@article{7684, author = {Gridchyn, Igor and Schönenberger, Philipp and O'Neill, Joseph and Csicsvari, Jozsef L}, issn = {10974199}, journal = {Neuron}, number = {2}, pages = {291--300.e6}, publisher = {Elsevier}, title = {{Assembly-specific disruption of hippocampal replay leads to selective memory deficit}}, doi = {10.1016/j.neuron.2020.01.021}, volume = {106}, year = {2020}, } @article{8740, abstract = {In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells.}, author = {Gridchyn, Igor and Schönenberger, Philipp and O'Neill, Joseph and Csicsvari, Jozsef L}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior}}, doi = {10.7554/eLife.61106}, volume = {9}, year = {2020}, } @misc{8563, abstract = {Supplementary data provided for the provided for the publication: Igor Gridchyn , Philipp Schoenenberger , Joseph O'Neill , Jozsef Csicsvari (2020) Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior. Elife.}, author = {Csicsvari, Jozsef L and Gridchyn, Igor and Schönenberger, Philipp}, publisher = {Institute of Science and Technology Austria}, title = {{Optogenetic alteration of hippocampal network activity}}, doi = {10.15479/AT:ISTA:8563}, year = {2020}, } @article{1132, abstract = {The hippocampus is thought to initiate systems-wide mnemonic processes through the reactivation of previously acquired spatial and episodic memory traces, which can recruit the entorhinal cortex as a first stage of memory redistribution to other brain areas. Hippocampal reactivation occurs during sharp wave-ripples, in which synchronous network firing encodes sequences of places.We investigated the coordination of this replay by recording assembly activity simultaneously in the CA1 region of the hippocampus and superficial layers of the medial entorhinal cortex. We found that entorhinal cell assemblies can replay trajectories independently of the hippocampus and sharp wave-ripples. This suggests that the hippocampus is not the sole initiator of spatial and episodic memory trace reactivation. Memory systems involved in these processes may include nonhierarchical, parallel components.}, author = {O'Neill, Joseph and Boccara, Charlotte and Stella, Federico and Schönenberger, Philipp and Csicsvari, Jozsef L}, issn = {00368075}, journal = {Science}, number = {6321}, pages = {184 -- 188}, publisher = {American Association for the Advancement of Science}, title = {{Superficial layers of the medial entorhinal cortex replay independently of the hippocampus}}, doi = {10.1126/science.aag2787}, volume = {355}, year = {2017}, } @article{1279, abstract = {During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory inputdriven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity- related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.}, author = {Kovács, Krisztián and O'Neill, Joseph and Schönenberger, Philipp and Penttonen, Markku and Rangel Guerrero, Dámaris K and Csicsvari, Jozsef L}, journal = {PLoS One}, number = {10}, publisher = {Public Library of Science}, title = {{Optogenetically blocking sharp wave ripple events in sleep does not interfere with the formation of stable spatial representation in the CA1 area of the hippocampus}}, doi = {10.1371/journal.pone.0164675}, volume = {11}, year = {2016}, } @article{1334, abstract = {Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced suppression in many place cells and interneurons; some place cells increase their firing through disinhibition, whereas some show no effect. We find that place fields of the unaffected subpopulation remain stable. On the other hand, place fields of suppressed place cells were unstable, showing remapping across sessions before and after optogenetic inhibition. Disinhibited place cells had stable maps but sustained an elevated firing rate. These findings suggest that place representation in the hippocampus is constantly governed by activity-dependent processes, and that disinhibition may provide a mechanism for rate remapping.}, author = {Schönenberger, Philipp and O'Neill, Joseph and Csicsvari, Jozsef L}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Activity dependent plasticity of hippocampal place maps}}, doi = {10.1038/ncomms11824}, volume = {7}, year = {2016}, } @article{2845, abstract = {At synapses formed between dissociated neurons, about half of all synaptic vesicles are refractory to evoked release, forming the so-called "resting pool." Here, we use optical measurements of vesicular pH to study developmental changes in pool partitioning and vesicle cycling in cultured hippocampal slices. Two-photon imaging of a genetically encoded two-color release sensor (ratio-sypHy) allowed us to perform calibrated measurements at individual Schaffer collateral boutons. Mature boutons released a large fraction of their vesicles during simulated place field activity, and vesicle retrieval rates were 7-fold higher compared to immature boutons. Saturating stimulation mobilized essentially all vesicles at mature synapses. Resting pool formation and a concomitant reduction in evoked release was induced by chronic depolarization but not by acute inhibition of the protein phosphatase calcineurin. We conclude that synapses in CA1 undergo a prominent refinement of vesicle use during early postnatal development that is not recapitulated in dissociated neuronal culture.}, author = {Rose, Tobias and Schönenberger, Philipp and Jezek, Karel and Oertner, Thomas}, journal = {Neuron}, number = {6}, pages = {1109 -- 1121}, publisher = {Elsevier}, title = {{Developmental refinement of vesicle cycling at Schaffer collateral synapses}}, doi = {10.1016/j.neuron.2013.01.021}, volume = {77}, year = {2013}, }