anlage. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb3492 chicago: Smutny, Michael, Zsuzsa Ákos, Silvia Grigolon, Shayan Shamipour, Verena Ruprecht, Daniel Capek, Martin Behrndt, et al. “Friction Forces Position the Neural Anlage.” Nature Cell Biology. Nature Publishing Group, 2017. https://doi.org/10.1038/ncb3492. ieee: M. Smutny et al., “Friction forces position the neural anlage,” Nature Cell Biology, vol. 19. Nature Publishing Group, pp. 306–317, 2017. ista: Smutny M, Ákos Z, Grigolon S, Shamipour S, Ruprecht V, Capek D, Behrndt M, Papusheva E, Tada M, Hof B, Vicsek T, Salbreux G, Heisenberg C-PJ. 2017. Friction forces position the neural anlage. Nature Cell Biology. 19, 306–317. mla: Smutny, Michael, et al. “Friction Forces Position the Neural Anlage.” Nature Cell Biology, vol. 19, Nature Publishing Group, 2017, pp. 306–17, doi:10.1038/ncb3492. short: M. Smutny, Z. Ákos, S. Grigolon, S. Shamipour, V. Ruprecht, D. Capek, M. Behrndt, E. Papusheva, M. Tada, B. Hof, T. Vicsek, G. Salbreux, C.-P.J. Heisenberg, Nature Cell Biology 19 (2017) 306–317. date_created: 2018-12-11T11:47:46Z date_published: 2017-03-27T00:00:00Z date_updated: 2024-03-28T23:30:39Z day: '27' department: - _id: CaHe - _id: BjHo - _id: Bio doi: 10.1038/ncb3492 ec_funded: 1 external_id: pmid: - '28346437' intvolume: ' 19' language: - iso: eng main_file_link: - open_access: '1' url: https://europepmc.org/articles/pmc5635970 month: '03' oa: 1 oa_version: Submitted Version page: 306 - 317 pmid: 1 project: - _id: 25152F3A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '306589' name: Decoding the complexity of turbulence at its origin - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Nature Cell Biology publication_identifier: issn: - '14657392' publication_status: published publisher: Nature Publishing Group publist_id: '7074' quality_controlled: '1' related_material: record: - id: '50' relation: dissertation_contains status: public - id: '8350' relation: dissertation_contains status: public scopus_import: 1 status: public title: Friction forces position the neural anlage type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2017' ... --- _id: '2022' abstract: - lang: eng text: Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ∼8–9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ∼1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program. author: - first_name: Peng full_name: Gao, Peng last_name: Gao - first_name: Maria P full_name: Postiglione, Maria P id: 2C67902A-F248-11E8-B48F-1D18A9856A87 last_name: Postiglione - first_name: Teresa full_name: Krieger, Teresa last_name: Krieger - first_name: Luisirene full_name: Hernandez, Luisirene last_name: Hernandez - first_name: Chao full_name: Wang, Chao last_name: Wang - first_name: Zhi full_name: Han, Zhi last_name: Han - first_name: Carmen full_name: Streicher, Carmen id: 36BCB99C-F248-11E8-B48F-1D18A9856A87 last_name: Streicher - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Ryan full_name: Insolera, Ryan last_name: Insolera - first_name: Kritika full_name: Chugh, Kritika last_name: Chugh - first_name: Oren full_name: Kodish, Oren last_name: Kodish - first_name: Kun full_name: Huang, Kun last_name: Huang - first_name: Benjamin full_name: Simons, Benjamin last_name: Simons - first_name: Liqun full_name: Luo, Liqun last_name: Luo - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Song full_name: Shi, Song last_name: Shi citation: ama: Gao P, Postiglione MP, Krieger T, et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. 2014;159(4):775-788. doi:10.1016/j.cell.2014.10.027 apa: Gao, P., Postiglione, M. P., Krieger, T., Hernandez, L., Wang, C., Han, Z., … Shi, S. (2014). Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. Cell Press. https://doi.org/10.1016/j.cell.2014.10.027 chicago: Gao, Peng, Maria P Postiglione, Teresa Krieger, Luisirene Hernandez, Chao Wang, Zhi Han, Carmen Streicher, et al. “Deterministic Progenitor Behavior and Unitary Production of Neurons in the Neocortex.” Cell. Cell Press, 2014. https://doi.org/10.1016/j.cell.2014.10.027. ieee: P. Gao et al., “Deterministic progenitor behavior and unitary production of neurons in the neocortex,” Cell, vol. 159, no. 4. Cell Press, pp. 775–788, 2014. ista: Gao P, Postiglione MP, Krieger T, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R, Chugh K, Kodish O, Huang K, Simons B, Luo L, Hippenmeyer S, Shi S. 2014. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. 159(4), 775–788. mla: Gao, Peng, et al. “Deterministic Progenitor Behavior and Unitary Production of Neurons in the Neocortex.” Cell, vol. 159, no. 4, Cell Press, 2014, pp. 775–88, doi:10.1016/j.cell.2014.10.027. short: P. Gao, M.P. Postiglione, T. Krieger, L. Hernandez, C. Wang, Z. Han, C. Streicher, E. Papusheva, R. Insolera, K. Chugh, O. Kodish, K. Huang, B. Simons, L. Luo, S. Hippenmeyer, S. Shi, Cell 159 (2014) 775–788. date_created: 2018-12-11T11:55:16Z date_published: 2014-11-06T00:00:00Z date_updated: 2021-01-12T06:54:47Z day: '06' ddc: - '570' department: - _id: SiHi - _id: Bio doi: 10.1016/j.cell.2014.10.027 ec_funded: 1 file: - access_level: open_access checksum: 6c5de8329bb2ffa71cba9fda750f14ce content_type: application/pdf creator: system date_created: 2018-12-12T10:08:47Z date_updated: 2020-07-14T12:45:25Z file_id: '4709' file_name: IST-2016-423-v1+1_1-s2.0-S0092867414013154-main.pdf file_size: 4435787 relation: main_file file_date_updated: 2020-07-14T12:45:25Z has_accepted_license: '1' intvolume: ' 159' issue: '4' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '11' oa: 1 oa_version: Published Version page: 775 - 788 project: - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 25D7962E-B435-11E9-9278-68D0E5697425 grant_number: RGP0053/2014 name: Quantitative Structure-Function Analysis of Cerebral Cortex Assembly at Clonal Level publication: Cell publication_status: published publisher: Cell Press publist_id: '5050' pubrep_id: '423' quality_controlled: '1' scopus_import: 1 status: public title: Deterministic progenitor behavior and unitary production of neurons in the neocortex tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 159 year: '2014' ... --- _id: '4157' abstract: - lang: eng text: Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis. acknowledged_ssus: - _id: Bio author: - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Papusheva E, Heisenberg C-PJ. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO Journal. 2010;29(16):2753-2768. doi:10.1038/emboj.2010.182' apa: 'Papusheva, E., & Heisenberg, C.-P. J. (2010). Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO Journal. Wiley-Blackwell. https://doi.org/10.1038/emboj.2010.182' chicago: 'Papusheva, Ekaterina, and Carl-Philipp J Heisenberg. “Spatial Organization of Adhesion: Force-Dependent Regulation and Function in Tissue Morphogenesis.” EMBO Journal. Wiley-Blackwell, 2010. https://doi.org/10.1038/emboj.2010.182.' ieee: 'E. Papusheva and C.-P. J. Heisenberg, “Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis,” EMBO Journal, vol. 29, no. 16. Wiley-Blackwell, pp. 2753–2768, 2010.' ista: 'Papusheva E, Heisenberg C-PJ. 2010. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO Journal. 29(16), 2753–2768.' mla: 'Papusheva, Ekaterina, and Carl-Philipp J. Heisenberg. “Spatial Organization of Adhesion: Force-Dependent Regulation and Function in Tissue Morphogenesis.” EMBO Journal, vol. 29, no. 16, Wiley-Blackwell, 2010, pp. 2753–68, doi:10.1038/emboj.2010.182.' short: E. Papusheva, C.