--- _id: '6897' abstract: - lang: eng text: The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: "We thank Jiri Friml and Phillip Brewer for inspiring discussion and for help in preparing the manuscript. This research was supported by the Scientific Service Units (SSU) of IST-Austria through resources provided by the Bioimaging Facility\r\n(BIF), the Life Science Facility (LSF).\r\nThis work was supported by grants from the European Research Council (Starting Independent Research Grant ERC-2007-Stg- 207362-HCPO to E.B.). J.P. and M.S. received funds from European Regional Development Fund-Project ‘Centre for Experimental Plant Biology’ (No. CZ.02.1.01/0.0/0.0/16_019/0000738)." article_number: dev175919 article_processing_charge: No article_type: original author: - first_name: Qiang full_name: Zhu, Qiang id: 40A4B9E6-F248-11E8-B48F-1D18A9856A87 last_name: Zhu - first_name: Marçal full_name: Gallemi, Marçal id: 460C6802-F248-11E8-B48F-1D18A9856A87 last_name: Gallemi orcid: 0000-0003-4675-6893 - first_name: Jiří full_name: Pospíšil, Jiří last_name: Pospíšil - first_name: Petra full_name: Žádníková, Petra last_name: Žádníková - first_name: Miroslav full_name: Strnad, Miroslav last_name: Strnad - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Zhu Q, Gallemi M, Pospíšil J, Žádníková P, Strnad M, Benková E. Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development. 2019;146(17). doi:10.1242/dev.175919 apa: Zhu, Q., Gallemi, M., Pospíšil, J., Žádníková, P., Strnad, M., & Benková, E. (2019). Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development. The Company of Biologists. https://doi.org/10.1242/dev.175919 chicago: Zhu, Qiang, Marçal Gallemi, Jiří Pospíšil, Petra Žádníková, Miroslav Strnad, and Eva Benková. “Root Gravity Response Module Guides Differential Growth Determining Both Root Bending and Apical Hook Formation in Arabidopsis.” Development. The Company of Biologists, 2019. https://doi.org/10.1242/dev.175919. ieee: Q. Zhu, M. Gallemi, J. Pospíšil, P. Žádníková, M. Strnad, and E. Benková, “Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis,” Development, vol. 146, no. 17. The Company of Biologists, 2019. ista: Zhu Q, Gallemi M, Pospíšil J, Žádníková P, Strnad M, Benková E. 2019. Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis. Development. 146(17), dev175919. mla: Zhu, Qiang, et al. “Root Gravity Response Module Guides Differential Growth Determining Both Root Bending and Apical Hook Formation in Arabidopsis.” Development, vol. 146, no. 17, dev175919, The Company of Biologists, 2019, doi:10.1242/dev.175919. short: Q. Zhu, M. Gallemi, J. Pospíšil, P. Žádníková, M. Strnad, E. Benková, Development 146 (2019). date_created: 2019-09-22T22:00:36Z date_published: 2019-09-12T00:00:00Z date_updated: 2023-08-30T06:19:04Z day: '12' department: - _id: EvBe doi: 10.1242/dev.175919 ec_funded: 1 external_id: isi: - '000486297400011' pmid: - '31391194' intvolume: ' 146' isi: 1 issue: '17' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1242/dev.175919 month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 253FCA6A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '207362' name: Hormonal cross-talk in plant organogenesis publication: Development publication_identifier: eissn: - '14779129' publication_status: published publisher: The Company of Biologists quality_controlled: '1' scopus_import: '1' status: public title: Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 146 year: '2019' ... --- _id: '1210' abstract: - lang: eng text: Mechanisms for cell protection are essential for survival of multicellular organisms. In plants, the apical hook, which is transiently formed in darkness when the germinating seedling penetrates towards the soil surface, plays such protective role and