--- _id: '14796' abstract: - lang: eng text: Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer–specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer–specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step. acknowledgement: "We thank J. Galindo, M. Montaño-Rendón, N. Mikhailova, A. Blakeslee, E. Arnason, and P. Kemppainen for providing samples; R. Turney, G. Sotelo, J. Larsson, T. Broquet, and S. Loisel for help collecting samples; Science Animated for providing the snail cartoons shown in Fig. 1; M. Dunning for help in developing bioinformatic pipelines; R. Faria, H. Morales, and V. Sousa for advice; and M. Hahn, J. Slate, M. Ravinet, J. Raeymaekers, A. Comeault, and N. Barton for feedback on a draft manuscript.\r\nThis work was supported by the Natural Environment Research Council (grant NE/P001610/1 to R.K.B.), the European Research Council (grant ERC-2015-AdG693030-BARRIERS to R.K.B.), the Norwegian Research Council (RCN Project 315287 to A.M.W.), and the Swedish Research Council (grant 2020-05385 to E.L.)." article_processing_charge: No article_type: original author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Zuzanna B. full_name: Zagrodzka, Zuzanna B. last_name: Zagrodzka - first_name: Martin D. full_name: Garlovsky, Martin D. last_name: Garlovsky - first_name: Arka full_name: Pal, Arka id: 6AAB2240-CA9A-11E9-9C1A-D9D1E5697425 last_name: Pal orcid: 0000-0002-4530-8469 - first_name: Daria full_name: Shipilina, Daria id: 428A94B0-F248-11E8-B48F-1D18A9856A87 last_name: Shipilina orcid: 0000-0002-1145-9226 - first_name: Diego Fernando full_name: Garcia Castillo, Diego Fernando id: ae681a14-dc74-11ea-a0a7-c6ef18161701 last_name: Garcia Castillo - first_name: Hila full_name: Lifchitz, Hila id: d6ab5470-2fb3-11ed-8633-986a9b84edac last_name: Lifchitz - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Erica full_name: Leder, Erica last_name: Leder - first_name: James full_name: Reeve, James last_name: Reeve - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Stankowski S, Zagrodzka ZB, Garlovsky MD, et al. The genetic basis of a recent transition to live-bearing in marine snails. Science. 2024;383(6678):114-119. doi:10.1126/science.adi2982 apa: Stankowski, S., Zagrodzka, Z. B., Garlovsky, M. D., Pal, A., Shipilina, D., Garcia Castillo, D. F., … Butlin, R. K. (2024). The genetic basis of a recent transition to live-bearing in marine snails. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adi2982 chicago: Stankowski, Sean, Zuzanna B. Zagrodzka, Martin D. Garlovsky, Arka Pal, Daria Shipilina, Diego Fernando Garcia Castillo, Hila Lifchitz, et al. “The Genetic Basis of a Recent Transition to Live-Bearing in Marine Snails.” Science. American Association for the Advancement of Science, 2024. https://doi.org/10.1126/science.adi2982. ieee: S. Stankowski et al., “The genetic basis of a recent transition to live-bearing in marine snails,” Science, vol. 383, no. 6678. American Association for the Advancement of Science, pp. 114–119, 2024. ista: Stankowski S, Zagrodzka ZB, Garlovsky MD, Pal A, Shipilina D, Garcia Castillo DF, Lifchitz H, Le Moan A, Leder E, Reeve J, Johannesson K, Westram AM, Butlin RK. 2024. The genetic basis of a recent transition to live-bearing in marine snails. Science. 383(6678), 114–119. mla: Stankowski, Sean, et al. “The Genetic Basis of a Recent Transition to Live-Bearing in Marine Snails.” Science, vol. 383, no. 6678, American Association for the Advancement of Science, 2024, pp. 114–19, doi:10.1126/science.adi2982. short: S. Stankowski, Z.B. Zagrodzka, M.D. Garlovsky, A. Pal, D. Shipilina, D.F. Garcia Castillo, H. Lifchitz, A. Le Moan, E. Leder, J. Reeve, K. Johannesson, A.M. Westram, R.K. Butlin, Science 383 (2024) 114–119. date_created: 2024-01-14T23:00:56Z date_published: 2024-01-05T00:00:00Z date_updated: 2024-03-05T09:35:25Z day: '05' department: - _id: NiBa - _id: GradSch doi: 10.1126/science.adi2982 external_id: pmid: - '38175895' intvolume: ' 383' issue: '6678' language: - iso: eng month: '01' oa_version: None page: 114-119 pmid: 1 publication: Science publication_identifier: eissn: - 1095-9203 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/the-snail-or-the-egg/ record: - id: '14812' relation: research_data status: public scopus_import: '1' status: public title: The genetic basis of a recent transition to live-bearing in marine snails type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 383 year: '2024' ... --- _id: '15099' abstract: - lang: eng text: Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems. acknowledgement: KJ, MR, and RKB were supported by grants from the Swedish Research Council (2021-0419, 2021-05243, and 2018-03695, respectively). RKB was also supported by the Leverhulme Trust (RPG-2021-141), RF by FCT- Portuguese Science Foundation (PTDC/BIA-EVL/1614/2021 and 2020.00275.CEECIND), and AMW by Norwegian Research Council RCN (Project number 315287). We thank the members of the Integration of Speciation Research network for stimulating discussions, the Littorina research community for important contributions of data and analyses, and Cynthia Riginos for useful comments on an earlier draft. article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski citation: ama: Johannesson K, Faria R, Le Moan A, et al. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. 2024. doi:10.1016/j.tig.2024.01.002 apa: Johannesson, K., Faria, R., Le Moan, A., Rafajlović, M., Westram, A. M., Butlin, R. K., & Stankowski, S. (2024). Diverse pathways to speciation revealed by marine snails. Trends in Genetics. Cell Press. https://doi.org/10.1016/j.tig.2024.01.002 chicago: Johannesson, Kerstin, Rui Faria, Alan Le Moan, Marina Rafajlović, Anja M Westram, Roger K. Butlin, and Sean Stankowski. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics. Cell Press, 2024. https://doi.org/10.1016/j.tig.2024.01.002. ieee: K. Johannesson et al., “Diverse pathways to speciation revealed by marine snails,” Trends in Genetics. Cell Press, 2024. ista: Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin RK, Stankowski S. 2024. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. mla: Johannesson, Kerstin, et al. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics, Cell Press, 2024, doi:10.1016/j.tig.2024.01.002. short: K. Johannesson, R. Faria, A. Le Moan, M. Rafajlović, A.M. Westram, R.K. Butlin, S. Stankowski, Trends in Genetics (2024). date_created: 2024-03-10T23:00:54Z date_published: 2024-02-22T00:00:00Z date_updated: 2024-03-13T12:08:57Z day: '22' ddc: - '570' department: - _id: NiBa doi: 10.1016/j.tig.2024.01.002 external_id: pmid: - '38395682' has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.tig.2024.01.002 month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Trends in Genetics publication_identifier: eissn: - 1362-4555 issn: - 0168-9525 publication_status: epub_ahead publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Diverse pathways to speciation revealed by marine snails tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '11479' abstract: - lang: eng text: Understanding population divergence that eventually leads to speciation is essential for evolutionary biology. High species diversity in the sea was regarded as a paradox when strict allopatry was considered necessary for most speciation events because geographical barriers seemed largely absent in the sea, and many marine species have high dispersal capacities. Combining genome-wide data with demographic modelling to infer the demographic history of divergence has introduced new ways to address this classical issue. These models assume an ancestral population that splits into two subpopulations diverging according to different scenarios that allow tests for periods of gene flow. Models can also test for heterogeneities in population sizes and migration rates along the genome to account, respectively, for background selection and selection against introgressed ancestry. To investigate how barriers to gene flow arise in the sea, we compiled studies modelling the demographic history of divergence in marine organisms and extracted preferred demographic scenarios together with estimates of demographic parameters. These studies show that geographical barriers to gene flow do exist in the sea but that divergence can also occur without strict isolation. Heterogeneity of gene flow was detected in most population pairs suggesting the predominance of semipermeable barriers during divergence. We found a weak positive relationship between the fraction of the genome experiencing reduced gene flow and levels of genome-wide differentiation. Furthermore, we found that the upper bound of the ‘grey zone of speciation’ for our dataset extended beyond that found before, implying that gene flow between diverging taxa is possible at higher levels of divergence than previously thought. Finally, we list recommendations for further strengthening the use of demographic modelling in speciation research. These include a more balanced representation of taxa, more consistent and comprehensive modelling, clear reporting of results and simulation studies to rule out nonbiological explanations for general results. acknowledgement: 'We greatly thank all the corresponding authors of the studies that were included in our synthesis for the sharing of additional data: Thomas Broquet, Dmitry Filatov, Quentin Rougemont, Paolo Momigliano, Pierre-Alexandre Gagnaire, Carlos Prada, Ahmed Souissi, Michael Møller Hansen, Sylvie Lapègue, Joseph Di Battista, Michael Hellberg and Carlos Prada. RKB and ADJ were supported by the European Research Council. MR was supported by the Swedish Research Council Vetenskapsrådet (grant number 2021-05243; to MR) and Formas (grant number 2019-00882; to KJ and MR), and by additional grants from the European Research Council (to RKB) and Vetenskapsrådet (to KJ) through the Centre for Marine Evolutionary Biology (https://www.gu.se/en/cemeb-marine-evolutionary-biology).' article_processing_charge: No article_type: original author: - first_name: Aurélien full_name: De Jode, Aurélien last_name: De Jode - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 citation: ama: De Jode A, Le Moan A, Johannesson K, et al. Ten years of demographic modelling of divergence and speciation in the sea. Evolutionary Applications. 2023;16(2):542-559. doi:10.1111/eva.13428 apa: De Jode, A., Le Moan, A., Johannesson, K., Faria, R., Stankowski, S., Westram, A. M., … Fraisse, C. (2023). Ten years of demographic modelling of divergence and speciation in the sea. Evolutionary Applications. Wiley. https://doi.org/10.1111/eva.13428 chicago: De Jode, Aurélien, Alan Le Moan, Kerstin Johannesson, Rui Faria, Sean Stankowski, Anja M Westram, Roger K. Butlin, Marina Rafajlović, and Christelle Fraisse. “Ten Years of Demographic Modelling of Divergence and Speciation in the Sea.” Evolutionary Applications. Wiley, 2023. https://doi.org/10.1111/eva.13428. ieee: A. De Jode et al., “Ten years of demographic modelling of divergence and speciation in the sea,” Evolutionary Applications, vol. 16, no. 2. Wiley, pp. 542–559, 2023. ista: De Jode A, Le Moan A, Johannesson K, Faria R, Stankowski S, Westram AM, Butlin RK, Rafajlović M, Fraisse C. 2023. Ten years of demographic modelling of divergence and speciation in the sea. Evolutionary Applications. 16(2), 542–559. mla: De Jode, Aurélien, et al. “Ten Years of Demographic Modelling of Divergence and Speciation in the Sea.” Evolutionary Applications, vol. 16, no. 2, Wiley, 2023, pp. 542–59, doi:10.1111/eva.13428. short: A. De Jode, A. Le Moan, K. Johannesson, R. Faria, S. Stankowski, A.M. Westram, R.K. Butlin, M. Rafajlović, C. Fraisse, Evolutionary Applications 16 (2023) 542–559. date_created: 2022-07-03T22:01:33Z date_published: 2023-02-01T00:00:00Z date_updated: 2023-08-01T12:25:44Z day: '01' ddc: - '576' department: - _id: NiBa - _id: BeVi doi: 10.1111/eva.13428 external_id: isi: - '000815663700001' file: - access_level: open_access checksum: d4d6fa9ddf36643af994a6a757919afb content_type: application/pdf creator: dernst date_created: 2023-02-27T07:10:17Z date_updated: 2023-02-27T07:10:17Z file_id: '12685' file_name: 2023_EvolutionaryApplications_DeJode.pdf file_size: 2269822 relation: main_file success: 1 file_date_updated: 2023-02-27T07:10:17Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 542-559 publication: Evolutionary Applications publication_identifier: eissn: - 1752-4571 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Ten years of demographic modelling of divergence and speciation in the sea tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2023' ... --- _id: '14556' abstract: - lang: eng text: Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach. acknowledgement: 'We are grateful to two referees and Luke Holman for valuable comments on a previous version of our manuscript. This paper was conceived at the ESEB Progress Meeting ‘Disentangling neutral versus adaptive evolution in chromosomal inversions’, organized by ELB, KJ and TF and held at Tjärnö Marine Laboratory (Sweden) between 28 February and 3 March 2022. We are indebted to ESEB for sponsoring our workshop and to the following funding bodies for supporting our research: ERC AdG 101055327 to NHB; Swedish Research Council (VR) 2018-03695 and Leverhulme Trust RPG-2021-141 to RKB; Fundação para a Ciência e a Tecnologia (FCT) contract 2020.00275.CEECIND and research project PTDC/BIA-1232 EVL/1614/2021 to RF; Fundação para a Ciência e a Tecnologia (FCT) junior researcher contract CEECIND/02616/2018 to IF; Swiss National Science Foundation (SNSF) Ambizione #PZ00P3_185952 to KJG; National Science Foundation NSF-OCE 2043905 and NSF-DEB 1655701 to KEL; Swiss National Science Foundation (SNSF) 310030_204681 to CLP; Swedish Research Council (VR) 2021-05243 to MR; Norwegian Research Council grant 315287 to AMW; Swiss National Science Foundation (SNSF) 31003A-182262 and FZEB-0-214654 to TF. We also thank Luca Ferretti for the discussion and Eliane Zinn (Flatt lab) for help with reference formatting.' article_number: '14242' article_processing_charge: No article_type: review author: - first_name: Emma L. full_name: Berdan, Emma L. last_name: Berdan - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Roger full_name: Butlin, Roger last_name: Butlin - first_name: Brian full_name: Charlesworth, Brian last_name: Charlesworth - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Inês full_name: Fragata, Inês last_name: Fragata - first_name: Kimberly J. full_name: Gilbert, Kimberly J. last_name: Gilbert - first_name: Paul full_name: Jay, Paul last_name: Jay - first_name: Martin full_name: Kapun, Martin last_name: Kapun - first_name: Katie E. full_name: Lotterhos, Katie E. last_name: Lotterhos - first_name: Claire full_name: Mérot, Claire last_name: Mérot - first_name: Esra full_name: Durmaz Mitchell, Esra last_name: Durmaz Mitchell - first_name: Marta full_name: Pascual, Marta last_name: Pascual - first_name: Catherine L. full_name: Peichel, Catherine L. last_name: Peichel - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Stephen W. full_name: Schaeffer, Stephen W. last_name: Schaeffer - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Thomas full_name: Flatt, Thomas last_name: Flatt citation: ama: Berdan EL, Barton NH, Butlin R, et al. How chromosomal inversions reorient the evolutionary process. Journal of Evolutionary Biology. 2023. doi:10.1111/jeb.14242 apa: Berdan, E. L., Barton, N. H., Butlin, R., Charlesworth, B., Faria, R., Fragata, I., … Flatt, T. (2023). How chromosomal inversions reorient the evolutionary process. Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.14242 chicago: Berdan, Emma L., Nicholas H Barton, Roger Butlin, Brian Charlesworth, Rui Faria, Inês Fragata, Kimberly J. Gilbert, et al. “How Chromosomal Inversions Reorient the Evolutionary Process.” Journal of Evolutionary Biology. Wiley, 2023. https://doi.org/10.1111/jeb.14242. ieee: E. L. Berdan et al., “How chromosomal inversions reorient the evolutionary process,” Journal of Evolutionary Biology. Wiley, 2023. ista: Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. 2023. How chromosomal inversions reorient the evolutionary process. Journal of Evolutionary Biology., 14242. mla: Berdan, Emma L., et al. “How Chromosomal Inversions Reorient the Evolutionary Process.” Journal of Evolutionary Biology, 14242, Wiley, 2023, doi:10.1111/jeb.14242. short: E.L. Berdan, N.H. Barton, R. Butlin, B. Charlesworth, R. Faria, I. Fragata, K.J. Gilbert, P. Jay, M. Kapun, K.E. Lotterhos, C. Mérot, E. Durmaz Mitchell, M. Pascual, C.L. Peichel, M. Rafajlović, A.M. Westram, S.W. Schaeffer, K. Johannesson, T. Flatt, Journal of Evolutionary Biology (2023). date_created: 2023-11-19T23:00:55Z date_published: 2023-11-08T00:00:00Z date_updated: 2023-11-20T08:51:09Z day: '08' ddc: - '570' department: - _id: NiBa doi: 10.1111/jeb.14242 has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ main_file_link: - open_access: '1' url: https://doi.org/10.1111/jeb.14242 month: '11' oa: 1 oa_version: Published Version publication: Journal of Evolutionary Biology publication_identifier: eissn: - 1420-9101 issn: - 1010-061X publication_status: epub_ahead publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: How chromosomal inversions reorient the evolutionary process tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14742' abstract: - lang: eng text: "Chromosomal rearrangements (CRs) have been known since almost the beginning of genetics.\r\nWhile an important role for CRs in speciation has been suggested, evidence primarily stems\r\nfrom theoretical and empirical studies focusing on the microevolutionary level (i.e., on taxon\r\npairs where speciation is often incomplete). Although the role of CRs in eukaryotic speciation at\r\na macroevolutionary level has been supported by associations between species diversity and\r\nrates of evolution of CRs across phylogenies, these findings are limited to a restricted range of\r\nCRs and taxa. Now that more broadly applicable and precise CR detection approaches have\r\nbecome available, we address the challenges in filling some of the conceptual and empirical\r\ngaps between micro- and macroevolutionary studies on the role of CRs in speciation. We\r\nsynthesize what is known about the macroevolutionary impact of CRs and suggest new research avenues to overcome the pitfalls of previous studies to gain a more comprehensive understanding of the evolutionary significance of CRs in speciation across the tree of life." acknowledgement: "K.L. was funded by a Swiss National Science Foundation Eccellenza project: The evolution of strong reproductive barriers towards the completion of speciation (PCEFP3_202869). R.F.\r\nwas funded by an FCT CEEC (Fundação para a Ciênca e a Tecnologia, Concurso Estímulo ao\r\nEmprego Científico) contract (2020.00275. CEECIND) and by an FCT research project\r\n(PTDC/BIA-EVL/1614/2021). M.R. was funded by the Swedish Research Council Vetenskapsrådet (grant number 2021-05243). A.M.W. was partly funded by the Norwegian Research Council RCN. We thank Luis Silva for his help preparing Figure 1. We are grateful to Maren Wellenreuther, Daniel Bolnick, and two anonymous reviewers for their constructive feedback on an earlier version of this paper." article_number: a041447 article_processing_charge: No article_type: original author: - first_name: Kay full_name: Lucek, Kay last_name: Lucek - first_name: Mabel D. full_name: Giménez, Mabel D. last_name: Giménez - first_name: Mathieu full_name: Joron, Mathieu last_name: Joron - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Jeremy B. full_name: Searle, Jeremy B. last_name: Searle - first_name: Nora full_name: Walden, Nora last_name: Walden - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria citation: ama: 'Lucek K, Giménez MD, Joron M, et al. The impact of chromosomal rearrangements in speciation: From micro- to macroevolution. Cold Spring Harbor Perspectives in Biology. 2023;15(11). doi:10.1101/cshperspect.a041447' apa: 'Lucek, K., Giménez, M. D., Joron, M., Rafajlović, M., Searle, J. B., Walden, N., … Faria, R. (2023). The impact of chromosomal rearrangements in speciation: From micro- to macroevolution. Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory. https://doi.org/10.1101/cshperspect.a041447' chicago: 'Lucek, Kay, Mabel D. Giménez, Mathieu Joron, Marina Rafajlović, Jeremy B. Searle, Nora Walden, Anja M Westram, and Rui Faria. “The Impact of Chromosomal Rearrangements in Speciation: From Micro- to Macroevolution.” Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory, 2023. https://doi.org/10.1101/cshperspect.a041447.' ieee: 'K. Lucek et al., “The impact of chromosomal rearrangements in speciation: From micro- to macroevolution,” Cold Spring Harbor Perspectives in Biology, vol. 15, no. 11. Cold Spring Harbor Laboratory, 2023.' ista: 'Lucek K, Giménez MD, Joron M, Rafajlović M, Searle JB, Walden N, Westram AM, Faria R. 2023. The impact of chromosomal rearrangements in speciation: From micro- to macroevolution. Cold Spring Harbor Perspectives in Biology. 15(11), a041447.' mla: 'Lucek, Kay, et al. “The Impact of Chromosomal Rearrangements in Speciation: From Micro- to Macroevolution.” Cold Spring Harbor Perspectives in Biology, vol. 15, no. 11, a041447, Cold Spring Harbor Laboratory, 2023, doi:10.1101/cshperspect.a041447.' short: K. Lucek, M.D. Giménez, M. Joron, M. Rafajlović, J.B. Searle, N. Walden, A.M. Westram, R. Faria, Cold Spring Harbor Perspectives in Biology 15 (2023). date_created: 2024-01-08T12:43:48Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-08T12:52:29Z day: '01' department: - _id: NiBa - _id: BeVi doi: 10.1101/cshperspect.a041447 external_id: pmid: - '37604585' intvolume: ' 15' issue: '11' keyword: - General Biochemistry - Genetics and Molecular Biology language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/cshperspect.a041447 month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Cold Spring Harbor Perspectives in Biology publication_identifier: issn: - 1943-0264 publication_status: published publisher: Cold Spring Harbor Laboratory quality_controlled: '1' scopus_import: '1' status: public title: 'The impact of chromosomal rearrangements in speciation: From micro- to macroevolution' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2023' ... --- _id: '14833' abstract: - lang: eng text: Understanding the factors that have shaped the current distributions and diversity of species is a central and longstanding aim of evolutionary biology. The recent inclusion of genomic data into phylogeographic studies has dramatically improved our understanding in organisms where evolutionary relationships have been challenging to infer. We used whole-genome sequences to study the phylogeography of the intertidal snail Littorina saxatilis, which has successfully colonized and diversified across a broad range of coastal environments in the Northern Hemisphere amid repeated cycles of glaciation. Building on past studies based on short DNA sequences, we used genome-wide data to provide a clearer picture of the relationships among samples spanning most of the species natural range. Our results confirm the trans-Atlantic colonization of North America from Europe, and have allowed us to identify rough locations of glacial refugia and to infer likely routes of colonization within Europe. We also investigated the signals in different datasets to account for the effects of genomic architecture and non-neutral evolution, which provides new insights about diversification of four ecotypes of L. saxatilis (the crab, wave, barnacle, and brackish ecotypes) at different spatial scales. Overall, we provide a much clearer picture of the biogeography of L. saxatilis, providing a foundation for more detailed phylogenomic and demographic studies. acknowledgement: Isobel Eyres, Richard Turney, Graciela Sotelo, Jenny Larson, and Stéphane Loisel helped with the collection and processing of samples. Petri Kemppainen kindly provided samples from Trondheim Fjord. Mark Dunning helped with the development of bioinformatic pipelines. The analysis of genomic data was conducted on the University of Sheffield high-performance computing cluster, ShARC. Funding was provided by the Natural Environment Research Council (NERC) and the European Research Council (ERC). J.G. was funded by a Juntas Industriales y Navales (JIN) project (Ministerio de Ciencia, Innovación y Universidades, code RTI2018-101274-J-I00). article_number: kzad002 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Zuzanna B full_name: Zagrodzka, Zuzanna B last_name: Zagrodzka - first_name: Juan full_name: Galindo, Juan last_name: Galindo - first_name: Mauricio full_name: Montaño-Rendón, Mauricio last_name: Montaño-Rendón - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Natalia full_name: Mikhailova, Natalia last_name: Mikhailova - first_name: April M H full_name: Blakeslee, April M H last_name: Blakeslee - first_name: Einar full_name: Arnason, Einar last_name: Arnason - first_name: Thomas full_name: Broquet, Thomas last_name: Broquet - first_name: Hernán E full_name: Morales, Hernán E last_name: Morales - first_name: John W full_name: Grahame, John W last_name: Grahame - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K full_name: Butlin, Roger K last_name: Butlin citation: ama: Stankowski S, Zagrodzka ZB, Galindo J, et al. Whole-genome phylogeography of the intertidal snail Littorina saxatilis. Evolutionary Journal of the Linnean Society. 2023;2(1). doi:10.1093/evolinnean/kzad002 apa: Stankowski, S., Zagrodzka, Z. B., Galindo, J., Montaño-Rendón, M., Faria, R., Mikhailova, N., … Butlin, R. K. (2023). Whole-genome phylogeography of the intertidal snail Littorina saxatilis. Evolutionary Journal of the Linnean Society. Oxford University Press. https://doi.org/10.1093/evolinnean/kzad002 chicago: Stankowski, Sean, Zuzanna B Zagrodzka, Juan Galindo, Mauricio Montaño-Rendón, Rui Faria, Natalia Mikhailova, April M H Blakeslee, et al. “Whole-Genome Phylogeography of the Intertidal Snail Littorina Saxatilis.” Evolutionary Journal of the Linnean Society. Oxford University Press, 2023. https://doi.org/10.1093/evolinnean/kzad002. ieee: S. Stankowski et al., “Whole-genome phylogeography of the intertidal snail Littorina saxatilis,” Evolutionary Journal of the Linnean Society, vol. 2, no. 1. Oxford University Press, 2023. ista: Stankowski S, Zagrodzka ZB, Galindo J, Montaño-Rendón M, Faria R, Mikhailova N, Blakeslee AMH, Arnason E, Broquet T, Morales HE, Grahame JW, Westram AM, Johannesson K, Butlin RK. 2023. Whole-genome phylogeography of the intertidal snail Littorina saxatilis. Evolutionary Journal of the Linnean Society. 2(1), kzad002. mla: Stankowski, Sean, et al. “Whole-Genome Phylogeography of the Intertidal Snail Littorina Saxatilis.” Evolutionary Journal of the Linnean Society, vol. 2, no. 1, kzad002, Oxford University Press, 2023, doi:10.1093/evolinnean/kzad002. short: S. Stankowski, Z.B. Zagrodzka, J. Galindo, M. Montaño-Rendón, R. Faria, N. Mikhailova, A.M.H. Blakeslee, E. Arnason, T. Broquet, H.E. Morales, J.W. Grahame, A.M. Westram, K. Johannesson, R.K. Butlin, Evolutionary Journal of the Linnean Society 2 (2023). date_created: 2024-01-18T07:54:10Z date_published: 2023-08-17T00:00:00Z date_updated: 2024-01-23T08:13:43Z day: '17' ddc: - '570' department: - _id: NiBa doi: 10.1093/evolinnean/kzad002 file: - access_level: open_access checksum: ba6f9102d3a9fe6631c4fa398c5e4313 content_type: application/pdf creator: dernst date_created: 2024-01-23T08:10:00Z date_updated: 2024-01-23T08:10:00Z file_id: '14875' file_name: 2023_EvolJourLinneanSociety_Stankowski.pdf file_size: 3408944 relation: main_file success: 1 file_date_updated: 2024-01-23T08:10:00Z has_accepted_license: '1' intvolume: ' 2' issue: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version publication: Evolutionary Journal of the Linnean Society publication_identifier: eissn: - 2752-938X publication_status: published publisher: Oxford University Press quality_controlled: '1' status: public title: Whole-genome phylogeography of the intertidal snail Littorina saxatilis tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2023' ... --- _id: '10926' abstract: - lang: eng text: Conflict over reproduction between females and males exists because of anisogamy and promiscuity. Together they generate differences in fitness optima between the sexes and result in antagonistic coevolution of female and male reproductive traits. Mounting duration is likely to be a compromise between male and female interests whose outcome depends on the intensity of sexual selection. The timing of sperm transfer during mounting is critical. For example, mountings may be interrupted before sperm is transferred as a consequence of female or male choice, or they may be prolonged to function as mate guarding. In the highly promiscuous intertidal snail Littorina saxatilis, mountings vary substantially in duration, from less than a minute to more than an hour, and it has been assumed that mountings of a few minutes do not result in any sperm being transferred. Here, we examined the timing of sperm transfer, a reproductive trait that is likely affected by sexual conflict. We performed time-controlled mounting trials using L. saxatilis males and virgin females, aiming to examine indirectly when the transfer of sperm starts. We observed the relationship between mounting duration and the proportion of developing embryos out of all eggs and embryos in the brood pouch. Developing embryos were observed in similar proportions in all treatments (i.e. 1, 5 and 10 or more minutes at which mountings were artificially interrupted), suggesting that sperm transfer begins rapidly (within 1 min) in L. saxatilis and very short matings do not result in sperm shortage in the females. We discuss how the observed pattern can be influenced by predation risk, population density, and female status and receptivity. article_number: eyab049 article_processing_charge: No article_type: original author: - first_name: Samuel full_name: Perini, Samuel last_name: Perini - first_name: Rogerk full_name: Butlin, Rogerk last_name: Butlin - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson citation: ama: Perini S, Butlin R, Westram AM, Johannesson K. Very short mountings are enough for sperm transfer in Littorina saxatilis. Journal of Molluscan Studies. 2022;88(1). doi:10.1093/mollus/eyab049 apa: Perini, S., Butlin, R., Westram, A. M., & Johannesson, K. (2022). Very short mountings are enough for sperm transfer in Littorina saxatilis. Journal of Molluscan Studies. Oxford Academic. https://doi.org/10.1093/mollus/eyab049 chicago: Perini, Samuel, Rogerk Butlin, Anja M Westram, and Kerstin Johannesson. “Very Short Mountings Are Enough for Sperm Transfer in Littorina Saxatilis.” Journal of Molluscan Studies. Oxford Academic, 2022. https://doi.org/10.1093/mollus/eyab049. ieee: S. Perini, R. Butlin, A. M. Westram, and K. Johannesson, “Very short mountings are enough for sperm transfer in Littorina saxatilis,” Journal of Molluscan Studies, vol. 88, no. 1. Oxford Academic, 2022. ista: Perini S, Butlin R, Westram AM, Johannesson K. 2022. Very short mountings are enough for sperm transfer in Littorina saxatilis. Journal of Molluscan Studies. 88(1), eyab049. mla: Perini, Samuel, et al. “Very Short Mountings Are Enough for Sperm Transfer in Littorina Saxatilis.” Journal of Molluscan Studies, vol. 88, no. 1, eyab049, Oxford Academic, 2022, doi:10.1093/mollus/eyab049. short: S. Perini, R. Butlin, A.M. Westram, K. Johannesson, Journal of Molluscan Studies 88 (2022). date_created: 2022-03-27T22:01:46Z date_published: 2022-03-01T00:00:00Z date_updated: 2023-08-03T06:23:13Z day: '01' department: - _id: BeVi doi: 10.1093/mollus/eyab049 external_id: isi: - '000759081600002' intvolume: ' 88' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://eprints.whiterose.ac.uk/187332/ month: '03' oa: 1 oa_version: Submitted Version publication: Journal of Molluscan Studies publication_identifier: eissn: - 1464-3766 issn: - 0260-1230 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Very short mountings are enough for sperm transfer in Littorina saxatilis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 88 year: '2022' ... --- _id: '11334' abstract: - lang: eng text: Hybridization is a common evolutionary process with multiple possible outcomes. In vertebrates, interspecific hybridization has repeatedly generated parthenogenetic hybrid species. However, it is unknown whether the generation of parthenogenetic hybrids is a rare outcome of frequent hybridization between sexual species within a genus or the typical outcome of rare hybridization events. Darevskia is a genus of rock lizards with both hybrid parthenogenetic and sexual species. Using capture sequencing, we estimate phylogenetic relationships and gene flow among the sexual species, to determine how introgressive hybridization relates to the origins of parthenogenetic hybrids. We find evidence for widespread hybridization with gene flow, both between recently diverged species and deep branches. Surprisingly, we find no signal of gene flow between parental species of the parthenogenetic hybrids, suggesting that the parental pairs were either reproductively or geographically isolated early in their divergence. The generation of parthenogenetic hybrids in Darevskia is, then, a rare outcome of the total occurrence of hybridization within the genus, but the typical outcome when specific species pairs hybridize. Our results question the conventional view that parthenogenetic lineages are generated by hybridization in a window of divergence. Instead, they suggest that some lineages possess specific properties that underpin successful parthenogenetic reproduction. acknowledgement: "The authors thank A. van der Meijden and F. Ahmadzadeh for providing specimens and tissue samples, and A. Vardanyan, C. Corti, F. Jorge, and S. Drovetski for support during field work. The authors also thank S. Qiu for assistance with python scripting, S. Rocha for her support in BEAST analysis, and B. Wielstra for his comments on\r\na previous version of the manuscript. SF was funded by FCT grant SFRH/BD/81483/2011 (a PhD individual grant). AMW was funded by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 797747. TS acknowledges funding from the Swiss National Science Foundation (grants\r\nPP00P3_170627 and 31003A_182495). The work was carried out under financial support of the projects “Preserving Armenian biodiversity: Joint Portuguese – Armenian program for training in modern conservation biology” of Gulbenkian Foundation (Portugal) and PTDC/BIABEC/101256/2008 of Fundação para a Ciência e a Tecnologia (FCT, Portugal)." article_processing_charge: No article_type: original author: - first_name: Susana full_name: Freitas, Susana last_name: Freitas - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Tanja full_name: Schwander, Tanja last_name: Schwander - first_name: Marine full_name: Arakelyan, Marine last_name: Arakelyan - first_name: Çetin full_name: Ilgaz, Çetin last_name: Ilgaz - first_name: Yusuf full_name: Kumlutas, Yusuf last_name: Kumlutas - first_name: David James full_name: Harris, David James last_name: Harris - first_name: Miguel A. full_name: Carretero, Miguel A. last_name: Carretero - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Freitas S, Westram AM, Schwander T, et al. Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution. 2022;76(5):899-914. doi:10.1111/evo.14462' apa: 'Freitas, S., Westram, A. M., Schwander, T., Arakelyan, M., Ilgaz, Ç., Kumlutas, Y., … Butlin, R. K. (2022). Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution. Wiley. https://doi.org/10.1111/evo.14462' chicago: 'Freitas, Susana, Anja M Westram, Tanja Schwander, Marine Arakelyan, Çetin Ilgaz, Yusuf Kumlutas, David James Harris, Miguel A. Carretero, and Roger K. Butlin. “Parthenogenesis in Darevskia Lizards: A Rare Outcome of Common Hybridization, Not a Common Outcome of Rare Hybridization.” Evolution. Wiley, 2022. https://doi.org/10.1111/evo.14462.' ieee: 'S. Freitas et al., “Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization,” Evolution, vol. 76, no. 5. Wiley, pp. 899–914, 2022.' ista: 'Freitas S, Westram AM, Schwander T, Arakelyan M, Ilgaz Ç, Kumlutas Y, Harris DJ, Carretero MA, Butlin RK. 2022. Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution. 76(5), 899–914.' mla: 'Freitas, Susana, et al. “Parthenogenesis in Darevskia Lizards: A Rare Outcome of Common Hybridization, Not a Common Outcome of Rare Hybridization.” Evolution, vol. 76, no. 5, Wiley, 2022, pp. 899–914, doi:10.1111/evo.14462.' short: S. Freitas, A.M. Westram, T. Schwander, M. Arakelyan, Ç. Ilgaz, Y. Kumlutas, D.J. Harris, M.A. Carretero, R.K. Butlin, Evolution 76 (2022) 899–914. date_created: 2022-04-24T22:01:44Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-08-03T07:00:28Z day: '01' ddc: - '570' department: - _id: NiBa - _id: BeVi doi: 10.1111/evo.14462 ec_funded: 1 external_id: isi: - '000781632500001' pmid: - '35323995' file: - access_level: open_access checksum: c27c025ae9afcf6c804d46a909775ee5 content_type: application/pdf creator: dernst date_created: 2022-08-05T06:19:28Z date_updated: 2022-08-05T06:19:28Z file_id: '11729' file_name: 2022_Evolution_Freitas.pdf file_size: 2855214 relation: main_file success: 1 file_date_updated: 2022-08-05T06:19:28Z has_accepted_license: '1' intvolume: ' 76' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 899-914 pmid: 1 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 76 year: '2022' ... --- _id: '11546' abstract: - lang: eng text: Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. acknowledgement: We thank the editor and two anonymous reviewers for their helpful and interesting comments on this manuscript. article_number: '20210203' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Westram AM, Faria R, Johannesson K, Butlin R, Barton NH. Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022;377(1856). doi:10.1098/rstb.2021.0203' apa: 'Westram, A. M., Faria, R., Johannesson, K., Butlin, R., & Barton, N. H. (2022). Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society of London. https://doi.org/10.1098/rstb.2021.0203' chicago: 'Westram, Anja M, Rui Faria, Kerstin Johannesson, Roger Butlin, and Nicholas H Barton. “Inversions and Parallel Evolution.” Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society of London, 2022. https://doi.org/10.1098/rstb.2021.0203.' ieee: 'A. M. Westram, R. Faria, K. Johannesson, R. Butlin, and N. H. Barton, “Inversions and parallel evolution,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1856. Royal Society of London, 2022.' ista: 'Westram AM, Faria R, Johannesson K, Butlin R, Barton NH. 2022. Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 377(1856), 20210203.' mla: 'Westram, Anja M., et al. “Inversions and Parallel Evolution.” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1856, 20210203, Royal Society of London, 2022, doi:10.1098/rstb.2021.0203.' short: 'A.M. Westram, R. Faria, K. Johannesson, R. Butlin, N.H. Barton, Philosophical Transactions of the Royal Society B: Biological Sciences 377 (2022).' date_created: 2022-07-08T11:41:56Z date_published: 2022-08-01T00:00:00Z date_updated: 2023-08-03T11:55:42Z day: '01' ddc: - '570' department: - _id: BeVi - _id: NiBa doi: 10.1098/rstb.2021.0203 external_id: isi: - '000812317300005' file: - access_level: open_access checksum: 49f69428f3dcf5ce3ff281f7d199e9df content_type: application/pdf creator: dernst date_created: 2023-02-02T08:20:29Z date_updated: 2023-02-02T08:20:29Z file_id: '12479' file_name: 2022_PhilosophicalTransactionsB_Westram.pdf file_size: 920304 relation: main_file success: 1 file_date_updated: 2023-02-02T08:20:29Z has_accepted_license: '1' intvolume: ' 377' isi: 1 issue: '1856' keyword: - General Agricultural and Biological Sciences - General Biochemistry - Genetics and Molecular Biology language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 05959E1C-7A3F-11EA-A408-12923DDC885E grant_number: P32166 name: The maintenance of alternative adaptive peaks in snapdragons publication: 'Philosophical Transactions of the Royal Society B: Biological Sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: Royal Society of London quality_controlled: '1' scopus_import: '1' status: public title: Inversions and parallel evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 377 year: '2022' ... --- _id: '12001' abstract: - lang: eng text: 'Sexual antagonism is a common hypothesis for driving the evolution of sex chromosomes, whereby recombination suppression is favored between sexually antagonistic loci and the sex-determining locus to maintain beneficial combinations of alleles. This results in the formation of a sex-determining region. Chromosomal inversions may contribute to recombination suppression but their precise role in sex chromosome evolution remains unclear. Because local adaptation is frequently facilitated through the suppression of recombination between adaptive loci by chromosomal inversions, there is potential for inversions that cover sex-determining regions to be involved in local adaptation as well, particularly if habitat variation creates environment-dependent sexual antagonism. With these processes in mind, we investigated sex determination in a well-studied example of local adaptation within a species: the intertidal snail, Littorina saxatilis. Using SNP data from a Swedish hybrid zone, we find novel evidence for a female-heterogametic sex determination system that is restricted to one ecotype. Our results suggest that four putative chromosomal inversions, two previously described and two newly discovered, span the putative sex chromosome pair. We determine their differing associations with sex, which suggest distinct strata of differing ages. The same inversions are found in the second ecotype but do not show any sex association. The striking disparity in inversion-sex associations between ecotypes that are connected by gene flow across a habitat transition that is just a few meters wide indicates a difference in selective regime that has produced a distinct barrier to the spread of the newly discovered sex-determining region between ecotypes. Such sex chromosome-environment interactions have not previously been uncovered in L. saxatilis and are known in few other organisms. A combination of both sex-specific selection and divergent natural selection is required to explain these highly unusual patterns.' acknowledgement: We thank A. Wright and four anonymous reviewers for valuable comments on an earlier draft of this manuscript and all members of the Littorina group for helpful discussions. This work was supported by a European Research Council grant to RKB and by a Natural Environment Research Council studentship to KEH through the ACCE doctoral training program. KJ acknowledges support from the Swedish Science Research Council VR (Vetenskaprådet) (2017-03798). RF was supported by an FCT CEEC (Fundação para a Ciênca e a Tecnologia, Concurso Estímulo ao Emprego Científico) contract (2020.00275.CEECIND). article_processing_charge: Yes article_type: original author: - first_name: Katherine E. full_name: Hearn, Katherine E. last_name: Hearn - first_name: Eva L. full_name: Koch, Eva L. last_name: Koch - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: Hearn KE, Koch EL, Stankowski S, et al. Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis. Evolution Letters. 2022;6(5):358-374. doi:10.1002/evl3.295 apa: Hearn, K. E., Koch, E. L., Stankowski, S., Butlin, R. K., Faria, R., Johannesson, K., & Westram, A. M. (2022). Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis. Evolution Letters. Oxford Academic. https://doi.org/10.1002/evl3.295 chicago: Hearn, Katherine E., Eva L. Koch, Sean Stankowski, Roger K. Butlin, Rui Faria, Kerstin Johannesson, and Anja M Westram. “Differing Associations between Sex Determination and Sex-Linked Inversions in Two Ecotypes of Littorina Saxatilis.” Evolution Letters. Oxford Academic, 2022. https://doi.org/10.1002/evl3.295. ieee: K. E. Hearn et al., “Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis,” Evolution Letters, vol. 6, no. 5. Oxford Academic, pp. 358–374, 2022. ista: Hearn KE, Koch EL, Stankowski S, Butlin RK, Faria R, Johannesson K, Westram AM. 2022. Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis. Evolution Letters. 6(5), 358–374. mla: Hearn, Katherine E., et al. “Differing Associations between Sex Determination and Sex-Linked Inversions in Two Ecotypes of Littorina Saxatilis.” Evolution Letters, vol. 6, no. 5, Oxford Academic, 2022, pp. 358–74, doi:10.1002/evl3.295. short: K.E. Hearn, E.L. Koch, S. Stankowski, R.K. Butlin, R. Faria, K. Johannesson, A.M. Westram, Evolution Letters 6 (2022) 358–374. date_created: 2022-08-28T22:02:02Z date_published: 2022-10-01T00:00:00Z date_updated: 2023-08-03T13:18:17Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1002/evl3.295 external_id: isi: - '000839621100001' file: - access_level: open_access checksum: 2dcd06186a11b7d1be4cddc6b189f8fb content_type: application/pdf creator: dernst date_created: 2023-02-27T07:17:42Z date_updated: 2023-02-27T07:17:42Z file_id: '12686' file_name: 2022_EvolutionLetters_Hearn.pdf file_size: 2368965 relation: main_file success: 1 file_date_updated: 2023-02-27T07:17:42Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '5' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 358-374 publication: Evolution Letters publication_identifier: eissn: - 2056-3744 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2022' ... --- _id: '12166' abstract: - lang: eng text: Kerstin Johannesson is a marine ecologist and evolutionary biologist based at the Tjärnö Marine Laboratory of the University of Gothenburg, which is situated in the beautiful Kosterhavet National Park on the Swedish west coast. Her work, using marine periwinkles (especially Littorina saxatilis and L. fabalis) as main model systems, has made a remarkable contribution to marine evolutionary biology and our understanding of local adaptation and its genetic underpinnings. article_processing_charge: No article_type: letter_note author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: Westram AM, Butlin R. Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize. Molecular Ecology. 2022;32(1):26-29. doi:10.1111/mec.16779 apa: Westram, A. M., & Butlin, R. (2022). Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.16779 chicago: Westram, Anja M, and Roger Butlin. “Professor Kerstin Johannesson–Winner of the 2022 Molecular Ecology Prize.” Molecular Ecology. Wiley, 2022. https://doi.org/10.1111/mec.16779. ieee: A. M. Westram and R. Butlin, “Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize,” Molecular Ecology, vol. 32, no. 1. Wiley, pp. 26–29, 2022. ista: Westram AM, Butlin R. 2022. Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize. Molecular Ecology. 32(1), 26–29. mla: Westram, Anja M., and Roger Butlin. “Professor Kerstin Johannesson–Winner of the 2022 Molecular Ecology Prize.” Molecular Ecology, vol. 32, no. 1, Wiley, 2022, pp. 26–29, doi:10.1111/mec.16779. short: A.M. Westram, R. Butlin, Molecular Ecology 32 (2022) 26–29. date_created: 2023-01-12T12:10:28Z date_published: 2022-11-28T00:00:00Z date_updated: 2023-08-04T09:09:15Z day: '28' department: - _id: NiBa doi: 10.1111/mec.16779 external_id: isi: - '000892168800001' intvolume: ' 32' isi: 1 issue: '1' keyword: - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/mec.16779 month: '11' oa: 1 oa_version: Published Version page: 26-29 publication: Molecular Ecology publication_identifier: eissn: - 1365-294X issn: - 0962-1083 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 32 year: '2022' ... --- _id: '12247' abstract: - lang: eng text: Chromosomal inversions have been shown to play a major role in a local adaptation by suppressing recombination between alternative arrangements and maintaining beneficial allele combinations. However, so far, their importance relative to the remaining genome remains largely unknown. Understanding the genetic architecture of adaptation requires better estimates of how loci of different effect sizes contribute to phenotypic variation. Here, we used three Swedish islands where the marine snail Littorina saxatilis has repeatedly evolved into two distinct ecotypes along a habitat transition. We estimated the contribution of inversion polymorphisms to phenotypic divergence while controlling for polygenic effects in the remaining genome using a quantitative genetics framework. We confirmed the importance of inversions but showed that contributions of loci outside inversions are of similar magnitude, with variable proportions dependent on the trait and the population. Some inversions showed consistent effects across all sites, whereas others exhibited site-specific effects, indicating that the genomic basis for replicated phenotypic divergence is only partly shared. The contributions of sexual dimorphism as well as environmental factors to phenotypic variation were significant but minor compared to inversions and polygenic background. Overall, this integrated approach provides insight into the multiple mechanisms contributing to parallel phenotypic divergence. acknowledgement: We thank everyone who helped with fieldwork, snail processing, and DNA extractions, particularly Laura Brettell, Mårten Duvetorp, Juan Galindo, Anne-Lise Liabot, Irena Senčić, and Zuzanna Zagrodzka. We also thank Rui Faria and Jenny Larsson for their contributions, with inversions and shell shape respectively. KJ was funded by the Swedish research council Vetenskapsrådet, grant number 2017-03798. R.K.B. and E.K. were funded by the European Research Council (ERC-2015-AdG-693030-BARRIERS). R.K.B. was also funded by the Natural Environment Research Council and the Swedish Research Council Vetenskapsrådet. article_processing_charge: No article_type: original author: - first_name: Eva L. full_name: Koch, Eva L. last_name: Koch - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Koch EL, Ravinet M, Westram AM, Johannesson K, Butlin RK. Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution. Evolution. 2022;76(10):2332-2346. doi:10.1111/evo.14602 apa: Koch, E. L., Ravinet, M., Westram, A. M., Johannesson, K., & Butlin, R. K. (2022). Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution. Evolution. Wiley. https://doi.org/10.1111/evo.14602 chicago: Koch, Eva L., Mark Ravinet, Anja M Westram, Kerstin Johannesson, and Roger K. Butlin. “Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Evolution.” Evolution. Wiley, 2022. https://doi.org/10.1111/evo.14602. ieee: E. L. Koch, M. Ravinet, A. M. Westram, K. Johannesson, and R. K. Butlin, “Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution,” Evolution, vol. 76, no. 10. Wiley, pp. 2332–2346, 2022. ista: Koch EL, Ravinet M, Westram AM, Johannesson K, Butlin RK. 2022. Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution. Evolution. 76(10), 2332–2346. mla: Koch, Eva L., et al. “Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Evolution.” Evolution, vol. 76, no. 10, Wiley, 2022, pp. 2332–46, doi:10.1111/evo.14602. short: E.L. Koch, M. Ravinet, A.M. Westram, K. Johannesson, R.K. Butlin, Evolution 76 (2022) 2332–2346. date_created: 2023-01-16T09:54:15Z date_published: 2022-10-01T00:00:00Z date_updated: 2023-08-04T09:42:11Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.14602 external_id: isi: - '000848449100001' pmid: - '35994296' file: - access_level: open_access checksum: defd8a4bea61cf00a3c88d4a30e2728c content_type: application/pdf creator: dernst date_created: 2023-01-30T08:45:35Z date_updated: 2023-01-30T08:45:35Z file_id: '12439' file_name: 2022_Evolution_Koch.pdf file_size: 2990581 relation: main_file success: 1 file_date_updated: 2023-01-30T08:45:35Z has_accepted_license: '1' intvolume: ' 76' isi: 1 issue: '10' keyword: - General Agricultural and Biological Sciences - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 2332-2346 pmid: 1 publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '13066' relation: research_data status: public scopus_import: '1' status: public title: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 76 year: '2022' ... --- _id: '13066' abstract: - lang: eng text: Chromosomal inversions have been shown to play a major role in local adaptation by suppressing recombination between alternative arrangements and maintaining beneficial allele combinations. However, so far, their importance relative to the remaining genome remains largely unknown. Understanding the genetic architecture of adaptation requires better estimates of how loci of different effect sizes contribute to phenotypic variation. Here, we used three Swedish islands where the marine snail Littorina saxatilis has repeatedly evolved into two distinct ecotypes along a habitat transition. We estimated the contribution of inversion polymorphisms to phenotypic divergence while controlling for polygenic effects in the remaining genome using a quantitative genetics framework. We confirmed the importance of inversions but showed that contributions of loci outside inversions are of similar magnitude, with variable proportions dependent on the trait and the population. Some inversions showed consistent effects across all sites, whereas others exhibited site-specific effects, indicating that the genomic basis for replicated phenotypic divergence is only partly shared. The contributions of sexual dimorphism as well as environmental factors to phenotypic variation were significant but minor compared to inversions and polygenic background. Overall, this integrated approach provides insight into the multiple mechanisms contributing to parallel phenotypic divergence. article_processing_charge: No author: - first_name: Eva full_name: Koch, Eva last_name: Koch - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Jonannesson, Kerstin last_name: Jonannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: 'Koch E, Ravinet M, Westram AM, Jonannesson K, Butlin R. Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution. 2022. doi:10.5061/DRYAD.M905QFV4B' apa: 'Koch, E., Ravinet, M., Westram, A. M., Jonannesson, K., & Butlin, R. (2022). Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution. Dryad. https://doi.org/10.5061/DRYAD.M905QFV4B' chicago: 'Koch, Eva, Mark Ravinet, Anja M Westram, Kerstin Jonannesson, and Roger Butlin. “Data from: Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Ecotype Evolution.” Dryad, 2022. https://doi.org/10.5061/DRYAD.M905QFV4B.' ieee: 'E. Koch, M. Ravinet, A. M. Westram, K. Jonannesson, and R. Butlin, “Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution.” Dryad, 2022.' ista: 'Koch E, Ravinet M, Westram AM, Jonannesson K, Butlin R. 2022. Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution, Dryad, 10.5061/DRYAD.M905QFV4B.' mla: 'Koch, Eva, et al. Data from: Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Ecotype Evolution. Dryad, 2022, doi:10.5061/DRYAD.M905QFV4B.' short: E. Koch, M. Ravinet, A.M. Westram, K. Jonannesson, R. Butlin, (2022). date_created: 2023-05-23T16:33:12Z date_published: 2022-07-28T00:00:00Z date_updated: 2023-08-04T09:42:10Z day: '28' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.M905QFV4B license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.m905qfv4b month: '07' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '12247' relation: used_in_publication status: public status: public title: 'Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '12264' abstract: - lang: eng text: Reproductive isolation (RI) is a core concept in evolutionary biology. It has been the central focus of speciation research since the modern synthesis and is the basis by which biological species are defined. Despite this, the term is used in seemingly different ways, and attempts to quantify RI have used very different approaches. After showing that the field lacks a clear definition of the term, we attempt to clarify key issues, including what RI is, how it can be quantified in principle, and how it can be measured in practice. Following other definitions with a genetic focus, we propose that RI is a quantitative measure of the effect that genetic differences between populations have on gene flow. Specifically, RI compares the flow of neutral alleles in the presence of these genetic differences to the flow without any such differences. RI is thus greater than zero when genetic differences between populations reduce the flow of neutral alleles between populations. We show how RI can be quantified in a range of scenarios. A key conclusion is that RI depends strongly on circumstances—including the spatial, temporal and genomic context—making it difficult to compare across systems. After reviewing methods for estimating RI from data, we conclude that it is difficult to measure in practice. We discuss our findings in light of the goals of speciation research and encourage the use of methods for estimating RI that integrate organismal and genetic approaches. acknowledgement: 'We are grateful to the participants of the ESEB satellite symposium ‘Understanding reproductive isolation: bridging conceptual barriers in speciation research’ in 2021 for the interesting discussions that helped us clarify the thoughts presented in this article. We thank Roger Butlin, Michael Turelli and two anonymous reviewers for their thoughtful comments on this manuscript. We are also very grateful to Roger Butlin and the Barton Group for the continued conversa-tions about RI. In addition, we thank all participants of the speciation survey. Part of this work was funded by the Austrian Science Fund FWF (grant P 32166)' article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Parvathy full_name: Surendranadh, Parvathy id: 455235B8-F248-11E8-B48F-1D18A9856A87 last_name: Surendranadh - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Westram AM, Stankowski S, Surendranadh P, Barton NH. What is reproductive isolation? Journal of Evolutionary Biology. 2022;35(9):1143-1164. doi:10.1111/jeb.14005 apa: Westram, A. M., Stankowski, S., Surendranadh, P., & Barton, N. H. (2022). What is reproductive isolation? Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.14005 chicago: Westram, Anja M, Sean Stankowski, Parvathy Surendranadh, and Nicholas H Barton. “What Is Reproductive Isolation?” Journal of Evolutionary Biology. Wiley, 2022. https://doi.org/10.1111/jeb.14005. ieee: A. M. Westram, S. Stankowski, P. Surendranadh, and N. H. Barton, “What is reproductive isolation?,” Journal of Evolutionary Biology, vol. 35, no. 9. Wiley, pp. 1143–1164, 2022. ista: Westram AM, Stankowski S, Surendranadh P, Barton NH. 2022. What is reproductive isolation? Journal of Evolutionary Biology. 35(9), 1143–1164. mla: Westram, Anja M., et al. “What Is Reproductive Isolation?” Journal of Evolutionary Biology, vol. 35, no. 9, Wiley, 2022, pp. 1143–64, doi:10.1111/jeb.14005. short: A.M. Westram, S. Stankowski, P. Surendranadh, N.H. Barton, Journal of Evolutionary Biology 35 (2022) 1143–1164. date_created: 2023-01-16T09:59:24Z date_published: 2022-09-01T00:00:00Z date_updated: 2023-08-04T09:53:40Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/jeb.14005 external_id: isi: - '000849851100002' pmid: - '36063156' file: - access_level: open_access checksum: f08de57112330a7ee88d2e1b20576a1e content_type: application/pdf creator: dernst date_created: 2023-01-30T10:05:31Z date_updated: 2023-01-30T10:05:31Z file_id: '12448' file_name: 2022_JourEvoBiology_Westram.pdf file_size: 3146793 relation: main_file success: 1 file_date_updated: 2023-01-30T10:05:31Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '9' keyword: - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1143-1164 pmid: 1 project: - _id: 05959E1C-7A3F-11EA-A408-12923DDC885E grant_number: P32166 name: The maintenance of alternative adaptive peaks in snapdragons publication: Journal of Evolutionary Biology publication_identifier: eissn: - 1420-9101 issn: - 1010-061X publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '12265' relation: other status: public scopus_import: '1' status: public title: What is reproductive isolation? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 35 year: '2022' ... --- _id: '12265' acknowledgement: We are very grateful to the authors of the commentaries for the interesting discussion and to Luke Holman for handling this set of manuscripts. Part of this work was funded by the Austrian Science Fund FWF (grant P 32166). article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Parvathy full_name: Surendranadh, Parvathy id: 455235B8-F248-11E8-B48F-1D18A9856A87 last_name: Surendranadh - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Westram AM, Stankowski S, Surendranadh P, Barton NH. Reproductive isolation, speciation, and the value of disagreement: A reply to the commentaries on ‘What is reproductive isolation?’ Journal of Evolutionary Biology. 2022;35(9):1200-1205. doi:10.1111/jeb.14082' apa: 'Westram, A. M., Stankowski, S., Surendranadh, P., & Barton, N. H. (2022). Reproductive isolation, speciation, and the value of disagreement: A reply to the commentaries on ‘What is reproductive isolation?’ Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.14082' chicago: 'Westram, Anja M, Sean Stankowski, Parvathy Surendranadh, and Nicholas H Barton. “Reproductive Isolation, Speciation, and the Value of Disagreement: A Reply to the Commentaries on ‘What Is Reproductive Isolation?’” Journal of Evolutionary Biology. Wiley, 2022. https://doi.org/10.1111/jeb.14082.' ieee: 'A. M. Westram, S. Stankowski, P. Surendranadh, and N. H. Barton, “Reproductive isolation, speciation, and the value of disagreement: A reply to the commentaries on ‘What is reproductive isolation?,’” Journal of Evolutionary Biology, vol. 35, no. 9. Wiley, pp. 1200–1205, 2022.' ista: 'Westram AM, Stankowski S, Surendranadh P, Barton NH. 2022. Reproductive isolation, speciation, and the value of disagreement: A reply to the commentaries on ‘What is reproductive isolation?’ Journal of Evolutionary Biology. 35(9), 1200–1205.' mla: 'Westram, Anja M., et al. “Reproductive Isolation, Speciation, and the Value of Disagreement: A Reply to the Commentaries on ‘What Is Reproductive Isolation?’” Journal of Evolutionary Biology, vol. 35, no. 9, Wiley, 2022, pp. 1200–05, doi:10.1111/jeb.14082.' short: A.M. Westram, S. Stankowski, P. Surendranadh, N.H. Barton, Journal of Evolutionary Biology 35 (2022) 1200–1205. date_created: 2023-01-16T09:59:37Z date_published: 2022-09-01T00:00:00Z date_updated: 2023-08-04T09:53:41Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/jeb.14082 external_id: isi: - '000849851100009' file: - access_level: open_access checksum: 27268009e5eec030bc10667a4ac5ed4c content_type: application/pdf creator: dernst date_created: 2023-01-30T10:14:09Z date_updated: 2023-01-30T10:14:09Z file_id: '12449' file_name: 2022_JourEvoBiology_Westram_Response.pdf file_size: 349603 relation: main_file success: 1 file_date_updated: 2023-01-30T10:14:09Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '9' keyword: - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1200-1205 project: - _id: 05959E1C-7A3F-11EA-A408-12923DDC885E grant_number: P32166 name: The maintenance of alternative adaptive peaks in snapdragons publication: Journal of Evolutionary Biology publication_identifier: eissn: - 1420-9101 issn: - 1010-061X publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '12264' relation: other status: public scopus_import: '1' status: public title: 'Reproductive isolation, speciation, and the value of disagreement: A reply to the commentaries on ‘What is reproductive isolation?’' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 35 year: '2022' ... --- _id: '9394' abstract: - lang: eng text: 'Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.' acknowledgement: 'We are very grateful to Irena Senčić for technical assistance and to Michelle Kortyna and Sean Holland at the Center for Anchored Phylogenomics for assistance with data collection. RKB was funded by the Natural Environment Research Council and by the European Research Council. KJ was funded by the Swedish Research Councils VR and Formas (Linnaeus Grant: 217‐2008‐1719). JL was funded by a studentship from the Leverhulme Centre for Advanced Biological Modelling. AMW was funded by the European Union''s Horizon 2020 research and innovation program under Marie Skłodowska‐Curie Grant agreement no. 797747. RF was funded by the European Union''s Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie Grant agreement No. 706376 and by FEDER Funds through the Operational Competitiveness Factors Program—COMPETE and by National Funds through FCT—Foundation for Science and Technology within the scope of the project “Hybrabbid” (PTDC/BIA‐EVL/30628/2017‐ POCI‐01‐0145‐FEDER‐030628). We are grateful to other members of the Littorina research group for helpful discussions. We thank Claire Mérot and an anonymous referee for insightful comments on an earlier version. ' article_processing_charge: No article_type: original author: - first_name: Eva L. full_name: Koch, Eva L. last_name: Koch - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Jenny full_name: Larsson, Jenny last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan R. full_name: Lemmon, Alan R. last_name: Lemmon - first_name: E. Moriarty full_name: Lemmon, E. Moriarty last_name: Lemmon - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Koch EL, Morales HE, Larsson J, et al. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters. 2021;5(3):196-213. doi:10.1002/evl3.227 apa: Koch, E. L., Morales, H. E., Larsson, J., Westram, A. M., Faria, R., Lemmon, A. R., … Butlin, R. K. (2021). Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters. Wiley. https://doi.org/10.1002/evl3.227 chicago: Koch, Eva L., Hernán E. Morales, Jenny Larsson, Anja M Westram, Rui Faria, Alan R. Lemmon, E. Moriarty Lemmon, Kerstin Johannesson, and Roger K. Butlin. “Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis.” Evolution Letters. Wiley, 2021. https://doi.org/10.1002/evl3.227. ieee: E. L. Koch et al., “Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis,” Evolution Letters, vol. 5, no. 3. Wiley, pp. 196–213, 2021. ista: Koch EL, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. 2021. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters. 5(3), 196–213. mla: Koch, Eva L., et al. “Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis.” Evolution Letters, vol. 5, no. 3, Wiley, 2021, pp. 196–213, doi:10.1002/evl3.227. short: E.L. Koch, H.E. Morales, J. Larsson, A.M. Westram, R. Faria, A.R. Lemmon, E.M. Lemmon, K. Johannesson, R.K. Butlin, Evolution Letters 5 (2021) 196–213. date_created: 2021-05-16T22:01:47Z date_published: 2021-05-07T00:00:00Z date_updated: 2023-08-08T13:34:08Z day: '07' ddc: - '570' department: - _id: NiBa doi: 10.1002/evl3.227 ec_funded: 1 external_id: isi: - '000647846200001' file: - access_level: open_access checksum: 023b1608e311f0fda30593ba3d0a4e0b content_type: application/pdf creator: cchlebak date_created: 2021-10-15T08:26:02Z date_updated: 2021-10-15T08:26:02Z file_id: '10142' file_name: 2021_EvolutionLetters_Koch.pdf file_size: 3021108 relation: main_file success: 1 file_date_updated: 2021-10-15T08:26:02Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '3' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 196-213 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Evolution Letters publication_identifier: eissn: - 2056-3744 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '12987' relation: research_data status: public scopus_import: '1' status: public title: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2021' ... --- _id: '12987' abstract: - lang: eng text: Chromosomal inversion polymorphisms, segments of chromosomes that are flipped in orientation and occur in reversed order in some individuals, have long been recognized to play an important role in local adaptation. They can reduce recombination in heterozygous individuals and thus help to maintain sets of locally adapted alleles. In a wide range of organisms, populations adapted to different habitats differ in frequency of inversion arrangements. However, getting a full understanding of the importance of inversions for adaptation requires confirmation of their influence on traits under divergent selection. Here, we studied a marine snail, Littorina saxatilis, that has evolved ecotypes adapted to wave exposure or crab predation. These two types occur in close proximity on different parts of the shore. Gene flow between them exists in contact zones. However, they exhibit strong phenotypic divergence in several traits under habitat-specific selection, including size, shape and behaviour. We used crosses between these ecotypes to identify genomic regions that explain variation in these traits by using QTL analysis and variance partitioning across linkage groups. We could show that previously detected inversion regions contribute to adaptive divergence. Some inversions influenced multiple traits suggesting that they contain sets of locally adaptive alleles. Our study also identified regions without known inversions that are important for phenotypic divergence. Thus, we provide a more complete overview of the importance of inversions in relation to the remaining genome. article_processing_charge: No author: - first_name: Eva full_name: Koch, Eva last_name: Koch - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Jenny full_name: Larsson, Jenny last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan R. full_name: Lemmon, Alan R. last_name: Lemmon - first_name: E. Moriarty full_name: Lemmon, E. Moriarty last_name: Lemmon - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Koch E, Morales HE, Larsson J, et al. Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. 2021. doi:10.5061/DRYAD.ZGMSBCCB4' apa: 'Koch, E., Morales, H. E., Larsson, J., Westram, A. M., Faria, R., Lemmon, A. R., … Butlin, R. K. (2021). Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Dryad. https://doi.org/10.5061/DRYAD.ZGMSBCCB4' chicago: 'Koch, Eva, Hernán E. Morales, Jenny Larsson, Anja M Westram, Rui Faria, Alan R. Lemmon, E. Moriarty Lemmon, Kerstin Johannesson, and Roger K. Butlin. “Data from: Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis.” Dryad, 2021. https://doi.org/10.5061/DRYAD.ZGMSBCCB4.' ieee: 'E. Koch et al., “Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis.” Dryad, 2021.' ista: 'Koch E, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. 2021. Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis, Dryad, 10.5061/DRYAD.ZGMSBCCB4.' mla: 'Koch, Eva, et al. Data from: Genetic Variation for Adaptive Traits Is Associated with Polymorphic Inversions in Littorina Saxatilis. Dryad, 2021, doi:10.5061/DRYAD.ZGMSBCCB4.' short: E. Koch, H.E. Morales, J. Larsson, A.M. Westram, R. Faria, A.R. Lemmon, E.M. Lemmon, K. Johannesson, R.K. Butlin, (2021). date_created: 2023-05-16T12:34:09Z date_published: 2021-04-10T00:00:00Z date_updated: 2023-08-08T13:34:07Z day: '10' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.ZGMSBCCB4 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.zgmsbccb4 month: '04' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '9394' relation: used_in_publication status: public status: public title: 'Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9470' abstract: - lang: eng text: A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance. acknowledgement: We thank the editor, two helpful reviewers, Roger Butlin, Kerstin Johannesson, Valentina Peona, Rike Stelkens, Julie Blommaert, Nick Barton, and João Alpedrinha for helpful comments that improved the manuscript. The authors acknowledge funding from the Swedish Research Council Formas (2017-01597 to AS), the Swedish Research Council Vetenskapsrådet (2016-05139 to AS, 2019-04452 to TS) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 757451 to TS). ELB was funded by a Carl Tryggers grant awarded to Tanja Slotte. Anja M. Westram was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 797747. Inês Fragata was funded by a Junior Researcher contract from FCT (CEECIND/02616/2018). article_processing_charge: No author: - first_name: Emma L. full_name: Berdan, Emma L. last_name: Berdan - first_name: Alexandre full_name: Blanckaert, Alexandre last_name: Blanckaert - first_name: Tanja full_name: Slotte, Tanja last_name: Slotte - first_name: Alexander full_name: Suh, Alexander last_name: Suh - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Inês full_name: Fragata, Inês last_name: Fragata citation: ama: 'Berdan EL, Blanckaert A, Slotte T, Suh A, Westram AM, Fragata I. Unboxing mutations: Connecting mutation types with evolutionary consequences. Molecular Ecology. 2021;30(12):2710-2723. doi:10.1111/mec.15936' apa: 'Berdan, E. L., Blanckaert, A., Slotte, T., Suh, A., Westram, A. M., & Fragata, I. (2021). Unboxing mutations: Connecting mutation types with evolutionary consequences. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.15936' chicago: 'Berdan, Emma L., Alexandre Blanckaert, Tanja Slotte, Alexander Suh, Anja M Westram, and Inês Fragata. “Unboxing Mutations: Connecting Mutation Types with Evolutionary Consequences.” Molecular Ecology. Wiley, 2021. https://doi.org/10.1111/mec.15936.' ieee: 'E. L. Berdan, A. Blanckaert, T. Slotte, A. Suh, A. M. Westram, and I. Fragata, “Unboxing mutations: Connecting mutation types with evolutionary consequences,” Molecular Ecology, vol. 30, no. 12. Wiley, pp. 2710–2723, 2021.' ista: 'Berdan EL, Blanckaert A, Slotte T, Suh A, Westram AM, Fragata I. 2021. Unboxing mutations: Connecting mutation types with evolutionary consequences. Molecular Ecology. 30(12), 2710–2723.' mla: 'Berdan, Emma L., et al. “Unboxing Mutations: Connecting Mutation Types with Evolutionary Consequences.” Molecular Ecology, vol. 30, no. 12, Wiley, 2021, pp. 2710–23, doi:10.1111/mec.15936.' short: E.L. Berdan, A. Blanckaert, T. Slotte, A. Suh, A.M. Westram, I. Fragata, Molecular Ecology 30 (2021) 2710–2723. date_created: 2021-06-06T22:01:31Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-08-08T13:59:18Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/mec.15936 ec_funded: 1 external_id: isi: - '000652056400001' file: - access_level: open_access checksum: e6f4731365bde2614b333040a08265d8 content_type: application/pdf creator: kschuh date_created: 2021-06-11T15:34:53Z date_updated: 2021-06-11T15:34:53Z file_id: '9545' file_name: 2021_MolecularEcology_Berdan.pdf file_size: 1031978 relation: main_file success: 1 file_date_updated: 2021-06-11T15:34:53Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '12' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 2710-2723 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Molecular Ecology publication_identifier: eissn: - 1365294X issn: - '09621083' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Unboxing mutations: Connecting mutation types with evolutionary consequences' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 30 year: '2021' ... --- _id: '10838' abstract: - lang: eng text: Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder–rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones. acknowledgement: "We thank everyone who helped with fieldwork, snail processing and DNA extractions, particularly Laura Brettell, Mårten Duvetorp, Juan Galindo, Anne-Lise Liabot, Mark Ravinet, Irena Senčić and Zuzanna Zagrodzka. We are also grateful to Edinburgh Genomics for library preparation and sequencing, to Stuart Baird and Mark Ravinet for helpful discussions, and to three anonymous reviewers for their constructive comments. This work was supported by the Natural Environment Research Council (NE/K014021/1), the European Research Council (AdG-693030-BARRIERS), Swedish Research Councils Formas and Vetenskapsrådet through a Linnaeus grant to the Centre for Marine Evolutionary Biology (217-2008-1719), the European Regional Development Fund (POCI-01-0145-FEDER-030628), and the Fundação para a iência e a Tecnologia,\r\nPortugal (PTDC/BIA-EVL/\r\n30628/2017). A.M.W. and R.F. were\r\nfunded by the European Union’s Horizon 2020 research and innovation\r\nprogramme under Marie Skłodowska-Curie\r\ngrant agreements\r\nno. 754411/797747 and no. 706376, respectively." article_processing_charge: No article_type: original author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: Westram AM, Faria R, Johannesson K, Butlin R. Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Molecular Ecology. 2021;30(15):3797-3814. doi:10.1111/mec.15861 apa: Westram, A. M., Faria, R., Johannesson, K., & Butlin, R. (2021). Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.15861 chicago: Westram, Anja M, Rui Faria, Kerstin Johannesson, and Roger Butlin. “Using Replicate Hybrid Zones to Understand the Genomic Basis of Adaptive Divergence.” Molecular Ecology. Wiley, 2021. https://doi.org/10.1111/mec.15861. ieee: A. M. Westram, R. Faria, K. Johannesson, and R. Butlin, “Using replicate hybrid zones to understand the genomic basis of adaptive divergence,” Molecular Ecology, vol. 30, no. 15. Wiley, pp. 3797–3814, 2021. ista: Westram AM, Faria R, Johannesson K, Butlin R. 2021. Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Molecular Ecology. 30(15), 3797–3814. mla: Westram, Anja M., et al. “Using Replicate Hybrid Zones to Understand the Genomic Basis of Adaptive Divergence.” Molecular Ecology, vol. 30, no. 15, Wiley, 2021, pp. 3797–814, doi:10.1111/mec.15861. short: A.M. Westram, R. Faria, K. Johannesson, R. Butlin, Molecular Ecology 30 (2021) 3797–3814. date_created: 2022-03-08T11:28:32Z date_published: 2021-08-01T00:00:00Z date_updated: 2023-09-05T16:02:19Z day: '01' ddc: - '570' department: - _id: BeVi doi: 10.1111/mec.15861 external_id: isi: - '000669439700001' pmid: - '33638231' file: - access_level: open_access checksum: d5611f243ceb63a0e091d6662ebd9cda content_type: application/pdf creator: dernst date_created: 2022-03-08T11:31:30Z date_updated: 2022-03-08T11:31:30Z file_id: '10839' file_name: 2021_MolecularEcology_Westram.pdf file_size: 1726548 relation: main_file success: 1 file_date_updated: 2022-03-08T11:31:30Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '15' keyword: - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 3797-3814 pmid: 1 publication: Molecular Ecology publication_identifier: eissn: - 1365-294X issn: - 0962-1083 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Using replicate hybrid zones to understand the genomic basis of adaptive divergence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 30 year: '2021' ... --- _id: '14984' abstract: - lang: eng text: Hybrid zones are narrow geographic regions where different populations, races or interbreeding species meet and mate, producing mixed ‘hybrid’ offspring. They are relatively common and can be found in a diverse range of organisms and environments. The study of hybrid zones has played an important role in our understanding of the origin of species, with hybrid zones having been described as ‘natural laboratories’. This is because they allow us to study,in situ, the conditions and evolutionary forces that enable divergent taxa to remain distinct despite some ongoing gene exchange between them. article_processing_charge: No author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Daria full_name: Shipilina, Daria id: 428A94B0-F248-11E8-B48F-1D18A9856A87 last_name: Shipilina orcid: 0000-0002-1145-9226 - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: 'Stankowski S, Shipilina D, Westram AM. Hybrid Zones. In: Encyclopedia of Life Sciences. Vol 2. eLS. Wiley; 2021. doi:10.1002/9780470015902.a0029355' apa: Stankowski, S., Shipilina, D., & Westram, A. M. (2021). Hybrid Zones. In Encyclopedia of Life Sciences (Vol. 2). Wiley. https://doi.org/10.1002/9780470015902.a0029355 chicago: Stankowski, Sean, Daria Shipilina, and Anja M Westram. “Hybrid Zones.” In Encyclopedia of Life Sciences, Vol. 2. ELS. Wiley, 2021. https://doi.org/10.1002/9780470015902.a0029355. ieee: S. Stankowski, D. Shipilina, and A. M. Westram, “Hybrid Zones,” in Encyclopedia of Life Sciences, vol. 2, Wiley, 2021. ista: 'Stankowski S, Shipilina D, Westram AM. 2021.Hybrid Zones. In: Encyclopedia of Life Sciences. vol. 2.' mla: Stankowski, Sean, et al. “Hybrid Zones.” Encyclopedia of Life Sciences, vol. 2, Wiley, 2021, doi:10.1002/9780470015902.a0029355. short: S. Stankowski, D. Shipilina, A.M. Westram, in:, Encyclopedia of Life Sciences, Wiley, 2021. date_created: 2024-02-14T12:05:50Z date_published: 2021-05-28T00:00:00Z date_updated: 2024-02-19T09:54:18Z day: '28' department: - _id: NiBa doi: 10.1002/9780470015902.a0029355 intvolume: ' 2' language: - iso: eng month: '05' oa_version: None publication: Encyclopedia of Life Sciences publication_identifier: eisbn: - '9780470015902' isbn: - '9780470016176' publication_status: published publisher: Wiley quality_controlled: '1' series_title: eLS status: public title: Hybrid Zones type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2021' ...