TY - JOUR
AB - For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6185
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cusp universality for random matrices I: Local law and the complex Hermitian case
VL - 378
ER -
TY - JOUR
AB - We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6184
IS - 2
JF - Annals of Probability
TI - Correlated random matrices: Band rigidity and edge universality
VL - 48
ER -
TY - JOUR
AB - We consider large non-Hermitian real or complex random matrices X with independent, identically distributed centred entries. We prove that their local eigenvalue statistics near the spectral edge, the unit circle, coincide with those of the Ginibre ensemble, i.e. when the matrix elements of X are Gaussian. This result is the non-Hermitian counterpart of the universality of the Tracy–Widom distribution at the spectral edges of the Wigner ensemble.
AU - Cipolloni, Giorgio
AU - Erdös, László
AU - Schröder, Dominik J
ID - 8601
JF - Probability Theory and Related Fields
SN - 01788051
TI - Edge universality for non-Hermitian random matrices
ER -
TY - JOUR
AB - We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of Ajanki et al. [‘Stability of the matrix Dyson equation and random matrices with correlations’, Probab. Theory Related Fields 173(1–2) (2019), 293–373] to allow slow correlation decay and arbitrary expectation. The main novel tool is
a systematic diagrammatic control of a multivariate cumulant expansion.
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6182
JF - Forum of Mathematics, Sigma
TI - Random matrices with slow correlation decay
VL - 7
ER -
TY - THES
AB - In the first part of this thesis we consider large random matrices with arbitrary expectation and a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent in the bulk and edge regime. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.
In the second part we consider Wigner-type matrices and show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are uni- versal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner- Dyson-Mehta universality conjecture for the last remaining universality type. Our analysis holds not only for exact cusps, but approximate cusps as well, where an ex- tended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp, and extend the fast relaxation to equilibrium of the Dyson Brow- nian motion to the cusp regime.
In the third and final part we explore the entrywise linear statistics of Wigner ma- trices and identify the fluctuations for a large class of test functions with little regularity. This enables us to study the rectangular Young diagram obtained from the interlacing eigenvalues of the random matrix and its minor, and we find that, despite having the same limit, the fluctuations differ from those of the algebraic Young tableaux equipped with the Plancharel measure.
AU - Schröder, Dominik J
ID - 6179
TI - From Dyson to Pearcey: Universal statistics in random matrix theory
ER -
TY - JOUR
AB - We prove that the local eigenvalue statistics of real symmetric Wigner-type
matrices near the cusp points of the eigenvalue density are universal. Together
with the companion paper [arXiv:1809.03971], which proves the same result for
the complex Hermitian symmetry class, this completes the last remaining case of
the Wigner-Dyson-Mehta universality conjecture after bulk and edge
universalities have been established in the last years. We extend the recent
Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp
regime using the optimal local law from [arXiv:1809.03971] and the accurate
local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752].
We also present a PDE-based method to improve the estimate on eigenvalue
rigidity via the maximum principle of the heat flow related to the Dyson
Brownian motion.
AU - Cipolloni, Giorgio
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6186
IS - 4
JF - Pure and Applied Analysis
SN - 2578-5893
TI - Cusp universality for random matrices, II: The real symmetric case
VL - 1
ER -
TY - JOUR
AB - We prove a new central limit theorem (CLT) for the difference of linear eigenvalue statistics of a Wigner random matrix H and its minor H and find that the fluctuation is much smaller than the fluctuations of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of H and H. In particular, our theorem identifies the fluctuation of Kerov's rectangular Young diagrams, defined by the interlacing eigenvalues ofH and H, around their asymptotic shape, the Vershik'Kerov'Logan'Shepp curve. Young diagrams equipped with the Plancherel measure follow the same limiting shape. For this, algebraically motivated, ensemble a CLT has been obtained in Ivanov and Olshanski [20] which is structurally similar to our result but the variance is different, indicating that the analogy between the two models has its limitations. Moreover, our theorem shows that Borodin's result [7] on the convergence of the spectral distribution of Wigner matrices to a Gaussian free field also holds in derivative sense.
AU - Erdös, László
AU - Schröder, Dominik J
ID - 1012
IS - 10
JF - International Mathematics Research Notices
SN - 10737928
TI - Fluctuations of rectangular young diagrams of interlacing wigner eigenvalues
VL - 2018
ER -
TY - JOUR
AB - We show that matrix elements of functions of N × N Wigner matrices fluctuate on a scale of order N−1/2 and we identify the limiting fluctuation. Our result holds for any function f of the matrix that has bounded variation thus considerably relaxing the regularity requirement imposed in [7, 11].
AU - Erdös, László
AU - Schröder, Dominik J
ID - 1144
JF - Electronic Communications in Probability
TI - Fluctuations of functions of Wigner matrices
VL - 21
ER -