TY - CONF
AB - Currently several projects aim at designing and implementing protocols for privacy preserving automated contact tracing to help fight the current pandemic. Those proposal are quite similar, and in their most basic form basically propose an app for mobile phones which broadcasts frequently changing pseudorandom identifiers via (low energy) Bluetooth, and at the same time, the app stores IDs broadcast by phones in its proximity. Only if a user is tested positive, they upload either the beacons they did broadcast (which is the case in decentralized proposals as DP-3T, east and west coast PACT or Covid watch) or received (as in Popp-PT or ROBERT) during the last two weeks or so.
Vaudenay [eprint 2020/399] observes that this basic scheme (he considers the DP-3T proposal) succumbs to relay and even replay attacks, and proposes more complex interactive schemes which prevent those attacks without giving up too many privacy aspects. Unfortunately interaction is problematic for this application for efficiency and security reasons. The countermeasures that have been suggested so far are either not practical or give up on key privacy aspects. We propose a simple non-interactive variant of the basic protocol that
(security) Provably prevents replay and (if location data is available) relay attacks.
(privacy) The data of all parties (even jointly) reveals no information on the location or time where encounters happened.
(efficiency) The broadcasted message can fit into 128 bits and uses only basic crypto (commitments and secret key authentication).
Towards this end we introduce the concept of “delayed authentication”, which basically is a message authentication code where verification can be done in two steps, where the first doesn’t require the key, and the second doesn’t require the message.
AU - Pietrzak, Krzysztof Z
ID - 8987
SN - 03029743
T2 - Progress in Cryptology
TI - Delayed authentication: Preventing replay and relay attacks in private contact tracing
VL - 12578
ER -
TY - CONF
AB - Proofs of sequential work (PoSW) are proof systems where a prover, upon receiving a statement χ and a time parameter T computes a proof ϕ(χ,T) which is efficiently and publicly verifiable. The proof can be computed in T sequential steps, but not much less, even by a malicious party having large parallelism. A PoSW thus serves as a proof that T units of time have passed since χ
was received.
PoSW were introduced by Mahmoody, Moran and Vadhan [MMV11], a simple and practical construction was only recently proposed by Cohen and Pietrzak [CP18].
In this work we construct a new simple PoSW in the random permutation model which is almost as simple and efficient as [CP18] but conceptually very different. Whereas the structure underlying [CP18] is a hash tree, our construction is based on skip lists and has the interesting property that computing the PoSW is a reversible computation.
The fact that the construction is reversible can potentially be used for new applications like constructing proofs of replication. We also show how to “embed” the sloth function of Lenstra and Weselowski [LW17] into our PoSW to get a PoSW where one additionally can verify correctness of the output much more efficiently than recomputing it (though recent constructions of “verifiable delay functions” subsume most of the applications this construction was aiming at).
AU - Abusalah, Hamza M
AU - Kamath Hosdurg, Chethan
AU - Klein, Karen
AU - Pietrzak, Krzysztof Z
AU - Walter, Michael
ID - 7411
SN - 0302-9743
T2 - Advances in Cryptology – EUROCRYPT 2019
TI - Reversible proofs of sequential work
VL - 11477
ER -
TY - CONF
AB - A proxy re-encryption (PRE) scheme is a public-key encryption scheme that allows the holder of a key pk to derive a re-encryption key for any other key 𝑝𝑘′. This re-encryption key lets anyone transform ciphertexts under pk into ciphertexts under 𝑝𝑘′ without having to know the underlying message, while transformations from 𝑝𝑘′ to pk should not be possible (unidirectional). Security is defined in a multi-user setting against an adversary that gets the users’ public keys and can ask for re-encryption keys and can corrupt users by requesting their secret keys. Any ciphertext that the adversary cannot trivially decrypt given the obtained secret and re-encryption keys should be secure.
All existing security proofs for PRE only show selective security, where the adversary must first declare the users it wants to corrupt. This can be lifted to more meaningful adaptive security by guessing the set of corrupted users among the n users, which loses a factor exponential in Open image in new window , rendering the result meaningless already for moderate Open image in new window .