-P.J. Heisenberg, EMBO Journal 29 (2010) 2753–2768. date_created: 2018-12-11T12:07:17Z date_published: 2010-08-18T00:00:00Z date_updated: 2021-01-12T07:54:55Z day: '18' department: - _id: Bio - _id: CaHe doi: 10.1038/emboj.2010.182 external_id: pmid: - '20717145' intvolume: ' 29' issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2924654/ month: '08' oa: 1 oa_version: Submitted Version page: 2753 - 2768 pmid: 1 publication: EMBO Journal publication_status: published publisher: Wiley-Blackwell publist_id: '1962' quality_controlled: '1' scopus_import: 1 status: public title: 'Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2010' ... --- _id: '4187' abstract: - lang: eng text: Cell migration is central to embryonic development, homeostasis and disease(1), processes in which cells move as part of a group or individually. Whereas the mechanisms controlling single-cell migration in vitro are relatively well understood(2-4), less is known about the mechanisms promoting the motility of individual cells in vivo. In particular, it is not clear how cells that form blebs in their migration use those protrusions to bring about movement in the context of the three-dimensional cellular environment(5,6). Here we show that the motility of chemokine-guided germ cells within the zebrafish embryo requires the function of the small Rho GTPases Rac1 and RhoA, as well as E-cadherin-mediated cell-cell adhesion. Using fluorescence resonance energy transfer we demonstrate that Rac1 and RhoA are activated in the cell front. At this location, Rac1 is responsible for the formation of actin-rich structures, and RhoA promotes retrograde actin flow. We propose that these actin-rich structures undergoing retrograde flow are essential for the generation of E-cadherin-mediated traction forces between the germ cells and the surrounding tissue and are therefore crucial for cell motility in vivo. author: - first_name: Elena full_name: Kardash, Elena last_name: Kardash - first_name: Michal full_name: Reichman-Fried, Michal last_name: Reichman Fried - first_name: Jean full_name: Maître, Jean-Léon last_name: Maître - first_name: Bijan full_name: Boldajipour, Bijan last_name: Boldajipour - first_name: Ekaterina full_name: Ekaterina Papusheva id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Esther full_name: Messerschmidt, Esther-Maria last_name: Messerschmidt - first_name: Carl full_name: Heisenberg, Carl-Philipp last_name: Heisenberg - first_name: Erez full_name: Raz, Erez last_name: Raz citation: ama: Kardash E, Reichman Fried M, Maître J, et al. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nature Cell Biology. 2010;12(1):47-53. doi:10.1038/ncb2003 apa: Kardash, E., Reichman Fried, M., Maître, J., Boldajipour, B., Papusheva, E., Messerschmidt, E., … Raz, E. (2010). A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2003 chicago: Kardash, Elena, Michal Reichman Fried, Jean Maître, Bijan Boldajipour, Ekaterina Papusheva, Esther Messerschmidt, Carl Heisenberg, and Erez Raz. “A Role for Rho GTPases and Cell-Cell Adhesion in Single-Cell Motility in Vivo.” Nature Cell Biology. Nature Publishing Group, 2010. https://doi.org/10.1038/ncb2003. ieee: E. Kardash et al., “A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo,” Nature Cell Biology, vol. 12, no. 1. Nature Publishing Group, pp. 47–53, 2010. ista: Kardash E, Reichman Fried M, Maître J, Boldajipour B, Papusheva E, Messerschmidt E, Heisenberg C, Raz E. 2010. A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo. Nature Cell Biology. 12(1), 47–53. mla: Kardash, Elena, et al. “A Role for Rho GTPases and Cell-Cell Adhesion in Single-Cell Motility in Vivo.” Nature Cell Biology, vol. 12, no. 1, Nature Publishing Group, 2010, pp. 47–53, doi:10.1038/ncb2003. short: E. Kardash, M. Reichman Fried, J. Maître, B. Boldajipour, E. Papusheva, E. Messerschmidt, C. Heisenberg, E. Raz, Nature Cell Biology 12 (2010) 47–53. date_created: 2018-12-11T12:07:28Z date_published: 2010-01-01T00:00:00Z date_updated: 2021-01-12T07:55:09Z day: '01' doi: 10.1038/ncb2003 extern: 1 intvolume: ' 12' issue: '1' month: '01' page: 47 - 53 publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '1932' quality_controlled: 0 status: public title: A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo type: journal_article volume: 12 year: '2010' ...