--- _id: '14478' abstract: - lang: eng text: Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungusMetarhizium robertsiiduring experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome – but no other – was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment betweenM. robertsiiand another congeneric insect pathogen,M. guizhouense. Hence horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The transferred accessory chromosome contains genes that might be involved in its preferential horizontal transfer, encoding putative histones and histone-modifying enzymes, but also putative virulence factors that may support its establishment. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.Significance StatementThe enormous success of bacterial pathogens has been attributed to their ability to exchange genetic material between one another. Similarly, in eukaryotes, horizontal transfer of genetic material allowed the spread of virulence factors across species. The horizontal transfer of whole chromosomes could be an important pathway for such exchange of genetic material, but little is known about the origin of transferable chromosomes and how frequently they are exchanged. Here, we show that the transfer of accessory chromosomes - chromosomes that are non-essential but may provide fitness benefits - is common during fungal co-infections and is even possible between distant pathogenic species, highlighting the importance of horizontal gene transfer via chromosome transfer also for the evolution and function of eukaryotic pathogens. acknowledgement: We thank Bernhardt Steinwender, Jorgen Eilenberg, and Nicolai V. Meyling for the fungal strains. We further thank Chengshu Wang for providing the short sequencing reads for M. guizhouense ARESF977 he used for his published genome assembly, and Kristian Ullrich for help in the bioinformatics analysis for methylation pattern in Nanopore reads, and the VBC and the Max Planck Society for the use of their sequencing centers. We thank Barbara Milutinović and Hinrich Schulenburg for discussion, and Tal Dagan and Jens Rolff for comments on a previous version of the manuscript. Fig. 1A was created with BioRender.com. This study received funding by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (No. 771402; EPIDEMICSonCHIP) to S.C. and by the German Research Foundation (DFG grant HA9263/1-1) to M.H. article_number: e2316284121 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Michael full_name: Habig, Michael last_name: Habig - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Judith full_name: Müller, Judith last_name: Müller - first_name: Eva H. full_name: Stukenbrock, Eva H. last_name: Stukenbrock - first_name: Hanna full_name: Leitner, Hanna id: 8fc5c6f6-5903-11ec-abad-c83f046253e7 last_name: Leitner - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(11). doi:10.1073/pnas.2316284121 apa: Habig, M., Grasse, A. V., Müller, J., Stukenbrock, E. H., Leitner, H., & Cremer, S. (2024). Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2316284121 chicago: Habig, Michael, Anna V Grasse, Judith Müller, Eva H. Stukenbrock, Hanna Leitner, and Sylvia Cremer. “Frequent Horizontal Chromosome Transfer between Asexual Fungal Insect Pathogens.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2316284121. ieee: M. Habig, A. V. Grasse, J. Müller, E. H. Stukenbrock, H. Leitner, and S. Cremer, “Frequent horizontal chromosome transfer between asexual fungal insect pathogens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11. Proceedings of the National Academy of Sciences, 2024. ista: Habig M, Grasse AV, Müller J, Stukenbrock EH, Leitner H, Cremer S. 2024. Frequent horizontal chromosome transfer between asexual fungal insect pathogens. Proceedings of the National Academy of Sciences of the United States of America. 121(11), e2316284121. mla: Habig, Michael, et al. “Frequent Horizontal Chromosome Transfer between Asexual Fungal Insect Pathogens.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11, e2316284121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2316284121. short: M. Habig, A.V. Grasse, J. Müller, E.H. Stukenbrock, H. Leitner, S. Cremer, Proceedings of the National Academy of Sciences of the United States of America 121 (2024). date_created: 2023-10-31T13:30:00Z date_published: 2024-03-12T00:00:00Z date_updated: 2024-03-19T09:07:20Z day: '12' ddc: - '570' department: - _id: SyCr doi: 10.1073/pnas.2316284121 ec_funded: 1 external_id: pmid: - '38442176' file: - access_level: open_access checksum: f5e871db617b682edc71fcd08670dc81 content_type: application/pdf creator: dernst date_created: 2024-03-19T09:02:57Z date_updated: 2024-03-19T09:02:57Z file_id: '15124' file_name: 2024_PNAS_Habig.pdf file_size: 5750361 relation: main_file success: 1 file_date_updated: 2024-03-19T09:02:57Z has_accepted_license: '1' intvolume: ' 121' issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Frequent horizontal chromosome transfer between asexual fungal insect pathogens tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2024' ... --- _id: '12469' abstract: - lang: eng text: 'Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management.' acknowledgement: "We thank D.J. Obbard for sharing the details of the dual RNA-seq/sRNA-seq approach, S.\r\nMetzler and R. Ferrigato for the photographs (Figure 1), M. Konrad, B. Casillas-Perez, C.D.\r\nPull and X. Espadaler for help with ant collection, and the Social Immunity Team at IST\r\nAustria, in particular J. Robb, A. Franschitz, E. Naderlinger, E. Dawson and B. Casillas-Perez\r\nfor support and comments on the manuscript. The study was funded by the Austrian Science\r\nFund (FWF; M02076-B25 to MAF) and the Academy of Finland (343022 to LV). " article_number: '1119002' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Lumi full_name: Viljakainen, Lumi last_name: Viljakainen - first_name: Matthias full_name: Fürst, Matthias id: 393B1196-F248-11E8-B48F-1D18A9856A87 last_name: Fürst orcid: 0000-0002-3712-925X - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Jaana full_name: Jurvansuu, Jaana last_name: Jurvansuu - first_name: Jinook full_name: Oh, Jinook id: 403169A4-080F-11EA-9993-BF3F3DDC885E last_name: Oh orcid: 0000-0001-7425-2372 - first_name: Lassi full_name: Tolonen, Lassi last_name: Tolonen - first_name: Thomas full_name: Eder, Thomas last_name: Eder - first_name: Thomas full_name: Rattei, Thomas last_name: Rattei - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Viljakainen L, Fürst M, Grasse AV, et al. Antiviral immune response reveals host-specific virus infections in natural ant populations. Frontiers in Microbiology. 2023;14. doi:10.3389/fmicb.2023.1119002 apa: Viljakainen, L., Fürst, M., Grasse, A. V., Jurvansuu, J., Oh, J., Tolonen, L., … Cremer, S. (2023). Antiviral immune response reveals host-specific virus infections in natural ant populations. Frontiers in Microbiology. Frontiers. https://doi.org/10.3389/fmicb.2023.1119002 chicago: Viljakainen, Lumi, Matthias Fürst, Anna V Grasse, Jaana Jurvansuu, Jinook Oh, Lassi Tolonen, Thomas Eder, Thomas Rattei, and Sylvia Cremer. “Antiviral Immune Response Reveals Host-Specific Virus Infections in Natural Ant Populations.” Frontiers in Microbiology. Frontiers, 2023. https://doi.org/10.3389/fmicb.2023.1119002. ieee: L. Viljakainen et al., “Antiviral immune response reveals host-specific virus infections in natural ant populations,” Frontiers in Microbiology, vol. 14. Frontiers, 2023. ista: Viljakainen L, Fürst M, Grasse AV, Jurvansuu J, Oh J, Tolonen L, Eder T, Rattei T, Cremer S. 2023. Antiviral immune response reveals host-specific virus infections in natural ant populations. Frontiers in Microbiology. 