shields the vitally important shoot apical meristem and cotyledons from damage. The apical hook is formed by bending of the upper hypocotyl soon after germination, and it is maintained in a closed stage while the hypocotyl continues to penetrate through the soil and rapidly opens when exposed to light in proximity of the soil surface. To uncover the complex molecular network orchestrating this spatiotemporally tightly coordinated process, monitoring of the apical hook development in real time is indispensable. Here we describe an imaging platform that enables high-resolution kinetic analysis of this dynamic developmental process. © Springer Science+Business Media New York 2017. acknowledgement: "We thank Herman \r\nHöfte \r\n, Todor Asenov, Robert Hauschield, and \r\nMarcal Gallemi for help with the establishment of the real-time \ \r\nimaging platform and technical support. This work was supported \r\nby the Czech Science Foundation (GA13-39982S) to Eva Benková. \r\nDominique Van Der \ Straeten acknowledges the Research \r\nFoundation Flanders for fi\r\n \ nancial support (G.0656.13N). Dajo \r\nSmet holds a PhD fellowship of the Research Foundation Flanders. " alternative_title: - Methods in Molecular Biology author: - first_name: Qiang full_name: Zhu, Qiang id: 40A4B9E6-F248-11E8-B48F-1D18A9856A87 last_name: Zhu - first_name: Petra full_name: Žádníková, Petra last_name: Žádníková - first_name: Dajo full_name: Smet, Dajo last_name: Smet - first_name: Dominique full_name: Van Der Straeten, Dominique last_name: Van Der Straeten - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: 'Zhu Q, Žádníková P, Smet D, Van Der Straeten D, Benková E. Real time analysis of the apical hook development. In: Plant Hormones. Vol 1497. Humana Press; 2016:1-8. doi:10.1007/978-1-4939-6469-7_1' apa: Zhu, Q., Žádníková, P., Smet, D., Van Der Straeten, D., & Benková, E. (2016). Real time analysis of the apical hook development. In Plant Hormones (Vol. 1497, pp. 1–8). Humana Press. https://doi.org/10.1007/978-1-4939-6469-7_1 chicago: Zhu, Qiang, Petra Žádníková, Dajo Smet, Dominique Van Der Straeten, and Eva Benková. “Real Time Analysis of the Apical Hook Development.” In Plant Hormones, 1497:1–8. Humana Press, 2016. https://doi.org/10.1007/978-1-4939-6469-7_1. ieee: Q. Zhu, P. Žádníková, D. Smet, D. Van Der Straeten, and E. Benková, “Real time analysis of the apical hook development,” in Plant Hormones, vol. 1497, Humana Press, 2016, pp. 1–8. ista: 'Zhu Q, Žádníková P, Smet D, Van Der Straeten D, Benková E. 2016.Real time analysis of the apical hook development. In: Plant Hormones. Methods in Molecular Biology, vol. 1497, 1–8.' mla: Zhu, Qiang, et al. “Real Time Analysis of the Apical Hook Development.” Plant Hormones, vol. 1497, Humana Press, 2016, pp. 1–8, doi:10.1007/978-1-4939-6469-7_1. short: Q. Zhu, P. Žádníková, D. Smet, D. Van Der Straeten, E. Benková, in:, Plant Hormones, Humana Press, 2016, pp. 1–8. date_created: 2018-12-11T11:50:44Z date_published: 2016-11-19T00:00:00Z date_updated: 2021-01-12T06:49:07Z day: '19' department: - _id: EvBe doi: 10.1007/978-1-4939-6469-7_1 intvolume: ' 1497' language: - iso: eng month: '11' oa_version: None page: 1 - 8 publication: Plant Hormones publication_status: published publisher: Humana Press publist_id: '6135' quality_controlled: '1' scopus_import: 1 status: public title: Real time analysis of the apical hook development type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 1497 year: '2016' ... --- _id: '1283' abstract: - lang: eng text: The impact of the plant hormone ethylene on seedling development has long been recognized; however, its ecophysiological relevance is unexplored. Three recent studies demonstrate that ethylene is a critical endogenous integrator of various