@article{563,
abstract = {In continuous populations with local migration, nearby pairs of individuals have on average more similar genotypes
than geographically well separated pairs. A barrier to gene flow distorts this classical pattern of isolation by distance. Genetic
similarity is decreased for sample pairs on different sides of the barrier and increased for pairs on the same side near the
barrier. Here, we introduce an inference scheme that utilizes this signal to detect and estimate the strength of a linear barrier to
gene flow in two-dimensions. We use a diffusion approximation to model the effects of a barrier on the geographical spread of
ancestry backwards in time. This approach allows us to calculate the chance of recent coalescence and probability of identity
by descent. We introduce an inference scheme that fits these theoretical results to the geographical covariance structure of
bialleleic genetic markers. It can estimate the strength of the barrier as well as several demographic parameters. We investigate
the power of our inference scheme to detect barriers by applying it to a wide range of simulated data. We also showcase an
example application to a Antirrhinum majus (snapdragon) flower color hybrid zone, where we do not detect any signal of a
strong genome wide barrier to gene flow},
author = {Ringbauer, Harald and Kolesnikov, Alexander and Field, David and Barton, Nicholas H},
journal = {Genetics},
number = {3},
pages = {1231--1245},
publisher = {Genetics Society of America},
title = {{Estimating barriers to gene flow from distorted isolation-by-distance patterns}},
doi = {10.1534/genetics.117.300638 },
volume = {208},
year = {2018},
}
@article{33,
abstract = {Secondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of linkage disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index ψ, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of individuals when investigating secondary contact in order to better reflect the complex spatio-temporal evolution of populations and species.},
author = {Bertl, Johanna and Ringbauer, Harald and Blum, Michaël},
journal = {PeerJ},
number = {10},
publisher = {PeerJ Inc },
title = {{Can secondary contact following range expansion be distinguished from barriers to gene flow?}},
doi = {10.7717/peerj.5325},
volume = {2018},
year = {2018},
}
@phdthesis{200,
abstract = {This thesis is concerned with the inference of current population structure based on geo-referenced genetic data. The underlying idea is that population structure affects its spatial genetic structure. Therefore, genotype information can be utilized to estimate important demographic parameters such as migration rates. These indirect estimates of population structure have become very attractive, as genotype data is now widely available. However, there also has been much concern about these approaches. Importantly, genetic structure can be influenced by many complex patterns, which often cannot be disentangled. Moreover, many methods merely fit heuristic patterns of genetic structure, and do not build upon population genetics theory. Here, I describe two novel inference methods that address these shortcomings. In Chapter 2, I introduce an inference scheme based on a new type of signal, identity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks of genome shared between pairs of samples. These blocks are direct traces of recent coalescence events. As such, they contain ample signal for inferring recent demography. I examine sharing of IBD blocks in two-dimensional populations with local migration. Using a diffusion approximation, I derive formulas for an isolation by distance pattern of long IBD blocks and show that sharing of long IBD blocks approaches rapid exponential decay for growing sample distance. I describe an inference scheme based on these results. It can robustly estimate the dispersal rate and population density, which is demonstrated on simulated data. I also show an application to estimate mean migration and the rate of recent population growth within Eastern Europe. Chapter 3 is about a novel method to estimate barriers to gene flow in a two dimensional population. This inference scheme utilizes geographically localized allele frequency fluctuations - a classical isolation by distance signal. The strength of these local fluctuations increases on average next to a barrier, and there is less correlation across it. I again use a framework of diffusion of ancestral lineages to model this effect, and provide an efficient numerical implementation to fit the results to geo-referenced biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to gene flow, as tests on simulated data confirm.},
author = {Ringbauer, Harald},
pages = {146},
publisher = {IST Austria},
title = {{Inferring recent demography from spatial genetic structure}},
doi = {10.15479/AT:ISTA:th_963},
year = {2018},
}
@article{1074,
abstract = {Recently it has become feasible to detect long blocks of nearly identical sequence shared between pairs of genomes. These IBD blocks are direct traces of recent coalescence events and, as such, contain ample signal to infer recent demography. Here, we examine sharing of such blocks in two-dimensional populations with local migration. Using a diffusion approximation to trace genetic ancestry, we derive analytical formulae for patterns of isolation by distance of IBD blocks, which can also incorporate recent population density changes. We introduce an inference scheme that uses a composite likelihood approach to fit these formulae. We then extensively evaluate our theory and inference method on a range of scenarios using simulated data. We first validate the diffusion approximation by showing that the theoretical results closely match the simulated block sharing patterns. We then demonstrate that our inference scheme can accurately and robustly infer dispersal rate and effective density, as well as bounds on recent dynamics of population density. To demonstrate an application, we use our estimation scheme to explore the fit of a diffusion model to Eastern European samples in the POPRES data set. We show that ancestry diffusing with a rate of σ ≈ 50–100 km/√gen during the last centuries, combined with accelerating population growth, can explain the observed exponential decay of block sharing with increasing pairwise sample distance.},
author = {Ringbauer, Harald and Coop, Graham and Barton, Nicholas H},
issn = {00166731},
journal = {Genetics},
number = {3},
pages = {1335 -- 1351},
publisher = {Genetics Society of America},
title = {{Inferring recent demography from isolation by distance of long shared sequence blocks}},
doi = {10.1534/genetics.116.196220},
volume = {205},
year = {2017},
}