14, 1119002. mla: Viljakainen, Lumi, et al. “Antiviral Immune Response Reveals Host-Specific Virus Infections in Natural Ant Populations.” Frontiers in Microbiology, vol. 14, 1119002, Frontiers, 2023, doi:10.3389/fmicb.2023.1119002. short: L. Viljakainen, M. Fürst, A.V. Grasse, J. Jurvansuu, J. Oh, L. Tolonen, T. Eder, T. Rattei, S. Cremer, Frontiers in Microbiology 14 (2023). date_created: 2023-01-31T08:13:40Z date_published: 2023-03-16T00:00:00Z date_updated: 2023-08-01T12:39:58Z day: '16' ddc: - '570' department: - _id: SyCr doi: 10.3389/fmicb.2023.1119002 external_id: isi: - '000961542100001' pmid: - 'PPR559293 ' file: - access_level: open_access checksum: cd52292963acce1111634d9fac08c699 content_type: application/pdf creator: dernst date_created: 2023-04-17T07:49:09Z date_updated: 2023-04-17T07:49:09Z file_id: '12843' file_name: 2023_FrontMicrobiology_Viljakainen.pdf file_size: 4866332 relation: main_file success: 1 file_date_updated: 2023-04-17T07:49:09Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25DF61D8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02076 name: Viral pathogens and social immunity in ants publication: Frontiers in Microbiology publication_identifier: eissn: - 1664-302X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Antiviral immune response reveals host-specific virus infections in natural ant populations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '13127' abstract: - lang: eng text: Cooperative disease defense emerges as group-level collective behavior, yet how group members make the underlying individual decisions is poorly understood. Using garden ants and fungal pathogens as an experimental model, we derive the rules governing individual ant grooming choices and show how they produce colony-level hygiene. Time-resolved behavioral analysis, pathogen quantification, and probabilistic modeling reveal that ants increase grooming and preferentially target highly-infectious individuals when perceiving high pathogen load, but transiently suppress grooming after having been groomed by nestmates. Ants thus react to both, the infectivity of others and the social feedback they receive on their own contagiousness. While inferred solely from momentary ant decisions, these behavioral rules quantitatively predict hour-long experimental dynamics, and synergistically combine into efficient colony-wide pathogen removal. Our analyses show that noisy individual decisions based on only local, incomplete, yet dynamically-updated information on pathogen threat and social feedback can lead to potent collective disease defense. acknowledged_ssus: - _id: LifeSc acknowledgement: We thank Mike Bidochka for the fungal strains, the ISTA Social Immunity Team for ant collection, Hanna Leitner for experimental and molecular support, Jennifer Robb and Lukas Lindorfer for microscopy, and the LabSupport Facility at ISTA for general laboratory support. We further thank Victor Mireles, Iain Couzin, Fabian Theis and the Social Immunity Team for continued feedback throughout, and Michael Sixt, Yuko Ulrich, Koos Boomsma, Erika Dawson, Megan Kutzer and Hinrich Schulenburg for comments on the manuscript. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant No. 771402; EPIDEMICSonCHIP) to SC, from the Scientific Grant Agency of the Slovak Republic (Grant No. 1/0521/20) to KB, and the Human Frontier Science Program (Grant No. RGP0065/2012) to GT. article_number: '3232' article_processing_charge: Yes article_type: original author: - first_name: Barbara E full_name: Casillas Perez, Barbara E id: 351ED2AA-F248-11E8-B48F-1D18A9856A87 last_name: Casillas Perez - first_name: Katarína full_name: Bod'Ová, Katarína id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bod'Ová orcid: 0000-0002-7214-0171 - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Casillas Perez BE, Bodova K, Grasse AV, Tkačik G, Cremer S. Dynamic pathogen detection and social feedback shape collective hygiene in ants. Nature Communications. 2023;14. doi:10.1038/s41467-023-38947-y apa: Casillas Perez, B. E., Bodova, K., Grasse, A. V., Tkačik, G., & Cremer, S. (2023). Dynamic pathogen detection and social feedback shape collective hygiene in ants. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38947-y chicago: Casillas Perez, Barbara E, Katarina Bodova, Anna V Grasse, Gašper Tkačik, and Sylvia Cremer. “Dynamic Pathogen Detection and Social Feedback Shape Collective Hygiene in Ants.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38947-y. ieee: B. E. Casillas Perez, K. Bodova, A. V. Grasse, G. Tkačik, and S. Cremer, “Dynamic pathogen detection and social feedback shape collective hygiene in ants,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Casillas Perez BE, Bodova K, Grasse AV, Tkačik G, Cremer S. 2023. Dynamic pathogen detection and social feedback shape collective hygiene in ants. Nature Communications. 14, 3232. mla: Casillas Perez, Barbara E., et al. “Dynamic Pathogen Detection and Social Feedback Shape Collective Hygiene in Ants.” Nature Communications, vol. 14, 3232, Springer Nature, 2023, doi:10.1038/s41467-023-38947-y. short: B.E. Casillas Perez, K. Bodova, A.V. Grasse, G. Tkačik, S. Cremer, Nature Communications 14 (2023). date_created: 2023-06-11T22:00:40Z date_published: 2023-06-03T00:00:00Z date_updated: 2023-08-07T13:09:09Z day: '03' ddc: - '570' department: - _id: SyCr - _id: GaTk doi: 10.1038/s41467-023-38947-y ec_funded: 1 external_id: isi: - '001002562700005' pmid: - '37270641' file: - access_level: open_access checksum: 4af0393e3ed47b3fc46e68b81c3c1007 content_type: application/pdf creator: dernst date_created: 2023-06-13T08:05:46Z date_updated: 2023-06-13T08:05:46Z file_id: '13132' file_name: 2023_NatureComm_CasillasPerez.pdf file_size: 2358167 relation: main_file success: 1 file_date_updated: 2023-06-13T08:05:46Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip - _id: 255008E4-B435-11E9-9278-68D0E5697425 grant_number: RGP0065/2012 name: Information processing and computation in fish groups publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12945' relation: research_data status: public scopus_import: '1' status: public title: Dynamic pathogen detection and social feedback shape collective hygiene in ants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '12543' abstract: - lang: eng text: Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts. acknowledged_ssus: - _id: LifeSc acknowledgement: We thank B. M. Steinwender, N. V. Meyling and J. Eilenberg for the fungal strains; J. Anaya-Rojas for statistical advice; the Social Immunity team at ISTA for ant collection and experimental help, in particular H. Leitner, and the ISTA Lab Support Facility for general laboratory support; D. Ebert, H. Schulenburg and J. Heinze for continued project discussion; and M. Sixt, R. Roemhild and the Social Immunity team for comments on the manuscript. The study was funded by the German Research Foundation (CR118/3-1) within the Framework of the Priority Program SPP 1399, and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (No. 771402; EPIDEMICSonCHIP), both to S.C. article_processing_charge: No article_type: original author: - first_name: Miriam full_name: Stock, Miriam id: 42462816-F248-11E8-B48F-1D18A9856A87 last_name: Stock - first_name: Barbara full_name: Milutinovic, Barbara id: 2CDC32B8-F248-11E8-B48F-1D18A9856A87 last_name: Milutinovic orcid: 0000-0002-8214-4758 - first_name: Michaela full_name: Hönigsberger, Michaela id: 953894f3-25bd-11ec-8556-f70a9d38ef60 last_name: Hönigsberger - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Florian full_name: Wiesenhofer, Florian id: 39523C54-F248-11E8-B48F-1D18A9856A87 last_name: Wiesenhofer - first_name: Niklas full_name: Kampleitner, Niklas id: 2AC57FAC-F248-11E8-B48F-1D18A9856A87 last_name: Kampleitner - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Thomas full_name: Schmitt, Thomas last_name: Schmitt - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Stock M, Milutinovic B, Hönigsberger M, et al. Pathogen evasion of social immunity. Nature Ecology and Evolution. 2023;7:450-460. doi:10.1038/s41559-023-01981-6 apa: Stock, M., Milutinovic, B., Hönigsberger, M., Grasse, A. V., Wiesenhofer, F., Kampleitner, N., … Cremer, S. (2023). Pathogen evasion of social immunity. Nature Ecology and Evolution. Springer Nature. https://doi.org/10.1038/s41559-023-01981-6 chicago: Stock, Miriam, Barbara Milutinovic, Michaela Hönigsberger, Anna V Grasse, Florian Wiesenhofer, Niklas Kampleitner, Madhumitha Narasimhan, Thomas Schmitt, and Sylvia Cremer. “Pathogen Evasion of Social Immunity.” Nature Ecology and Evolution. Springer Nature, 2023. https://doi.org/10.1038/s41559-023-01981-6. ieee: M. Stock et al., “Pathogen evasion of social immunity,” Nature Ecology and Evolution, vol. 7. Springer Nature, pp. 450–460, 2023. ista: Stock M, Milutinovic B, Hönigsberger M, Grasse AV, Wiesenhofer F, Kampleitner N, Narasimhan M, Schmitt T, Cremer S. 2023. Pathogen evasion of social immunity. Nature Ecology and Evolution. 7, 450–460. mla: Stock, Miriam, et al. “Pathogen Evasion of Social Immunity.” Nature Ecology and Evolution, vol. 7, Springer Nature, 2023, pp. 450–60, doi:10.1038/s41559-023-01981-6. short: M. Stock, B. Milutinovic, M. Hönigsberger, A.V. Grasse, F. Wiesenhofer, N. Kampleitner, M. Narasimhan, T. Schmitt, S. Cremer, Nature Ecology and Evolution 7 (2023) 450–460. date_created: 2023-02-12T23:00:59Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-16T11:55:48Z day: '01' ddc: - '570' department: - _id: SyCr - _id: LifeSc - _id: JiFr doi: 10.1038/s41559-023-01981-6 ec_funded: 1 external_id: isi: - '000924572800001' pmid: - '36732670' file: - access_level: open_access checksum: 8244f4650a0e7aeea488d1bcd4a31702 content_type: application/pdf creator: dernst date_created: 2023-08-16T11:54:59Z date_updated: 2023-08-16T11:54:59Z file_id: '14069' file_name: 2023_NatureEcoEvo_Stock.pdf file_size: 1600499 relation: main_file success: 1 file_date_updated: 2023-08-16T11:54:59Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 450-460 pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip - _id: 25DAF0B2-B435-11E9-9278-68D0E5697425 grant_number: CR-118/3-1 name: Host-Parasite Coevolution publication: Nature Ecology and Evolution publication_identifier: eissn: - 2397-334X publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA website relation: press_release url: https://ista.ac.at/en/news/how-sneaky-germs-hide-from-ants/ scopus_import: '1' status: public title: Pathogen evasion of social immunity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2023' ... --- _id: '12696' abstract: - lang: eng text: "Background: Fighting disease while fighting rivals exposes males to constraints and tradeoffs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfered with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony’s worker force.\r\nResults: We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on.\r\nConclusions: Males of the ant C. obscurior have evolved high immune investment, triggering an effective immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without cost to their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus revealed a novel social immunity mechanism how social insect workers protect the colony against disease risk." acknowledged_ssus: - _id: LifeSc acknowledgement: "We are thankful to Mike Bidochka for the fungal strain, Lukas Schrader for sharing the C. obscurior genome data for primer development, the Lab Support Facility of ISTA for general laboratory support and help with the permit approval procedures, and the Finca El Quinto for letting us collect ants on their property. We thank the Social Immunity Team at ISTA for help with ant collection and experimental help, in particular Elina Hanhimäki and Marta Gorecka for behavioural observation, and Elisabeth Naderlinger for spore load PCRs. We further thank the Social Immunity Team and Jürgen Heinze for continued discussion and comments on the manuscript.\r\nOpen access funding provided by Institute of Science and Technology Austria (ISTA). This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771402 to SC). " article_number: '37' article_processing_charge: Yes article_type: original author: - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 - first_name: Jessica full_name: Kirchner, Jessica id: 21516227-15aa-11ec-9fb2-c6e8ffc155d3 last_name: Kirchner - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Metzler S, Kirchner J, Grasse AV, Cremer S. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. 2023;23. doi:10.1186/s12862-023-02137-7 apa: Metzler, S., Kirchner, J., Grasse, A. V., & Cremer, S. (2023). Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. Springer Nature. https://doi.org/10.1186/s12862-023-02137-7 chicago: Metzler, Sina, Jessica Kirchner, Anna V Grasse, and Sylvia Cremer. “Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males.” BMC Ecology and Evolution. Springer Nature, 2023. https://doi.org/10.1186/s12862-023-02137-7. ieee: S. Metzler, J. Kirchner, A. V. Grasse, and S. Cremer, “Trade-offs between immunity and competitive ability in fighting ant males,” BMC Ecology and Evolution, vol. 23. Springer Nature, 2023. ista: Metzler S, Kirchner J, Grasse AV, Cremer S. 2023. Trade-offs between immunity and competitive ability in fighting ant males. BMC Ecology and Evolution. 23, 37. mla: Metzler, Sina, et al. “Trade-Offs between Immunity and Competitive Ability in Fighting Ant Males.” BMC Ecology and Evolution, vol. 23, 37, Springer Nature, 2023, doi:10.1186/s12862-023-02137-7. short: S. Metzler, J. Kirchner, A.V. Grasse, S. Cremer, BMC Ecology and Evolution 23 (2023). date_created: 2023-02-28T07:38:17Z date_published: 2023-08-07T00:00:00Z date_updated: 2023-12-13T11:13:14Z day: '07' ddc: - '570' department: - _id: SyCr doi: 10.1186/s12862-023-02137-7 ec_funded: 1 external_id: isi: - '001042643600002' pmid: - '37550612' file: - access_level: open_access checksum: 95966dc7d242d2c85bdd4fe14233dbd8 content_type: application/pdf creator: dernst date_created: 2023-08-14T07:51:47Z date_updated: 2023-08-14T07:51:47Z file_id: '14048' file_name: 2023_BMCEcology_Metzler.pdf file_size: 2004276 relation: main_file success: 1 file_date_updated: 2023-08-14T07:51:47Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip publication: BMC Ecology and Evolution publication_identifier: issn: - 2730-7182 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12693' relation: research_data status: public scopus_import: '1' status: public title: Trade-offs between immunity and competitive ability in fighting ant males tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2023' ... --- _id: '7343' abstract: - lang: eng text: Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level. acknowledged_ssus: - _id: LifeSc acknowledgement: "We thank Bernhardt Steinwender and Jorgen Eilenberg for the fungal strains, Xavier Espadaler, Mireia Diaz, Christiane Wanke, Lumi Viljakainen and the Social Immunity Team at IST Austria, for help with ant collection, and Wanda Gorecka and Gertraud Stift of the IST Austria Life Science Facility for technical support. We are thankful to Dieter Ebert for input at all stages of the project, Roger Mundry for statistical advice, Hinrich Schulenburg, Paul Schmid-Hempel, Yuko\r\nUlrich and Joachim Kurtz for project discussion, Bor Kavcic for advice on growth curves, Marcus Roper for advice on modelling work and comments on the manuscript, as well as Marjon de Vos, Weini Huang and the Social Immunity Team for comments on the manuscript.\r\nThis study was funded by the German Research Foundation (DFG) within the Priority Programme 1399 Host-parasite Coevolution (CR 118/3 to S.C.) and the People Programme\r\n(Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 291734 (ISTFELLOW to B.M.). " article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Barbara full_name: Milutinovic, Barbara id: 2CDC32B8-F248-11E8-B48F-1D18A9856A87 last_name: Milutinovic orcid: 0000-0002-8214-4758 - first_name: Miriam full_name: Stock, Miriam id: 42462816-F248-11E8-B48F-1D18A9856A87 last_name: Stock - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Elisabeth full_name: Naderlinger, Elisabeth id: 31757262-F248-11E8-B48F-1D18A9856A87 last_name: Naderlinger - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Milutinovic B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. Social immunity modulates competition between coinfecting pathogens. Ecology Letters. 2020;23(3):565-574. doi:10.1111/ele.13458 apa: Milutinovic, B., Stock, M., Grasse, A. V., Naderlinger, E., Hilbe, C., & Cremer, S. (2020). Social immunity modulates competition between coinfecting pathogens. Ecology Letters. Wiley. https://doi.org/10.1111/ele.13458 chicago: Milutinovic, Barbara, Miriam Stock, Anna V Grasse, Elisabeth Naderlinger, Christian Hilbe, and Sylvia Cremer. “Social Immunity Modulates Competition between Coinfecting Pathogens.” Ecology Letters. Wiley, 2020. https://doi.org/10.1111/ele.13458. ieee: B. Milutinovic, M. Stock, A. V. Grasse, E. Naderlinger, C. Hilbe, and S. Cremer, “Social immunity modulates competition between coinfecting pathogens,” Ecology Letters, vol. 23, no. 3. Wiley, pp. 565–574, 2020. ista: Milutinovic B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. 2020. Social immunity modulates competition between coinfecting pathogens. Ecology Letters. 23(3), 565–574. mla: Milutinovic, Barbara, et al. “Social Immunity Modulates Competition between Coinfecting Pathogens.” Ecology Letters, vol. 23, no. 3, Wiley, 2020, pp. 565–74, doi:10.1111/ele.13458. short: B. Milutinovic, M. Stock, A.V. Grasse, E. Naderlinger, C. Hilbe, S. Cremer, Ecology Letters 23 (2020) 565–574. date_created: 2020-01-20T13:32:12Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-09-05T16:04:49Z day: '01' ddc: - '570' department: - _id: SyCr - _id: KrCh doi: 10.1111/ele.13458 ec_funded: 1 external_id: isi: - '000507515900001' file: - access_level: open_access checksum: 0cd8be386fa219db02845b7c3991ce04 content_type: application/pdf creator: dernst date_created: 2020-11-19T11:27:10Z date_updated: 2020-11-19T11:27:10Z file_id: '8776' file_name: 2020_EcologyLetters_Milutinovic.pdf file_size: 561749 relation: main_file success: 1 file_date_updated: 2020-11-19T11:27:10Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 565-574 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25DAF0B2-B435-11E9-9278-68D0E5697425 grant_number: CR-118/3-1 name: Host-Parasite Coevolution publication: Ecology Letters publication_identifier: eissn: - 1461-0248 issn: - 1461-023X publication_status: published publisher: Wiley quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/social-ants-shapes-disease-outcome/ record: - id: '13060' relation: research_data status: public scopus_import: '1' status: public title: Social immunity modulates competition between coinfecting pathogens tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 23 year: '2020' ... --- _id: '13060' abstract: - lang: eng text: Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. Whilst multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defenses of ants – their social immunity ­– influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success, whilst simultaneously increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community-level. Mathematical modeling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host- and population-level. article_processing_charge: No author: - first_name: Barbara full_name: Milutinovic, Barbara id: 2CDC32B8-F248-11E8-B48F-1D18A9856A87 last_name: Milutinovic orcid: 0000-0002-8214-4758 - first_name: Miriam full_name: Stock, Miriam id: 42462816-F248-11E8-B48F-1D18A9856A87 last_name: Stock - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Elisabeth full_name: Naderlinger, Elisabeth id: 31757262-F248-11E8-B48F-1D18A9856A87 last_name: Naderlinger - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Milutinovic B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. Social immunity modulates competition between coinfecting pathogens. 2020. doi:10.5061/DRYAD.CRJDFN318 apa: Milutinovic, B., Stock, M., Grasse, A. V., Naderlinger, E., Hilbe, C., & Cremer, S. (2020). Social immunity modulates competition between coinfecting pathogens. Dryad. https://doi.org/10.5061/DRYAD.CRJDFN318 chicago: Milutinovic, Barbara, Miriam Stock, Anna V Grasse, Elisabeth Naderlinger, Christian Hilbe, and Sylvia Cremer. “Social Immunity Modulates Competition between Coinfecting Pathogens.” Dryad, 2020. https://doi.org/10.5061/DRYAD.CRJDFN318. ieee: B. Milutinovic, M. Stock, A. V. Grasse, E. Naderlinger, C. Hilbe, and S. Cremer, “Social immunity modulates competition between coinfecting pathogens.” Dryad, 2020. ista: Milutinovic B, Stock M, Grasse AV, Naderlinger E, Hilbe C, Cremer S. 2020. Social immunity modulates competition between coinfecting pathogens, Dryad, 10.5061/DRYAD.CRJDFN318. mla: Milutinovic, Barbara, et al. Social Immunity Modulates Competition between Coinfecting Pathogens. Dryad, 2020, doi:10.5061/DRYAD.CRJDFN318. short: B. Milutinovic, M. Stock, A.V. Grasse, E. Naderlinger, C. Hilbe, S. Cremer, (2020). date_created: 2023-05-23T16:11:22Z date_published: 2020-12-19T00:00:00Z date_updated: 2023-09-05T16:04:48Z day: '19' ddc: - '570' department: - _id: SyCr - _id: KrCh doi: 10.5061/DRYAD.CRJDFN318 license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.crjdfn318 month: '12' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '7343' relation: used_in_publication status: public status: public title: Social immunity modulates competition between coinfecting pathogens tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '413' abstract: - lang: eng text: Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host’s vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk. article_processing_charge: No author: - first_name: Matthias full_name: Konrad, Matthias id: 46528076-F248-11E8-B48F-1D18A9856A87 last_name: Konrad - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Sina full_name: Metzler, Sina id: 48204546-F248-11E8-B48F-1D18A9856A87 last_name: Metzler orcid: 0000-0002-9547-2494 - first_name: Katharina full_name: Seif, Katharina id: 90F7894A-02CF-11E9-976E-E38CFE5CBC1D last_name: Seif - first_name: Elisabeth full_name: Naderlinger, Elisabeth id: 31757262-F248-11E8-B48F-1D18A9856A87 last_name: Naderlinger - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Konrad M, Pull C, Metzler S, et al. Ants avoid superinfections by performing risk-adjusted sanitary care. PNAS. 2018;115(11):2782-2787. doi:10.1073/pnas.1713501115 apa: Konrad, M., Pull, C., Metzler, S., Seif, K., Naderlinger, E., Grasse, A. V., & Cremer, S. (2018). Ants avoid superinfections by performing risk-adjusted sanitary care. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1713501115 chicago: Konrad, Matthias, Christopher Pull, Sina Metzler, Katharina Seif, Elisabeth Naderlinger, Anna V Grasse, and Sylvia Cremer. “Ants Avoid Superinfections by Performing Risk-Adjusted Sanitary Care.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1713501115. ieee: M. Konrad et al., “Ants avoid superinfections by performing risk-adjusted sanitary care,” PNAS, vol. 115, no. 11. National Academy of Sciences, pp. 2782–2787, 2018. ista: Konrad M, Pull C, Metzler S, Seif K, Naderlinger E, Grasse AV, Cremer S. 2018. Ants avoid superinfections by performing risk-adjusted sanitary care. PNAS. 115(11), 2782–2787. mla: Konrad, Matthias, et al. “Ants Avoid Superinfections by Performing Risk-Adjusted Sanitary Care.” PNAS, vol. 115, no. 11, National Academy of Sciences, 2018, pp. 2782–87, doi:10.1073/pnas.1713501115. short: M. Konrad, C. Pull, S. Metzler, K. Seif, E. Naderlinger, A.V. Grasse, S. Cremer, PNAS 115 (2018) 2782–2787. date_created: 2018-12-11T11:46:20Z date_published: 2018-03-13T00:00:00Z date_updated: 2023-09-08T13:22:21Z day: '13' department: - _id: SyCr doi: 10.1073/pnas.1713501115 ec_funded: 1 external_id: isi: - '000427245400069' pmid: - '29463746' intvolume: ' 115' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/29463746 month: '03' oa: 1 oa_version: Published Version page: 2782 - 2787 pmid: 1 project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '7416' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/helping-in-spite-of-risk-ants-perform-risk-averse-sanitary-care-of-infectious-nest-mates/ scopus_import: '1' status: public title: Ants avoid superinfections by performing risk-adjusted sanitary care type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '616' abstract: - lang: eng text: Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation. article_number: e32073 article_processing_charge: Yes author: - first_name: Christopher full_name: Pull, Christopher id: 3C7F4840-F248-11E8-B48F-1D18A9856A87 last_name: Pull orcid: 0000-0003-1122-3982 - first_name: Line V full_name: Ugelvig, Line V id: 3DC97C8E-F248-11E8-B48F-1D18A9856A87 last_name: Ugelvig orcid: 0000-0003-1832-8883 - first_name: Florian full_name: Wiesenhofer, Florian id: 39523C54-F248-11E8-B48F-1D18A9856A87 last_name: Wiesenhofer - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Simon full_name: Tragust, Simon id: 35A7A418-F248-11E8-B48F-1D18A9856A87 last_name: Tragust - first_name: Thomas full_name: Schmitt, Thomas last_name: Schmitt - first_name: Mark full_name: Brown, Mark last_name: Brown - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Pull C, Ugelvig LV, Wiesenhofer F, et al. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife. 2018;7. doi:10.7554/eLife.32073 apa: Pull, C., Ugelvig, L. V., Wiesenhofer, F., Grasse, A. V., Tragust, S., Schmitt, T., … Cremer, S. (2018). Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.32073 chicago: Pull, Christopher, Line V Ugelvig, Florian Wiesenhofer, Anna V Grasse, Simon Tragust, Thomas Schmitt, Mark Brown, and Sylvia Cremer. “Destructive Disinfection of Infected Brood Prevents Systemic Disease Spread in Ant Colonies.” ELife. eLife Sciences Publications, 2018. https://doi.org/10.7554/eLife.32073. ieee: C. Pull et al., “Destructive disinfection of infected brood prevents systemic disease spread in ant colonies,” eLife, vol. 7. eLife Sciences Publications, 2018. ista: Pull C, Ugelvig LV, Wiesenhofer F, Grasse AV, Tragust S, Schmitt T, Brown M, Cremer S. 2018. Destructive disinfection of infected brood prevents systemic disease spread in ant colonies. eLife. 7, e32073. mla: Pull, Christopher, et al. “Destructive Disinfection of Infected Brood Prevents Systemic Disease Spread in Ant Colonies.” ELife, vol. 7, e32073, eLife Sciences Publications, 2018, doi:10.7554/eLife.32073. short: C. Pull, L.V. Ugelvig, F. Wiesenhofer, A.V. Grasse, S. Tragust, T. Schmitt, M. Brown, S. Cremer, ELife 7 (2018). date_created: 2018-12-11T11:47:31Z date_published: 2018-01-09T00:00:00Z date_updated: 2023-09-11T12:54:26Z day: '09' ddc: - '570' - '590' department: - _id: SyCr doi: 10.7554/eLife.32073 ec_funded: 1 external_id: isi: - '000419601300001' file: - access_level: open_access checksum: 540f941e8d3530a9441e4affd94f07d7 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:43Z date_updated: 2020-07-14T12:47:20Z file_id: '4832' file_name: IST-2018-978-v1+1_elife-32073-v1.pdf file_size: 1435585 relation: main_file file_date_updated: 2020-07-14T12:47:20Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' - _id: 25DDF0F0-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '302004' name: 'Pathogen Detectors Collective disease defence and pathogen detection abilities in ant societies: a chemo-neuro-immunological approach' publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '7188' pubrep_id: '978' quality_controlled: '1' related_material: record: - id: '819' relation: dissertation_contains status: public scopus_import: '1' status: public title: Destructive disinfection of infected brood prevents systemic disease spread in ant colonies tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2018' ... --- _id: '7' abstract: - lang: eng text: Animal social networks are shaped by multiple selection pressures, including the need to ensure efficient communication and functioning while simultaneously limiting disease transmission. Social animals could potentially further reduce epidemic risk by altering their social networks in the presence of pathogens, yet there is currently no evidence for such pathogen-triggered responses. We tested this hypothesis experimentally in the ant Lasius niger using a combination of automated tracking, controlled pathogen exposure, transmission quantification, and temporally explicit simulations. Pathogen exposure induced behavioral changes in both exposed ants and their nestmates, which helped contain the disease by reinforcing key transmission-inhibitory properties of the colony's contact network. This suggests that social network plasticity in response to pathogens is an effective strategy for mitigating the effects of disease in social groups. acknowledgement: This project was funded by two European Research Council Advanced Grants (Social Life, 249375, and resiliANT, 741491) and two Swiss National Science Foundation grants (CR32I3_141063 and 310030_156732) to L.K. and a European Research Council Starting Grant (SocialVaccines, 243071) to S.C. article_processing_charge: No article_type: original author: - first_name: Nathalie full_name: Stroeymeyt, Nathalie last_name: Stroeymeyt - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Alessandro full_name: Crespi, Alessandro last_name: Crespi - first_name: Danielle full_name: Mersch, Danielle last_name: Mersch - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Laurent full_name: Keller, Laurent last_name: Keller citation: ama: Stroeymeyt N, Grasse AV, Crespi A, Mersch D, Cremer S, Keller L. Social network plasticity decreases disease transmission in a eusocial insect. Science. 2018;362(6417):941-945. doi:10.1126/science.aat4793 apa: Stroeymeyt, N., Grasse, A. V., Crespi, A., Mersch, D., Cremer, S., & Keller, L. (2018). Social network plasticity decreases disease transmission in a eusocial insect. Science. AAAS. https://doi.org/10.1126/science.aat4793 chicago: Stroeymeyt, Nathalie, Anna V Grasse, Alessandro Crespi, Danielle Mersch, Sylvia Cremer, and Laurent Keller. “Social Network Plasticity Decreases Disease Transmission in a Eusocial Insect.” Science. AAAS, 2018. https://doi.org/10.1126/science.aat4793. ieee: N. Stroeymeyt, A. V. Grasse, A. Crespi, D. Mersch, S. Cremer, and L. Keller, “Social network plasticity decreases disease transmission in a eusocial insect,” Science, vol. 362, no. 6417. AAAS, pp. 941–945, 2018. ista: Stroeymeyt N, Grasse AV, Crespi A, Mersch D, Cremer S, Keller L. 2018. Social network plasticity decreases disease transmission in a eusocial insect. Science. 362(6417), 941–945. mla: Stroeymeyt, Nathalie, et al. “Social Network Plasticity Decreases Disease Transmission in a Eusocial Insect.” Science, vol. 362, no. 6417, AAAS, 2018, pp. 941–45, doi:10.1126/science.aat4793. short: N. Stroeymeyt, A.V. Grasse, A. Crespi, D. Mersch, S. Cremer, L. Keller, Science 362 (2018) 941–945. date_created: 2018-12-11T11:44:07Z date_published: 2018-11-23T00:00:00Z date_updated: 2023-10-17T11:50:05Z day: '23' department: - _id: SyCr doi: 10.1126/science.aat4793 ec_funded: 1 external_id: isi: - '000451124500041' intvolume: ' 362' isi: 1 issue: '6417' language: - iso: eng main_file_link: - open_access: '1' url: https://serval.unil.ch/resource/serval:BIB_E9228C205467.P001/REF.pdf month: '11' oa: 1 oa_version: Published Version page: 941 - 945 project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' publication: Science publication_identifier: issn: - 1095-9203 publication_status: published publisher: AAAS publist_id: '8049' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/for-ants-unity-is-strength-and-health/ record: - id: '13055' relation: research_data status: public scopus_import: '1' status: public title: Social network plasticity decreases disease transmission in a eusocial insect type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 362 year: '2018' ... --- _id: '13055' abstract: - lang: eng text: "Dataset for manuscript 'Social network plasticity decreases disease transmission in a eusocial insect'\r\nCompared to previous versions: - raw image files added\r\n \ - correction of URLs within README.txt file\r\n" article_processing_charge: No author: - first_name: Nathalie full_name: Stroeymeyt, Nathalie last_name: Stroeymeyt - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Alessandro full_name: Crespi, Alessandro last_name: Crespi - first_name: Danielle full_name: Mersch, Danielle last_name: Mersch - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Laurent full_name: Keller, Laurent last_name: Keller citation: ama: Stroeymeyt N, Grasse AV, Crespi A, Mersch D, Cremer S, Keller L. Social network plasticity decreases disease transmission in a eusocial insect. 2018. doi:10.5281/ZENODO.1322669 apa: Stroeymeyt, N., Grasse, A. V., Crespi, A., Mersch, D., Cremer, S., & Keller, L. (2018). Social network plasticity decreases disease transmission in a eusocial insect. Zenodo. https://doi.org/10.5281/ZENODO.1322669 chicago: Stroeymeyt, Nathalie, Anna V Grasse, Alessandro Crespi, Danielle Mersch, Sylvia Cremer, and Laurent Keller. “Social Network Plasticity Decreases Disease Transmission in a Eusocial Insect.” Zenodo, 2018. https://doi.org/10.5281/ZENODO.1322669. ieee: N. Stroeymeyt, A. V. Grasse, A. Crespi, D. Mersch, S. Cremer, and L. Keller, “Social network plasticity decreases disease transmission in a eusocial insect.” Zenodo, 2018. ista: Stroeymeyt N, Grasse AV, Crespi A, Mersch D, Cremer S, Keller L. 2018. Social network plasticity decreases disease transmission in a eusocial insect, Zenodo, 10.5281/ZENODO.1322669. mla: Stroeymeyt, Nathalie, et al. Social Network Plasticity Decreases Disease Transmission in a Eusocial Insect. Zenodo, 2018, doi:10.5281/ZENODO.1322669. short: N. Stroeymeyt, A.V. Grasse, A. Crespi, D. Mersch, S. Cremer, L. Keller, (2018). date_created: 2023-05-23T13:24:51Z date_published: 2018-10-23T00:00:00Z date_updated: 2023-10-17T11:50:04Z day: '23' ddc: - '570' department: - _id: SyCr doi: 10.5281/ZENODO.1322669 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.1480665 month: '10' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '7' relation: used_in_publication status: public status: public title: Social network plasticity decreases disease transmission in a eusocial insect tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '914' abstract: - lang: eng text: Infections with potentially lethal pathogens may negatively affect an individual’s lifespan and decrease its reproductive value. The terminal investment hypothesis predicts that individuals faced with a reduced survival should invest more into reproduction instead of maintenance and growth. Several studies suggest that individuals are indeed able to estimate their body condition and to increase their reproductive effort with approaching death, while other studies gave ambiguous results. We investigate whether queens of a perennial social insect (ant) are able to boost their reproduction following infection with an obligate killing pathogen. Social insect queens are special with regard to reproduction and aging, as they outlive conspecific non-reproductive workers. Moreover, in the ant Cardiocondyla obscurior, fecundity increases with queen age. However, it remained unclear whether this reflects negative reproductive senescence or terminal investment in response to approaching death. Here, we test whether queens of C. obscurior react to infection with the entomopathogenic fungus Metarhizium brunneum by an increased egg-laying rate. We show that a fungal infection triggers a reinforced investment in reproduction in queens. This adjustment of the reproductive rate by ant queens is consistent with predictions of the terminal investment hypothesis and is reported for the first time in a social insect. acknowledgement: We thank two anonymous reviewers for helpful suggestions on the manuscript. article_number: '170547' article_processing_charge: No author: - first_name: Julia full_name: Giehr, Julia last_name: Giehr - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Jürgen full_name: Heinze, Jürgen last_name: Heinze - first_name: Alexandra full_name: Schrempf, Alexandra last_name: Schrempf citation: ama: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. Ant queens increase their reproductive efforts after pathogen infection. Royal Society Open Science. 2017;4(7). doi:10.1098/rsos.170547 apa: Giehr, J., Grasse, A. V., Cremer, S., Heinze, J., & Schrempf, A. (2017). Ant queens increase their reproductive efforts after pathogen infection. Royal Society Open Science. Royal Society, The. https://doi.org/10.1098/rsos.170547 chicago: Giehr, Julia, Anna V Grasse, Sylvia Cremer, Jürgen Heinze, and Alexandra Schrempf. “Ant Queens Increase Their Reproductive Efforts after Pathogen Infection.” Royal Society Open Science. Royal Society, The, 2017. https://doi.org/10.1098/rsos.170547. ieee: J. Giehr, A. V. Grasse, S. Cremer, J. Heinze, and A. Schrempf, “Ant queens increase their reproductive efforts after pathogen infection,” Royal Society Open Science, vol. 4, no. 7. Royal Society, The, 2017. ista: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. 2017. Ant queens increase their reproductive efforts after pathogen infection. Royal Society Open Science. 4(7), 170547. mla: Giehr, Julia, et al. “Ant Queens Increase Their Reproductive Efforts after Pathogen Infection.” Royal Society Open Science, vol. 4, no. 7, 170547, Royal Society, The, 2017, doi:10.1098/rsos.170547. short: J. Giehr, A.V. Grasse, S. Cremer, J. Heinze, A. Schrempf, Royal Society Open Science 4 (2017). date_created: 2018-12-11T11:49:10Z date_published: 2017-07-05T00:00:00Z date_updated: 2023-09-26T15:45:47Z day: '05' ddc: - '576' - '592' department: - _id: SyCr doi: 10.1098/rsos.170547 external_id: isi: - '000406670000025' file: - access_level: open_access checksum: 351ae5e7a37e6e7d9295cd41146c4190 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:24Z date_updated: 2020-07-14T12:48:15Z file_id: '4684' file_name: IST-2017-849-v1+1_2017_Grasse_Cremer_AntQueens.pdf file_size: 530412 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Royal Society Open Science publication_identifier: issn: - '20545703' publication_status: published publisher: Royal Society, The publist_id: '6527' pubrep_id: '849' quality_controlled: '1' related_material: record: - id: '9853' relation: research_data status: public scopus_import: '1' status: public title: Ant queens increase their reproductive efforts after pathogen infection tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 4 year: '2017' ... --- _id: '9853' abstract: - lang: eng text: Egg laying rates and infection loads of C. obscurior queens article_processing_charge: No author: - first_name: Julia full_name: Giehr, Julia last_name: Giehr - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 - first_name: Jürgen full_name: Heinze, Jürgen last_name: Heinze - first_name: Alexandra full_name: Schrempf, Alexandra last_name: Schrempf citation: ama: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. Raw data from ant queens increase their reproductive efforts after pathogen infection. 2017. doi:10.6084/m9.figshare.5117788.v1 apa: Giehr, J., Grasse, A. V., Cremer, S., Heinze, J., & Schrempf, A. (2017). Raw data from ant queens increase their reproductive efforts after pathogen infection. The Royal Society. https://doi.org/10.6084/m9.figshare.5117788.v1 chicago: Giehr, Julia, Anna V Grasse, Sylvia Cremer, Jürgen Heinze, and Alexandra Schrempf. “Raw Data from Ant Queens Increase Their Reproductive Efforts after Pathogen Infection.” The Royal Society, 2017. https://doi.org/10.6084/m9.figshare.5117788.v1. ieee: J. Giehr, A. V. Grasse, S. Cremer, J. Heinze, and A. Schrempf, “Raw data from ant queens increase their reproductive efforts after pathogen infection.” The Royal Society, 2017. ista: Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. 2017. Raw data from ant queens increase their reproductive efforts after pathogen infection, The Royal Society, 10.6084/m9.figshare.5117788.v1. mla: Giehr, Julia, et al. Raw Data from Ant Queens Increase Their Reproductive Efforts after Pathogen Infection. The Royal Society, 2017, doi:10.6084/m9.figshare.5117788.v1. short: J. Giehr, A.V. Grasse, S. Cremer, J. Heinze, A. Schrempf, (2017). date_created: 2021-08-10T06:57:57Z date_published: 2017-06-19T00:00:00Z date_updated: 2023-09-26T15:45:47Z day: '19' department: - _id: SyCr doi: 10.6084/m9.figshare.5117788.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.5117788.v1 month: '06' oa: 1 oa_version: Published Version publisher: The Royal Society related_material: record: - id: '914' relation: used_in_publication status: public status: public title: Raw data from ant queens increase their reproductive efforts after pathogen infection type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '1993' abstract: - lang: eng text: 'The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. ' acknowledged_ssus: - _id: EM-Fac acknowledgement: "Funding was obtained by the German Research Foundation (CR 118–2) and an ERC StG (243071) by the European Research Council (both to S.C.).\r\nWe thank Line V. Ugelvig for help with ant collection and statistical discussion, Xavier Espadaler for detailed information on the ant collection site, Birgit Lautenschläger for the electron microscopy images and Eva Sixt for ant drawings. We further thank Jørgen Eilenberg for the fungal strain, Meghan L. Vyleta for genetic strain characterization and immune gene primer development, Paul Schmid-Hempel for discussion, and Line V. Ugelvig, Xavier Espadaler and Christopher D. Pull for comments on the manuscript. S.C., M.K. and S.T. conceived the study; M.K. and A.V.G. performed the experiments; M.K. performed the statistical analysis; S.C. and M.K. wrote the manuscript with intense contributions of A.V.G. and S.T.; all authors approved the manuscript." article_number: '20141976' article_processing_charge: No article_type: original author: - first_name: Matthias full_name: Konrad, Matthias id: 46528076-F248-11E8-B48F-1D18A9856A87 last_name: Konrad - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Simon full_name: Tragust, Simon id: 35A7A418-F248-11E8-B48F-1D18A9856A87 last_name: Tragust - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Konrad M, Grasse AV, Tragust S, Cremer S. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proceedings of the Royal Society of London Series B Biological Sciences. 2015;282(1799). doi:10.1098/rspb.2014.1976 apa: Konrad, M., Grasse, A. V., Tragust, S., & Cremer, S. (2015). Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proceedings of the Royal Society of London Series B Biological Sciences. The Royal Society. https://doi.org/10.1098/rspb.2014.1976 chicago: Konrad, Matthias, Anna V Grasse, Simon Tragust, and Sylvia Cremer. “Anti-Pathogen Protection versus Survival Costs Mediated by an Ectosymbiont in an Ant Host.” Proceedings of the Royal Society of London Series B Biological Sciences. The Royal Society, 2015. https://doi.org/10.1098/rspb.2014.1976. ieee: M. Konrad, A. V. Grasse, S. Tragust, and S. Cremer, “Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host,” Proceedings of the Royal Society of London Series B Biological Sciences, vol. 282, no. 1799. The Royal Society, 2015. ista: Konrad M, Grasse AV, Tragust S, Cremer S. 2015. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proceedings of the Royal Society of London Series B Biological Sciences. 282(1799), 20141976. mla: Konrad, Matthias, et al. “Anti-Pathogen Protection versus Survival Costs Mediated by an Ectosymbiont in an Ant Host.” Proceedings of the Royal Society of London Series B Biological Sciences, vol. 282, no. 1799, 20141976, The Royal Society, 2015, doi:10.1098/rspb.2014.1976. short: M. Konrad, A.V. Grasse, S. Tragust, S. Cremer, Proceedings of the Royal Society of London Series B Biological Sciences 282 (2015). date_created: 2018-12-11T11:55:06Z date_published: 2015-01-22T00:00:00Z date_updated: 2023-02-23T14:06:41Z day: '22' department: - _id: SyCr doi: 10.1098/rspb.2014.1976 ec_funded: 1 external_id: pmid: - '25473011' intvolume: ' 282' issue: '1799' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286035/ month: '01' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' - _id: 25DAF0B2-B435-11E9-9278-68D0E5697425 grant_number: CR-118/3-1 name: Host-Parasite Coevolution publication: Proceedings of the Royal Society of London Series B Biological Sciences publication_identifier: eissn: - 1471-2954 issn: - 0962-8452 publication_status: published publisher: The Royal Society publist_id: '5090' quality_controlled: '1' related_material: record: - id: '9740' relation: research_data status: public scopus_import: '1' status: public title: Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 282 year: '2015' ... --- _id: '1905' abstract: - lang: eng text: The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution). acknowledgement: This study was funded by grants from the National Science Foundation (NSF) to MT (IOS-1121832) and IS (DEB-0743406) and from the German Science Foundation (DFG; PL 470/1-2) and ‘LOEWE − Landesoffensive zur Entwicklung wissenschaftlich-ökonomischer Exzellenz’ of Hesse's Ministry of Higher Education, Research, and the Arts, to MP. article_processing_charge: No article_type: original author: - first_name: Michael full_name: Tobler, Michael last_name: Tobler - first_name: Martin full_name: Plath, Martin last_name: Plath - first_name: Rüdiger full_name: Riesch, Rüdiger last_name: Riesch - first_name: Ingo full_name: Schlupp, Ingo last_name: Schlupp - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Gopi full_name: Munimanda, Gopi last_name: Munimanda - first_name: C full_name: Setzer, C last_name: Setzer - first_name: Dustin full_name: Penn, Dustin last_name: Penn - first_name: Yoshan full_name: Moodley, Yoshan last_name: Moodley citation: ama: Tobler M, Plath M, Riesch R, et al. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology. 2014;27(5):960-974. doi:10.1111/jeb.12370 apa: Tobler, M., Plath, M., Riesch, R., Schlupp, I., Grasse, A. V., Munimanda, G., … Moodley, Y. (2014). Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.12370 chicago: Tobler, Michael, Martin Plath, Rüdiger Riesch, Ingo Schlupp, Anna V Grasse, Gopi Munimanda, C Setzer, Dustin Penn, and Yoshan Moodley. “Selection from Parasites Favours Immunogenetic Diversity but Not Divergence among Locally Adapted Host Populations.” Journal of Evolutionary Biology. Wiley, 2014. https://doi.org/10.1111/jeb.12370. ieee: M. Tobler et al., “Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations,” Journal of Evolutionary Biology, vol. 27, no. 5. Wiley, pp. 960–974, 2014. ista: Tobler M, Plath M, Riesch R, Schlupp I, Grasse AV, Munimanda G, Setzer C, Penn D, Moodley Y. 2014. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. Journal of Evolutionary Biology. 27(5), 960–974. mla: Tobler, Michael, et al. “Selection from Parasites Favours Immunogenetic Diversity but Not Divergence among Locally Adapted Host Populations.” Journal of Evolutionary Biology, vol. 27, no. 5, Wiley, 2014, pp. 960–74, doi:10.1111/jeb.12370. short: M. Tobler, M. Plath, R. Riesch, I. Schlupp, A.V. Grasse, G. Munimanda, C. Setzer, D. Penn, Y. Moodley, Journal of Evolutionary Biology 27 (2014) 960–974. date_created: 2018-12-11T11:54:38Z date_published: 2014-04-12T00:00:00Z date_updated: 2022-06-07T09:22:20Z day: '12' department: - _id: SyCr doi: 10.1111/jeb.12370 external_id: pmid: - '24725091' intvolume: ' 27' issue: '5' language: - iso: eng month: '04' oa_version: None page: 960 - 974 pmid: 1 publication: Journal of Evolutionary Biology publication_identifier: eissn: - 1420-9101 issn: - 1010-061X publication_status: published publisher: Wiley publist_id: '5190' quality_controlled: '1' scopus_import: '1' status: public title: Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2014' ... --- _id: '9740' abstract: - lang: eng text: The fitness effects of symbionts on their hosts can be context-dependent, with usually benign symbionts causing detrimental effects when their hosts are stressed, or typically parasitic symbionts providing protection towards their hosts (e.g. against pathogen infection). Here, we studied the novel association between the invasive garden ant Lasius neglectus and its fungal ectosymbiont Laboulbenia formicarum for potential costs and benefits. We tested ants with different Laboulbenia levels for their survival and immunity under resource limitation and exposure to the obligate killing entomopathogen Metarhizium brunneum. While survival of L. neglectus workers under starvation was significantly decreased with increasing Laboulbenia levels, host survival under Metarhizium exposure increased with higher levels of the ectosymbiont, suggesting a symbiont-mediated anti-pathogen protection, which seems to be driven mechanistically by both improved sanitary behaviours and an upregulated immune system. Ants with high Laboulbenia levels showed significantly longer self-grooming and elevated expression of immune genes relevant for wound repair and antifungal responses (β-1,3-glucan binding protein, Prophenoloxidase), compared with ants carrying low Laboulbenia levels. This suggests that the ectosymbiont Laboulbenia formicarum weakens its ant host by either direct resource exploitation or the costs of an upregulated behavioural and immunological response, which, however, provides a prophylactic protection upon later exposure to pathogens. article_processing_charge: No author: - first_name: Matthias full_name: Konrad, Matthias id: 46528076-F248-11E8-B48F-1D18A9856A87 last_name: Konrad - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Simon full_name: Tragust, Simon id: 35A7A418-F248-11E8-B48F-1D18A9856A87 last_name: Tragust - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: 'Konrad M, Grasse AV, Tragust S, Cremer S. Data from: Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. 2014. doi:10.5061/dryad.vm0vc' apa: 'Konrad, M., Grasse, A. V., Tragust, S., & Cremer, S. (2014). Data from: Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Dryad. https://doi.org/10.5061/dryad.vm0vc' chicago: 'Konrad, Matthias, Anna V Grasse, Simon Tragust, and Sylvia Cremer. “Data from: Anti-Pathogen Protection versus Survival Costs Mediated by an Ectosymbiont in an Ant Host.” Dryad, 2014. https://doi.org/10.5061/dryad.vm0vc.' ieee: 'M. Konrad, A. V. Grasse, S. Tragust, and S. Cremer, “Data from: Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host.” Dryad, 2014.' ista: 'Konrad M, Grasse AV, Tragust S, Cremer S. 2014. Data from: Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host, Dryad, 10.5061/dryad.vm0vc.' mla: 'Konrad, Matthias, et al. Data from: Anti-Pathogen Protection versus Survival Costs Mediated by an Ectosymbiont in an Ant Host. Dryad, 2014, doi:10.5061/dryad.vm0vc.' short: M. Konrad, A.V. Grasse, S. Tragust, S. Cremer, (2014). date_created: 2021-07-28T08:38:40Z date_published: 2014-11-13T00:00:00Z date_updated: 2023-02-23T10:23:32Z day: '13' department: - _id: SyCr doi: 10.5061/dryad.vm0vc main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.vm0vc month: '11' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '1993' relation: used_in_publication status: public status: public title: 'Data from: Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2014' ...