Jafargholi et al. (CRYPTO’17) proposed a framework that in some cases allows to give adaptive security proofs for schemes which were previously only known to be selectively secure, while avoiding the exponential loss that results from guessing the adaptive choices made by an adversary. We apply their framework to PREs that satisfy some natural additional properties. Concretely, we give a more fine-grained reduction for several unidirectional PREs, proving adaptive security at a much smaller loss. The loss depends on the graph of users whose edges represent the re-encryption keys queried by the adversary. For trees and chains the loss is quasi-polynomial in the size and for general graphs it is exponential in their depth and indegree (instead of their size as for previous reductions). Fortunately, trees and low-depth graphs cover many, if not most, interesting applications.
Our results apply e.g. to the bilinear-map based PRE schemes by Ateniese et al. (NDSS’05 and CT-RSA’09), Gentry’s FHE-based scheme (STOC’09) and the LWE-based scheme by Chandran et al. (PKC’14).
AU - Fuchsbauer, Georg
AU - Kamath Hosdurg, Chethan
AU - Klein, Karen
AU - Pietrzak, Krzysztof Z
ID - 6430
SN - 03029743
TI - Adaptively secure proxy re-encryption
VL - 11443
ER -
TY - CONF
AB - We construct a verifiable delay function (VDF) by showing how the Rivest-Shamir-Wagner time-lock puzzle can be made publicly verifiable. Concretely, we give a statistically sound public-coin protocol to prove that a tuple (N,x,T,y) satisfies y=x2T (mod N) where the prover doesn’t know the factorization of N and its running time is dominated by solving the puzzle, that is, compute x2T, which is conjectured to require T sequential squarings. To get a VDF we make this protocol non-interactive using the Fiat-Shamir heuristic.The motivation for this work comes from the Chia blockchain design, which uses a VDF as akey ingredient. For typical parameters (T≤2 40, N= 2048), our proofs are of size around 10K B, verification cost around three RSA exponentiations and computing the proof is 8000 times faster than solving the puzzle even without any parallelism.
AU - Pietrzak, Krzysztof Z
ID - 6528
SN - 1868-8969
T2 - 10th Innovations in Theoretical Computer Science Conference
TI - Simple verifiable delay functions
VL - 124
ER -
TY - CONF
AB - The Fiat-Shamir heuristic transforms a public-coin interactive proof into a non-interactive argument, by replacing the verifier with a cryptographic hash function that is applied to the protocol’s transcript. Constructing hash functions for which this transformation is sound is a central and long-standing open question in cryptography.
We show that solving the END−OF−METERED−LINE problem is no easier than breaking the soundness of the Fiat-Shamir transformation when applied to the sumcheck protocol. In particular, if the transformed protocol is sound, then any hard problem in #P gives rise to a hard distribution in the class CLS, which is contained in PPAD. Our result opens up the possibility of sampling moderately-sized games for which it is hard to find a Nash equilibrium, by reducing the inversion of appropriately chosen one-way functions to #SAT.
Our main technical contribution is a stateful incrementally verifiable procedure that, given a SAT instance over n variables, counts the number of satisfying assignments. This is accomplished via an exponential sequence of small steps, each computable in time poly(n). Incremental verifiability means that each intermediate state includes a sumcheck-based proof of its correctness, and the proof can be updated and verified in time poly(n).
AU - Choudhuri, Arka Rai
AU - Hubáček, Pavel
AU - Kamath Hosdurg, Chethan
AU - Pietrzak, Krzysztof Z
AU - Rosen, Alon
AU - Rothblum, Guy N.
ID - 6677
SN - 9781450367059
T2 - Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing - STOC 2019
TI - Finding a Nash equilibrium is no easier than breaking Fiat-Shamir
ER -
TY - CONF
AB - Memory-hard functions (MHF) are functions whose evaluation cost is dominated by memory cost. MHFs are egalitarian, in the sense that evaluating them on dedicated hardware (like FPGAs or ASICs) is not much cheaper than on off-the-shelf hardware (like x86 CPUs). MHFs have interesting cryptographic applications, most notably to password hashing and securing blockchains.
Alwen and Serbinenko [STOC’15] define the cumulative memory complexity (cmc) of a function as the sum (over all time-steps) of the amount of memory required to compute the function. They advocate that a good MHF must have high cmc. Unlike previous notions, cmc takes into account that dedicated hardware might exploit amortization and parallelism. Still, cmc has been critizised as insufficient, as it fails to capture possible time-memory trade-offs; as memory cost doesn’t scale linearly, functions with the same cmc could still have very different actual hardware cost.
In this work we address this problem, and introduce the notion of sustained-memory complexity, which requires that any algorithm evaluating the function must use a large amount of memory for many steps. We construct functions (in the parallel random oracle model) whose sustained-memory complexity is almost optimal: our function can be evaluated using n steps and O(n/log(n)) memory, in each step making one query to the (fixed-input length) random oracle, while any algorithm that can make arbitrary many parallel queries to the random oracle, still needs Ω(n/log(n)) memory for Ω(n) steps.
As has been done for various notions (including cmc) before, we reduce the task of constructing an MHFs with high sustained-memory complexity to proving pebbling lower bounds on DAGs. Our main technical contribution is the construction is a family of DAGs on n nodes with constant indegree with high “sustained-space complexity”, meaning that any parallel black-pebbling strategy requires Ω(n/log(n)) pebbles for at least Ω(n) steps.
Along the way we construct a family of maximally “depth-robust” DAGs with maximum indegree O(logn) , improving upon the construction of Mahmoody et al. [ITCS’13] which had maximum indegree O(log2n⋅
AU - Alwen, Joel F
AU - Blocki, Jeremiah
AU - Pietrzak, Krzysztof Z
ID - 298
TI - Sustained space complexity
VL - 10821
ER -
TY - CONF
AB - We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.
AU - Alwen, Joel F
AU - Gazi, Peter
AU - Kamath Hosdurg, Chethan
AU - Klein, Karen
AU - Osang, Georg F
AU - Pietrzak, Krzysztof Z
AU - Reyzin, Lenoid
AU - Rolinek, Michal
AU - Rybar, Michal
ID - 193
T2 - Proceedings of the 2018 on Asia Conference on Computer and Communication Security
TI - On the memory hardness of data independent password hashing functions
ER -
TY - CONF
AB - Proofs of space (PoS) [Dziembowski et al., CRYPTO'15] are proof systems where a prover can convince a verifier that he "wastes" disk space. PoS were introduced as a more ecological and economical replacement for proofs of work which are currently used to secure blockchains like Bitcoin. In this work we investigate extensions of PoS which allow the prover to embed useful data into the dedicated space, which later can be recovered. Our first contribution is a security proof for the original PoS from CRYPTO'15 in the random oracle model (the original proof only applied to a restricted class of adversaries which can store a subset of the data an honest prover would store). When this PoS is instantiated with recent constructions of maximally depth robust graphs, our proof implies basically optimal security. As a second contribution we show three different extensions of this PoS where useful data can be embedded into the space required by the prover. Our security proof for the PoS extends (non-trivially) to these constructions. We discuss how some of these variants can be used as proofs of catalytic space (PoCS), a notion we put forward in this work, and which basically is a PoS where most of the space required by the prover can be used to backup useful data. Finally we discuss how one of the extensions is a candidate construction for a proof of replication (PoR), a proof system recently suggested in the Filecoin whitepaper.
AU - Pietrzak, Krzysztof Z
ID - 7407
SN - 1868-8969
T2 - 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)
TI - Proofs of catalytic space
VL - 124
ER -
TY - CONF
AB - Bitcoin has become the most successful cryptocurrency ever deployed, and its most distinctive feature is that it is decentralized. Its underlying protocol (Nakamoto consensus) achieves this by using proof of work, which has the drawback that it causes the consumption of vast amounts of energy to maintain the ledger. Moreover, Bitcoin mining dynamics have become less distributed over time.
