@inbook{13052, abstract = {Imaging of the immunological synapse (IS) between dendritic cells (DCs) and T cells in suspension is hampered by suboptimal alignment of cell-cell contacts along the vertical imaging plane. This requires optical sectioning that often results in unsatisfactory resolution in time and space. Here, we present a workflow where DCs and T cells are confined between a layer of glass and polydimethylsiloxane (PDMS) that orients the cells along one, horizontal imaging plane, allowing for fast en-face-imaging of the DC-T cell IS.}, author = {Leithner, Alexander F and Merrin, Jack and Sixt, Michael K}, booktitle = {The Immune Synapse}, editor = {Baldari, Cosima and Dustin, Michael}, isbn = {9781071631348}, issn = {1940-6029}, pages = {137--147}, publisher = {Springer Nature}, title = {{En-Face Imaging of T Cell-Dendritic Cell Immunological Synapses}}, doi = {10.1007/978-1-0716-3135-5_9}, volume = {2654}, year = {2023}, } @article{11843, abstract = {A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease.}, author = {Tomasek, Kathrin and Leithner, Alexander F and Glatzová, Ivana and Lukesch, Michael S. and Guet, Calin C and Sixt, Michael K}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14}}, doi = {10.7554/eLife.78995}, volume = {11}, year = {2022}, } @article{10703, abstract = {When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.}, author = {Gaertner, Florian and Reis-Rodrigues, Patricia and De Vries, Ingrid and Hons, Miroslav and Aguilera, Juan and Riedl, Michael and Leithner, Alexander F and Tasciyan, Saren and Kopf, Aglaja and Merrin, Jack and Zheden, Vanessa and Kaufmann, Walter and Hauschild, Robert and Sixt, Michael K}, issn = {1878-1551}, journal = {Developmental Cell}, number = {1}, pages = {47--62.e9}, publisher = {Cell Press ; Elsevier}, title = {{WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues}}, doi = {10.1016/j.devcel.2021.11.024}, volume = {57}, year = {2022}, } @article{9094, abstract = {Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell–cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin–mediated cell–cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality.}, author = {Leithner, Alexander F and Altenburger, LM and Hauschild, R and Assen, Frank P and Rottner, K and TEB, Stradal and Diz-Muñoz, A and Stein, JV and Sixt, Michael K}, issn = {1540-8140}, journal = {Journal of Cell Biology}, number = {4}, publisher = {Rockefeller University Press}, title = {{Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse}}, doi = {10.1083/jcb.202006081}, volume = {220}, year = {2021}, } @unpublished{10316, abstract = {A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on dendritic cells as a previously undescribed binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of pathogenic bacteria to CD14 lead to reduced dendritic cell migration and blunted expression of co-stimulatory molecules, both rate-limiting factors of T cell activation. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease.}, author = {Tomasek, Kathrin and Leithner, Alexander F and Glatzová, Ivana and Lukesch, Michael S. and Guet, Calin C and Sixt, Michael K}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14}}, doi = {10.1101/2021.10.18.464770}, year = {2021}, } @article{437, abstract = {Dendritic cells (DCs) are sentinels of the adaptive immune system that reside in peripheral organs of mammals. Upon pathogen encounter, they undergo maturation and up-regulate the chemokine receptor CCR7 that guides them along gradients of its chemokine ligands CCL19 and 21 to the next draining lymph node. There, DCs present peripherally acquired antigen to naïve T cells, thereby triggering adaptive immunity.}, author = {Leithner, Alexander F and Renkawitz, Jörg and De Vries, Ingrid and Hauschild, Robert and Haecker, Hans and Sixt, Michael K}, journal = {European Journal of Immunology}, number = {6}, pages = {1074 -- 1077}, publisher = {Wiley-Blackwell}, title = {{Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration}}, doi = {10.1002/eji.201747358}, volume = {48}, year = {2018}, } @inbook{153, abstract = {Cells migrating in multicellular organisms steadily traverse complex three-dimensional (3D) environments. To decipher the underlying cell biology, current experimental setups either use simplified 2D, tissue-mimetic 3D (e.g., collagen matrices) or in vivo environments. While only in vivo experiments are truly physiological, they do not allow for precise manipulation of environmental parameters. 2D in vitro experiments do allow mechanical and chemical manipulations, but increasing evidence demonstrates substantial differences of migratory mechanisms in 2D and 3D. Here, we describe simple, robust, and versatile “pillar forests” to investigate cell migration in complex but fully controllable 3D environments. Pillar forests are polydimethylsiloxane-based setups, in which two closely adjacent surfaces are interconnected by arrays of micrometer-sized pillars. Changing the pillar shape, size, height and the inter-pillar distance precisely manipulates microenvironmental parameters (e.g., pore sizes, micro-geometry, micro-topology), while being easily combined with chemotactic cues, surface coatings, diverse cell types and advanced imaging techniques. Thus, pillar forests combine the advantages of 2D cell migration assays with the precise definition of 3D environmental parameters.}, author = {Renkawitz, Jörg and Reversat, Anne and Leithner, Alexander F and Merrin, Jack and Sixt, Michael K}, booktitle = {Methods in Cell Biology}, issn = {0091679X}, pages = {79 -- 91}, publisher = {Academic Press}, title = {{Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments}}, doi = {10.1016/bs.mcb.2018.07.004}, volume = {147}, year = {2018}, } @article{402, abstract = {During metastasis, malignant cells escape the primary tumor, intravasate lymphatic vessels, and reach draining sentinel lymph nodes before they colonize distant organs via the blood circulation. Although lymph node metastasis in cancer patients correlates with poor prognosis, evidence is lacking as to whether and how tumor cells enter the bloodstream via lymph nodes. To investigate this question, we delivered carcinoma cells into the lymph nodes of mice by microinfusing the cells into afferent lymphatic vessels. We found that tumor cells rapidly infiltrated the lymph node parenchyma, invaded blood vessels, and seeded lung metastases without involvement of the thoracic duct. These results suggest that the lymph node blood vessels can serve as an exit route for systemic dissemination of cancer cells in experimental mouse models. Whether this form of tumor cell spreading occurs in cancer patients remains to be determined.}, author = {Brown, Markus and Assen, Frank P and Leithner, Alexander F and Abe, Jun and Schachner, Helga and Asfour, Gabriele and Bagó Horváth, Zsuzsanna and Stein, Jens and Uhrin, Pavel and Sixt, Michael K and Kerjaschki, Dontscho}, journal = {Science}, number = {6382}, pages = {1408 -- 1411}, publisher = {American Association for the Advancement of Science}, title = {{Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice}}, doi = {10.1126/science.aal3662}, volume = {359}, year = {2018}, } @phdthesis{323, abstract = {In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond. }, author = {Leithner, Alexander F}, issn = {2663-337X}, pages = {99}, publisher = {Institute of Science and Technology Austria}, title = {{Branched actin networks in dendritic cell biology}}, doi = {10.15479/AT:ISTA:th_998}, year = {2018}, } @article{15, abstract = {Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux.}, author = {Hons, Miroslav and Kopf, Aglaja and Hauschild, Robert and Leithner, Alexander F and Gärtner, Florian R and Abe, Jun and Renkawitz, Jörg and Stein, Jens and Sixt, Michael K}, journal = {Nature Immunology}, number = {6}, pages = {606 -- 616}, publisher = {Nature Publishing Group}, title = {{Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells}}, doi = {10.1038/s41590-018-0109-z}, volume = {19}, year = {2018}, } @article{672, abstract = {Trafficking cells frequently transmigrate through epithelial and endothelial monolayers. How monolayers cooperate with the penetrating cells to support their transit is poorly understood. We studied dendritic cell (DC) entry into lymphatic capillaries as a model system for transendothelial migration. We find that the chemokine CCL21, which is the decisive guidance cue for intravasation, mainly localizes in the trans-Golgi network and intracellular vesicles of lymphatic endothelial cells. Upon DC transmigration, these Golgi deposits disperse and CCL21 becomes extracellularly enriched at the sites of endothelial cell-cell junctions. When we reconstitute the transmigration process in vitro, we find that secretion of CCL21-positive vesicles is triggered by a DC contact-induced calcium signal, and selective calcium chelation in lymphatic endothelium attenuates transmigration. Altogether, our data demonstrate a chemokine-mediated feedback between DCs and lymphatic endothelium, which facilitates transendothelial migration.}, author = {Vaahtomeri, Kari and Brown, Markus and Hauschild, Robert and De Vries, Ingrid and Leithner, Alexander F and Mehling, Matthias and Kaufmann, Walter and Sixt, Michael K}, issn = {22111247}, journal = {Cell Reports}, number = {5}, pages = {902 -- 909}, publisher = {Cell Press}, title = {{Locally triggered release of the chemokine CCL21 promotes dendritic cell transmigration across lymphatic endothelia}}, doi = {10.1016/j.celrep.2017.04.027}, volume = {19}, year = {2017}, } @article{674, abstract = {Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable “roads” ensure optimal guidance in vivo.}, author = {Schwarz, Jan and Bierbaum, Veronika and Vaahtomeri, Kari and Hauschild, Robert and Brown, Markus and De Vries, Ingrid and Leithner, Alexander F and Reversat, Anne and Merrin, Jack and Tarrant, Teresa and Bollenbach, Tobias and Sixt, Michael K}, issn = {09609822}, journal = {Current Biology}, number = {9}, pages = {1314 -- 1325}, publisher = {Cell Press}, title = {{Dendritic cells interpret haptotactic chemokine gradients in a manner governed by signal to noise ratio and dependent on GRK6}}, doi = {10.1016/j.cub.2017.04.004}, volume = {27}, year = {2017}, } @misc{5567, abstract = {Immunological synapse DC-Tcells}, author = {Leithner, Alexander F}, keywords = {Immunological synapse}, publisher = {Institute of Science and Technology Austria}, title = {{Immunological synapse DC-Tcells}}, doi = {10.15479/AT:ISTA:71}, year = {2017}, } @article{1321, abstract = {Most migrating cells extrude their front by the force of actin polymerization. Polymerization requires an initial nucleation step, which is mediated by factors establishing either parallel filaments in the case of filopodia or branched filaments that form the branched lamellipodial network. Branches are considered essential for regular cell motility and are initiated by the Arp2/3 complex, which in turn is activated by nucleation-promoting factors of the WASP and WAVE families. Here we employed rapid amoeboid crawling leukocytes and found that deletion of the WAVE complex eliminated actin branching and thus lamellipodia formation. The cells were left with parallel filaments at the leading edge, which translated, depending on the differentiation status of the cell, into a unipolar pointed cell shape or cells with multiple filopodia. Remarkably, unipolar cells migrated with increased speed and enormous directional persistence, while they were unable to turn towards chemotactic gradients. Cells with multiple filopodia retained chemotactic activity but their migration was progressively impaired with increasing geometrical complexity of the extracellular environment. These findings establish that diversified leading edge protrusions serve as explorative structures while they slow down actual locomotion.}, author = {Leithner, Alexander F and Eichner, Alexander and Müller, Jan and Reversat, Anne and Brown, Markus and Schwarz, Jan and Merrin, Jack and De Gorter, David and Schur, Florian and Bayerl, Jonathan and De Vries, Ingrid and Wieser, Stefan and Hauschild, Robert and Lai, Frank and Moser, Markus and Kerjaschki, Dontscho and Rottner, Klemens and Small, Victor and Stradal, Theresia and Sixt, Michael K}, journal = {Nature Cell Biology}, pages = {1253 -- 1259}, publisher = {Nature Publishing Group}, title = {{Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes}}, doi = {10.1038/ncb3426}, volume = {18}, year = {2016}, }