environmental signals including mechanical stress, light, and oxygen availability during seedling germination and growth through the soil. acknowledgement: "This work was supported by the Austrian Science Fund (FWF01_I1774S) to E.B., the Natural Science Foundation of Fujian Province (2016J01099), and the Fujian–Taiwan Joint Innovative Center for Germplasm Resources and Cultivation of Crops (FJ 2011 Program, No 2015-75) to Q.Z. The\r\nauthors\r\nthank\r\nIsrael\r\nAusin\r\nand\r\nXu\r\nChen\r\nfor\r\ncritical\r\nreading\r\nof\r\nthe\r\nmanuscript." article_type: original author: - first_name: Qiang full_name: Zhu, Qiang id: 40A4B9E6-F248-11E8-B48F-1D18A9856A87 last_name: Zhu - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Zhu Q, Benková E. Seedlings’ strategy to overcome a soil barrier. Trends in Plant Science. 2016;21(10):809-811. doi:10.1016/j.tplants.2016.08.003 apa: Zhu, Q., & Benková, E. (2016). Seedlings’ strategy to overcome a soil barrier. Trends in Plant Science. Cell Press. https://doi.org/10.1016/j.tplants.2016.08.003 chicago: Zhu, Qiang, and Eva Benková. “Seedlings’ Strategy to Overcome a Soil Barrier.” Trends in Plant Science. Cell Press, 2016. https://doi.org/10.1016/j.tplants.2016.08.003. ieee: Q. Zhu and E. Benková, “Seedlings’ strategy to overcome a soil barrier,” Trends in Plant Science, vol. 21, no. 10. Cell Press, pp. 809–811, 2016. ista: Zhu Q, Benková E. 2016. Seedlings’ strategy to overcome a soil barrier. Trends in Plant Science. 21(10), 809–811. mla: Zhu, Qiang, and Eva Benková. “Seedlings’ Strategy to Overcome a Soil Barrier.” Trends in Plant Science, vol. 21, no. 10, Cell Press, 2016, pp. 809–11, doi:10.1016/j.tplants.2016.08.003. short: Q. Zhu, E. Benková, Trends in Plant Science 21 (2016) 809–811. date_created: 2018-12-11T11:51:08Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:49:36Z day: '01' ddc: - '575' department: - _id: EvBe doi: 10.1016/j.tplants.2016.08.003 file: - access_level: local checksum: 4d569977fad7a7f22b7e3424003d2ab1 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:19Z date_updated: 2020-07-14T12:44:42Z file_id: '4679' file_name: IST-2018-1018-v1+1_Zhu_and_Benkova_TIPS_2016.pdf file_size: 229094 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 21' issue: '10' language: - iso: eng month: '10' oa_version: Submitted Version page: 809 - 811 project: - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development publication: Trends in Plant Science publication_status: published publisher: Cell Press publist_id: '6033' pubrep_id: '1018' quality_controlled: '1' scopus_import: 1 status: public title: Seedlings’ strategy to overcome a soil barrier tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 21 year: '2016' ... --- _id: '1593' abstract: - lang: eng text: 'Plants are sessile organisms that are permanently restricted to their site of germination. To compensate for their lack of mobility, plants evolved unique mechanisms enabling them to rapidly react to ever changing environmental conditions and flexibly adapt their postembryonic developmental program. A prominent demonstration of this developmental plasticity is their ability to bend organs in order to reach the position most optimal for growth and utilization of light, nutrients, and other resources. Shortly after germination, dicotyledonous seedlings form a bended structure, the so-called apical hook, to protect the delicate shoot meristem and cotyledons from damage when penetrating through the soil. Upon perception of a light stimulus, the apical hook rapidly opens and the photomorphogenic developmental program is activated. After germination, plant organs are able to align their growth with the light source and adopt the most favorable orientation through bending, in a process named