Towards addressing these issues, we propose SpaceMint, a cryptocurrency based on proofs of space instead of proofs of work. Miners in SpaceMint dedicate disk space rather than computation. We argue that SpaceMint’s design solves or alleviates several of Bitcoin’s issues: most notably, its large energy consumption. SpaceMint also rewards smaller miners fairly according to their contribution to the network, thus incentivizing more distributed participation.
This paper adapts proof of space to enable its use in cryptocurrency, studies the attacks that can arise against a Bitcoin-like blockchain that uses proof of space, and proposes a new blockchain format and transaction types to address these attacks. Our prototype shows that initializing 1 TB for mining takes about a day (a one-off setup cost), and miners spend on average just a fraction of a second per block mined. Finally, we provide a game-theoretic analysis modeling SpaceMint as an extensive game (the canonical game-theoretic notion for games that take place over time) and show that this stylized game satisfies a strong equilibrium notion, thereby arguing for SpaceMint ’s stability and consensus.
AU - Park, Sunoo
AU - Kwon, Albert
AU - Fuchsbauer, Georg
AU - Gazi, Peter
AU - Alwen, Joel F
AU - Pietrzak, Krzysztof Z
ID - 6941
SN - 0302-9743
T2 - 22nd International Conference on Financial Cryptography and Data Security
TI - SpaceMint: A cryptocurrency based on proofs of space
VL - 10957
ER -
TY - JOUR
AB - We introduce the notion of “non-malleable codes” which relaxes the notion of error correction and error detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. In contrast to error correction and error detection, non-malleability can be achieved for very rich classes of modifications. We construct an efficient code that is non-malleable with respect to modifications that affect each bit of the codeword arbitrarily (i.e., leave it untouched, flip it, or set it to either 0 or 1), but independently of the value of the other bits of the codeword. Using the probabilistic method, we also show a very strong and general statement: there exists a non-malleable code for every “small enough” family F of functions via which codewords can be modified. Although this probabilistic method argument does not directly yield efficient constructions, it gives us efficient non-malleable codes in the random-oracle model for very general classes of tampering functions—e.g., functions where every bit in the tampered codeword can depend arbitrarily on any 99% of the bits in the original codeword. As an application of non-malleable codes, we show that they provide an elegant algorithmic solution to the task of protecting functionalities implemented in hardware (e.g., signature cards) against “tampering attacks.” In such attacks, the secret state of a physical system is tampered, in the hopes that future interaction with the modified system will reveal some secret information. This problem was previously studied in the work of Gennaro et al. in 2004 under the name “algorithmic tamper proof security” (ATP). We show that non-malleable codes can be used to achieve important improvements over the prior work. In particular, we show that any functionality can be made secure against a large class of tampering attacks, simply by encoding the secret state with a non-malleable code while it is stored in memory.
AU - Dziembowski, Stefan
AU - Pietrzak, Krzysztof Z
AU - Wichs, Daniel
ID - 107
IS - 4
JF - Journal of the ACM
TI - Non-malleable codes
VL - 65
ER -
TY - CONF
AB - At ITCS 2013, Mahmoody, Moran and Vadhan [MMV13] introduce and construct publicly verifiable proofs of sequential work, which is a protocol for proving that one spent sequential computational work related to some statement. The original motivation for such proofs included non-interactive time-stamping and universally verifiable CPU benchmarks. A more recent application, and our main motivation, are blockchain designs, where proofs of sequential work can be used – in combination with proofs of space – as a more ecological and economical substitute for proofs of work which are currently used to secure Bitcoin and other cryptocurrencies. The construction proposed by [MMV13] is based on a hash function and can be proven secure in the random oracle model, or assuming inherently sequential hash-functions, which is a new standard model assumption introduced in their work. In a proof of sequential work, a prover gets a “statement” χ, a time parameter N and access to a hash-function H, which for the security proof is modelled as a random oracle. Correctness requires that an honest prover can make a verifier accept making only N queries to H, while soundness requires that any prover who makes the verifier accept must have made (almost) N sequential queries to H. Thus a solution constitutes a proof that N time passed since χ was received. Solutions must be publicly verifiable in time at most polylogarithmic in N. The construction of [MMV13] is based on “depth-robust” graphs, and as a consequence has rather poor concrete parameters. But the major drawback is that the prover needs not just N time, but also N space to compute a proof. In this work we propose a proof of sequential work which is much simpler, more efficient and achieves much better concrete bounds. Most importantly, the space required can be as small as log (N) (but we get better soundness using slightly more memory than that). An open problem stated by [MMV13] that our construction does not solve either is achieving a “unique” proof, where even a cheating prover can only generate a single accepting proof. This property would be extremely useful for applications to blockchains.
AU - Cohen, Bram
AU - Pietrzak, Krzysztof Z
ID - 302
TI - Simple proofs of sequential work
VL - 10821
ER -
TY - CONF
AB - Proofs of space (PoS) were suggested as more ecological and economical alternative to proofs of work, which are currently used in blockchain designs like Bitcoin. The existing PoS are based on rather sophisticated graph pebbling lower bounds. Much simpler and in several aspects more efficient schemes based on inverting random functions have been suggested, but they don’t give meaningful security guarantees due to existing time-memory trade-offs. In particular, Hellman showed that any permutation over a domain of size N can be inverted in time T by an algorithm that is given S bits of auxiliary information whenever (Formula presented). For functions Hellman gives a weaker attack with S2· T≈ N2 (e.g., S= T≈ N2/3). To prove lower bounds, one considers an adversary who has access to an oracle f: [ N] → [N] and can make T oracle queries. The best known lower bound is S· T∈ Ω(N) and holds for random functions and permutations. We construct functions that provably require more time and/or space to invert. Specifically, for any constant k we construct a function [N] → [N] that cannot be inverted unless Sk· T∈ Ω(Nk) (in particular, S= T≈ (Formula presented). Our construction does not contradict Hellman’s time-memory trade-off, because it cannot be efficiently evaluated in forward direction. However, its entire function table can be computed in time quasilinear in N, which is sufficient for the PoS application. Our simplest construction is built from a random function oracle g: [N] × [N] → [ N] and a random permutation oracle f: [N] → N] and is defined as h(x) = g(x, x′) where f(x) = π(f(x′)) with π being any involution without a fixed point, e.g. flipping all the bits. For this function we prove that any adversary who gets S bits of auxiliary information, makes at most T oracle queries, and inverts h on an ϵ fraction of outputs must satisfy S2· T∈ Ω(ϵ2N2).
AU - Abusalah, Hamza M
AU - Alwen, Joel F
AU - Cohen, Bram
AU - Khilko, Danylo
AU - Pietrzak, Krzysztof Z
AU - Reyzin, Leonid
ID - 559
SN - 978-331970696-2
TI - Beyond Hellman’s time-memory trade-offs with applications to proofs of space
VL - 10625
ER -
TY - CONF
AB - Position based cryptography (PBC), proposed in the seminal work of Chandran, Goyal, Moriarty, and Ostrovsky (SIAM J. Computing, 2014), aims at constructing cryptographic schemes in which the identity of the user is his geographic position. Chandran et al. construct PBC schemes for secure positioning and position-based key agreement in the bounded-storage model (Maurer, J. Cryptology, 1992). Apart from bounded memory, their security proofs need a strong additional restriction on the power of the adversary: he cannot compute joint functions of his inputs. Removing this assumption is left as an open problem. We show that an answer to this question would resolve a long standing open problem in multiparty communication complexity: finding a function that is hard to compute with low communication complexity in the simultaneous message model, but easy to compute in the fully adaptive model. On a more positive side: we also show some implications in the other direction, i.e.: we prove that lower bounds on the communication complexity of certain multiparty problems imply existence of PBC primitives. Using this result we then show two attractive ways to “bypass” our hardness result: the first uses the random oracle model, the second weakens the locality requirement in the bounded-storage model to online computability. The random oracle construction is arguably one of the simplest proposed so far in this area. Our results indicate that constructing improved provably secure protocols for PBC requires a better understanding of multiparty communication complexity. This is yet another example where negative results in one area (in our case: lower bounds in multiparty communication complexity) can be used to construct secure cryptographic schemes.
AU - Brody, Joshua
AU - Dziembowski, Stefan
AU - Faust, Sebastian
AU - Pietrzak, Krzysztof Z
ED - Kalai, Yael
ED - Reyzin, Leonid
ID - 605
SN - 978-331970499-9
TI - Position based cryptography and multiparty communication complexity
VL - 10677
ER -
TY - JOUR
AB - PMAC is a simple and parallel block-cipher mode of operation, which was introduced by Black and Rogaway at Eurocrypt 2002. If instantiated with a (pseudo)random permutation over n-bit strings, PMAC constitutes a provably secure variable input-length (pseudo)random function. For adversaries making q queries, each of length at most l (in n-bit blocks), and of total length σ ≤ ql, the original paper proves an upper bound on the distinguishing advantage of Ο(σ2/2n), while the currently best bound is Ο (qσ/2n).In this work we show that this bound is tight by giving an attack with advantage Ω (q2l/2n). In the PMAC construction one initially XORs a mask to every message block, where the mask for the ith block is computed as τi := γi·L, where L is a (secret) random value, and γi is the i-th codeword of the Gray code. Our attack applies more generally to any sequence of γi’s which contains a large coset of a subgroup of GF(2n). We then investigate if the security of PMAC can be further improved by using τi’s that are k-wise independent, for k > 1 (the original distribution is only 1-wise independent). We observe that the security of PMAC will not increase in general, even if the masks are chosen from a 2-wise independent distribution, and then prove that the security increases to O(q<2/2n), if the τi are 4-wise independent. Due to simple extension attacks, this is the best bound one can hope for, using any distribution on the masks. Whether 3-wise independence is already sufficient to get this level of security is left as an open problem.
AU - Gazi, Peter
AU - Pietrzak, Krzysztof Z
AU - Rybar, Michal
ID - 6196
IS - 2
JF - IACR Transactions on Symmetric Cryptology
TI - The exact security of PMAC
VL - 2016
ER -
TY - CONF
AB - Memory-hard functions (MHFs) are hash algorithms whose evaluation cost is dominated by memory cost. As memory, unlike computation, costs about the same across different platforms, MHFs cannot be evaluated at significantly lower cost on dedicated hardware like ASICs. MHFs have found widespread applications including password hashing, key derivation, and proofs-of-work. This paper focuses on scrypt, a simple candidate MHF designed by Percival, and described in RFC 7914. It has been used within a number of cryptocurrencies (e.g., Litecoin and Dogecoin) and has been an inspiration for Argon2d, one of the winners of the recent password-hashing competition. Despite its popularity, no rigorous lower bounds on its memory complexity are known. We prove that scrypt is optimally memory-hard, i.e., its cumulative memory complexity (cmc) in the parallel random oracle model is Ω(n2w), where w and n are the output length and number of invocations of the underlying hash function, respectively. High cmc is a strong security target for MHFs introduced by Alwen and Serbinenko (STOC’15) which implies high memory cost even for adversaries who can amortize the cost over many evaluations and evaluate the underlying hash functions many times in parallel. Our proof is the first showing optimal memory-hardness for any MHF. Our result improves both quantitatively and qualitatively upon the recent work by Alwen et al. (EUROCRYPT’16) who proved a weaker lower bound of Ω(n2w/ log2 n) for a restricted class of adversaries.
AU - Alwen, Joel F
AU - Chen, Binchi
AU - Pietrzak, Krzysztof Z
AU - Reyzin, Leonid
AU - Tessaro, Stefano
ED - Coron, Jean-Sébastien
ED - Buus Nielsen, Jesper
ID - 635
SN - 978-331956616-0
TI - Scrypt is maximally memory hard
VL - 10212
ER -
TY - CONF
AB - For many cryptographic primitives, it is relatively easy to achieve selective security (where the adversary commits a-priori to some of the choices to be made later in the attack) but appears difficult to achieve the more natural notion of adaptive security (where the adversary can make all choices on the go as the attack progresses). A series of several recent works shows how to cleverly achieve adaptive security in several such scenarios including generalized selective decryption (Panjwani, TCC ’07 and Fuchsbauer et al., CRYPTO ’15), constrained PRFs (Fuchsbauer et al., ASIACRYPT ’14), and Yao garbled circuits (Jafargholi and Wichs, TCC ’16b). Although the above works expressed vague intuition that they share a common technique, the connection was never made precise. In this work we present a new framework that connects all of these works and allows us to present them in a unified and simplified fashion. Moreover, we use the framework to derive a new result for adaptively secure secret sharing over access structures defined via monotone circuits. We envision that further applications will follow in the future. Underlying our framework is the following simple idea. It is well known that selective security, where the adversary commits to n-bits of information about his future choices, automatically implies adaptive security at the cost of amplifying the adversary’s advantage by a factor of up to 2n. However, in some cases the proof of selective security proceeds via a sequence of hybrids, where each pair of adjacent hybrids locally only requires some smaller partial information consisting of m ≪ n bits. The partial information needed might be completely different between different pairs of hybrids, and if we look across all the hybrids we might rely on the entire n-bit commitment. Nevertheless, the above is sufficient to prove adaptive security, at the cost of amplifying the adversary’s advantage by a factor of only 2m ≪ 2n. In all of our examples using the above framework, the different hybrids are captured by some sort of a graph pebbling game and the amount of information that the adversary needs to commit to in each pair of hybrids is bounded by the maximum number of pebbles in play at any point in time. Therefore, coming up with better strategies for proving adaptive security translates to various pebbling strategies for different types of graphs.
AU - Jafargholi, Zahra
AU - Kamath Hosdurg, Chethan
AU - Klein, Karen
AU - Komargodski, Ilan
AU - Pietrzak, Krzysztof Z
AU - Wichs, Daniel
ED - Katz, Jonathan
ED - Shacham, Hovav
ID - 637
SN - 978-331963687-0
TI - Be adaptive avoid overcommitting
VL - 10401
ER -
TY - CONF
AB - Data-independent Memory Hard Functions (iMHFS) are finding a growing number of applications in security; especially in the domain of password hashing. An important property of a concrete iMHF is specified by fixing a directed acyclic graph (DAG) Gn on n nodes. The quality of that iMHF is then captured by the following two pebbling complexities of Gn: – The parallel cumulative pebbling complexity Π∥cc(Gn) must be as high as possible (to ensure that the amortized cost of computing the function on dedicated hardware is dominated by the cost of memory). – The sequential space-time pebbling complexity Πst(Gn) should be as close as possible to Π∥cc(Gn) (to ensure that using many cores in parallel and amortizing over many instances does not give much of an advantage). In this paper we construct a family of DAGs with best possible parameters in an asymptotic sense, i.e., where Π∥cc(Gn) = Ω(n2/ log(n)) (which matches a known upper bound) and Πst(Gn) is within a constant factor of Π∥cc(Gn). Our analysis relies on a new connection between the pebbling complexity of a DAG and its depth-robustness (DR) – a well studied combinatorial property. We show that high DR is sufficient for high Π∥cc. Alwen and Blocki (CRYPTO’16) showed that high DR is necessary and so, together, these results fully characterize DAGs with high Π∥cc in terms of DR. Complementing these results, we provide new upper and lower bounds on the Π∥cc of several important candidate iMHFs from the literature. We give the first lower bounds on the memory hardness of the Catena and Balloon Hashing functions in a parallel model of computation and we give the first lower bounds of any kind for (a version) of Argon2i. Finally we describe a new class of pebbling attacks improving on those of Alwen and Blocki (CRYPTO’16). By instantiating these attacks we upperbound the Π∥cc of the Password Hashing Competition winner Argon2i and one of the Balloon Hashing functions by O (n1.71). We also show an upper bound of O(n1.625) for the Catena functions and the two remaining Balloon Hashing functions.
AU - Alwen, Joel F
AU - Blocki, Jeremiah
AU - Pietrzak, Krzysztof Z
ED - Coron, Jean-Sébastien
ED - Buus Nielsen, Jesper
ID - 640
SN - 978-331956616-0
TI - Depth-robust graphs and their cumulative memory complexity
VL - 10212
ER -
TY - CONF
AB - De, Trevisan and Tulsiani [CRYPTO 2010] show that every distribution over n-bit strings which has constant statistical distance to uniform (e.g., the output of a pseudorandom generator mapping n-1 to n bit strings), can be distinguished from the uniform distribution with advantage epsilon by a circuit of size O( 2^n epsilon^2). We generalize this result, showing that a distribution which has less than k bits of min-entropy, can be distinguished from any distribution with k bits of delta-smooth min-entropy with advantage epsilon by a circuit of size O(2^k epsilon^2/delta^2). As a special case, this implies that any distribution with support at most 2^k (e.g., the output of a pseudoentropy generator mapping k to n bit strings) can be distinguished from any given distribution with min-entropy k+1 with advantage epsilon by a circuit of size O(2^k epsilon^2). Our result thus shows that pseudoentropy distributions face basically the same non-uniform attacks as pseudorandom distributions.
AU - Pietrzak, Krzysztof Z
AU - Skórski, Maciej
ID - 697
SN - 18688969
TI - Non uniform attacks against pseudoentropy
VL - 80
ER -
TY - JOUR
AB - We construct efficient authentication protocols and message authentication codes (MACs) whose security can be reduced to the learning parity with noise (LPN) problem. Despite a large body of work—starting with the (Formula presented.) protocol of Hopper and Blum in 2001—until now it was not even known how to construct an efficient authentication protocol from LPN which is secure against man-in-the-middle attacks. A MAC implies such a (two-round) protocol.
AU - Kiltz, Eike
AU - Pietrzak, Krzysztof Z
AU - Venturi, Daniele
AU - Cash, David
AU - Jain, Abhishek
ID - 1187
IS - 4
JF - Journal of Cryptology
TI - Efficient authentication from hard learning problems
VL - 30
ER -
TY - JOUR
AB - Most entropy notions H(.) like Shannon or min-entropy satisfy a chain rule stating that for random variables X,Z, and A we have H(X|Z,A)≥H(X|Z)−|A|. That is, by conditioning on A the entropy of X can decrease by at most the bitlength |A| of A. Such chain rules are known to hold for some computational entropy notions like Yao’s and unpredictability-entropy. For HILL entropy, the computational analogue of min-entropy, the chain rule is of special interest and has found many applications, including leakage-resilient cryptography, deterministic encryption, and memory delegation. These applications rely on restricted special cases of the chain rule. Whether the chain rule for conditional HILL entropy holds in general was an open problem for which we give a strong negative answer: we construct joint distributions (X,Z,A), where A is a distribution over a single bit, such that the HILL entropy H HILL (X|Z) is large but H HILL (X|Z,A) is basically zero.
Our counterexample just makes the minimal assumption that NP⊈P/poly. Under the stronger assumption that injective one-way function exist, we can make all the distributions efficiently samplable.
Finally, we show that some more sophisticated cryptographic objects like lossy functions can be used to sample a distribution constituting a counterexample to the chain rule making only a single invocation to the underlying object.
AU - Krenn, Stephan
AU - Pietrzak, Krzysztof Z
AU - Wadia, Akshay
AU - Wichs, Daniel
ID - 1479
IS - 3
JF - Computational Complexity
TI - A counterexample to the chain rule for conditional HILL entropy
VL - 25
ER -