phototropism. On the other hand, when roots and shoots are diverted from their upright orientation, they immediately detect a change in the gravity vector and bend to maintain a vertical growth direction. Noteworthy, despite the diversity of external stimuli perceived by different plant organs, all plant tropic movements share a common mechanistic basis: differential cell growth. In our review, we will discuss the molecular principles underlying various tropic responses with the focus on mechanisms mediating the perception of external signals, transduction cascades and downstream responses that regulate differential cell growth and consequently, organ bending. In particular, we highlight common and specific features of regulatory pathways in control of the bending of organs and a role for the plant hormone auxin as a key regulatory component.' author: - first_name: Petra full_name: Žádníková, Petra last_name: Žádníková - first_name: Dajo full_name: Smet, Dajo last_name: Smet - first_name: Qiang full_name: Zhu, Qiang id: 40A4B9E6-F248-11E8-B48F-1D18A9856A87 last_name: Zhu - first_name: Dominique full_name: Van Der Straeten, Dominique last_name: Van Der Straeten - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: 'Žádníková P, Smet D, Zhu Q, Van Der Straeten D, Benková E. Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Frontiers in Plant Science. 2015;6(4). doi:10.3389/fpls.2015.00218' apa: 'Žádníková, P., Smet, D., Zhu, Q., Van Der Straeten, D., & Benková, E. (2015). Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Frontiers in Plant Science. Frontiers Research Foundation. https://doi.org/10.3389/fpls.2015.00218' chicago: 'Žádníková, Petra, Dajo Smet, Qiang Zhu, Dominique Van Der Straeten, and Eva Benková. “Strategies of Seedlings to Overcome Their Sessile Nature: Auxin in Mobility Control.” Frontiers in Plant Science. Frontiers Research Foundation, 2015. https://doi.org/10.3389/fpls.2015.00218.' ieee: 'P. Žádníková, D. Smet, Q. Zhu, D. Van Der Straeten, and E. Benková, “Strategies of seedlings to overcome their sessile nature: Auxin in mobility control,” Frontiers in Plant Science, vol. 6, no. 4. Frontiers Research Foundation, 2015.' ista: 'Žádníková P, Smet D, Zhu Q, Van Der Straeten D, Benková E. 2015. Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Frontiers in Plant Science. 6(4).' mla: 'Žádníková, Petra, et al. “Strategies of Seedlings to Overcome Their Sessile Nature: Auxin in Mobility Control.” Frontiers in Plant Science, vol. 6, no. 4, Frontiers Research Foundation, 2015, doi:10.3389/fpls.2015.00218.' short: P. Žádníková, D. Smet, Q. Zhu, D. Van Der Straeten, E. Benková, Frontiers in Plant Science 6 (2015). date_created: 2018-12-11T11:52:55Z date_published: 2015-04-14T00:00:00Z date_updated: 2021-01-12T06:51:50Z day: '14' ddc: - '570' department: - _id: EvBe doi: 10.3389/fpls.2015.00218 ec_funded: 1 file: - access_level: open_access checksum: c454d642e18dfa86820b97a86cd6d3cc content_type: application/pdf creator: system date_created: 2018-12-12T10:15:23Z date_updated: 2020-07-14T12:45:03Z file_id: '5142' file_name: IST-2016-471-v1+1_fpls-06-00218.pdf file_size: 965690 relation: main_file file_date_updated: 2020-07-14T12:45:03Z has_accepted_license: '1' intvolume: ' 6' issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 253FCA6A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '207362' name: Hormonal cross-talk in plant organogenesis publication: Frontiers in Plant Science publication_status: published publisher: Frontiers Research Foundation publist_id: '5578' pubrep_id: '471' quality_controlled: '1' scopus_import: 1 status: public title: 'Strategies of seedlings to overcome their sessile nature: Auxin in mobility control' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ...