--- _id: '6178' abstract: - lang: eng text: Mechanically coupled cells can generate forces driving cell and tissue morphogenesis during development. Visualization and measuring of these forces is of major importance to better understand the complexity of the biomechanic processes that shape cells and tissues. Here, we describe how UV laser ablation can be utilized to quantitatively assess mechanical tension in different tissues of the developing zebrafish and in cultures of primary germ layer progenitor cells ex vivo. article_processing_charge: No author: - first_name: Michael full_name: Smutny, Michael id: 3FE6E4E8-F248-11E8-B48F-1D18A9856A87 last_name: Smutny orcid: 0000-0002-5920-9090 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Verena full_name: Ruprecht, Verena id: 4D71A03A-F248-11E8-B48F-1D18A9856A87 last_name: Ruprecht orcid: 0000-0003-4088-8633 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Nelson C, ed. Tissue Morphogenesis. Vol 1189. Methods in Molecular Biology. New York, NY: Springer; 2014:219-235. doi:10.1007/978-1-4939-1164-6_15' apa: 'Smutny, M., Behrndt, M., Campinho, P., Ruprecht, V., & Heisenberg, C.-P. J. (2014). UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In C. Nelson (Ed.), Tissue Morphogenesis (Vol. 1189, pp. 219–235). New York, NY: Springer. https://doi.org/10.1007/978-1-4939-1164-6_15' chicago: 'Smutny, Michael, Martin Behrndt, Pedro Campinho, Verena Ruprecht, and Carl-Philipp J Heisenberg. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” In Tissue Morphogenesis, edited by Celeste Nelson, 1189:219–35. Methods in Molecular Biology. New York, NY: Springer, 2014. https://doi.org/10.1007/978-1-4939-1164-6_15.' ieee: 'M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, and C.-P. J. Heisenberg, “UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo,” in Tissue Morphogenesis, vol. 1189, C. Nelson, Ed. New York, NY: Springer, 2014, pp. 219–235.' ista: 'Smutny M, Behrndt M, Campinho P, Ruprecht V, Heisenberg C-PJ. 2014.UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. In: Tissue Morphogenesis. vol. 1189, 219–235.' mla: Smutny, Michael, et al. “UV Laser Ablation to Measure Cell and Tissue-Generated Forces in the Zebrafish Embryo in Vivo and Ex Vivo.” Tissue Morphogenesis, edited by Celeste Nelson, vol. 1189, Springer, 2014, pp. 219–35, doi:10.1007/978-1-4939-1164-6_15. short: M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, C.-P.J. Heisenberg, in:, C. Nelson (Ed.), Tissue Morphogenesis, Springer, New York, NY, 2014, pp. 219–235. date_created: 2019-03-26T08:55:59Z date_published: 2014-08-22T00:00:00Z date_updated: 2023-09-05T14:12:00Z day: '22' department: - _id: CaHe doi: 10.1007/978-1-4939-1164-6_15 editor: - first_name: Celeste full_name: Nelson, Celeste last_name: Nelson external_id: pmid: - '25245697' intvolume: ' 1189' language: - iso: eng month: '08' oa_version: None page: 219-235 place: New York, NY pmid: 1 publication: Tissue Morphogenesis publication_identifier: eissn: - 1940-6029 isbn: - '9781493911639' - '9781493911646' issn: - 1064-3745 publication_status: published publisher: Springer quality_controlled: '1' series_title: Methods in Molecular Biology status: public title: UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 1189 year: '2014' ... --- _id: '2282' abstract: - lang: eng text: Epithelial spreading is a common and fundamental aspect of various developmental and disease-related processes such as epithelial closure and wound healing. A key challenge for epithelial tissues undergoing spreading is to increase their surface area without disrupting epithelial integrity. Here we show that orienting cell divisions by tension constitutes an efficient mechanism by which the enveloping cell layer (EVL) releases anisotropic tension while undergoing spreading during zebrafish epiboly. The control of EVL cell-division orientation by tension involves cell elongation and requires myosin II activity to align the mitotic spindle with the main tension axis. We also found that in the absence of tension-oriented cell divisions and in the presence of increased tissue tension, EVL cells undergo ectopic fusions, suggesting that the reduction of tension anisotropy by oriented cell divisions is required to prevent EVL cells from fusing. We conclude that cell-division orientation by tension constitutes a key mechanism for limiting tension anisotropy and thus promoting tissue spreading during EVL epiboly. acknowledged_ssus: - _id: PreCl - _id: Bio acknowledgement: 'This work was supported by the IST Austria and MPI-CBG ' author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Jonas full_name: Ranft, Jonas last_name: Ranft - first_name: Thomas full_name: Risler, Thomas last_name: Risler - first_name: Nicolas full_name: Minc, Nicolas last_name: Minc - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 2013;15:1405-1414. doi:10.1038/ncb2869 apa: Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N., & Heisenberg, C.-P. J. (2013). Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. Nature Publishing Group. https://doi.org/10.1038/ncb2869 chicago: Campinho, Pedro, Martin Behrndt, Jonas Ranft, Thomas Risler, Nicolas Minc, and Carl-Philipp J Heisenberg. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology. Nature Publishing Group, 2013. https://doi.org/10.1038/ncb2869. ieee: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, and C.-P. J. Heisenberg, “Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly,” Nature Cell Biology, vol. 15. Nature Publishing Group, pp. 1405–1414, 2013. ista: Campinho P, Behrndt M, Ranft J, Risler T, Minc N, Heisenberg C-PJ. 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nature Cell Biology. 15, 1405–1414. mla: Campinho, Pedro, et al. “Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading during Zebrafish Epiboly.” Nature Cell Biology, vol. 15, Nature Publishing Group, 2013, pp. 1405–14, doi:10.1038/ncb2869. short: P. Campinho, M. Behrndt, J. Ranft, T. Risler, N. Minc, C.-P.J. Heisenberg, Nature Cell Biology 15 (2013) 1405–1414. date_created: 2018-12-11T11:56:45Z date_published: 2013-11-10T00:00:00Z date_updated: 2023-02-21T17:02:44Z day: '10' department: - _id: CaHe doi: 10.1038/ncb2869 intvolume: ' 15' language: - iso: eng main_file_link: - open_access: '1' url: http://hal.upmc.fr/hal-00983313/ month: '11' oa: 1 oa_version: Submitted Version page: 1405 - 1414 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Nature Cell Biology publication_status: published publisher: Nature Publishing Group publist_id: '4652' quality_controlled: '1' related_material: record: - id: '1403' relation: dissertation_contains status: public scopus_import: 1 status: public title: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2013' ... --- _id: '2286' abstract: - lang: eng text: The spatiotemporal control of cell divisions is a key factor in epithelial morphogenesis and patterning. Mao et al (2013) now describe how differential rates of proliferation within the Drosophila wing disc epithelium give rise to anisotropic tissue tension in peripheral/proximal regions of the disc. Such global tissue tension anisotropy in turn determines the orientation of cell divisions by controlling epithelial cell elongation. author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Campinho P, Heisenberg C-PJ. The force and effect of cell proliferation. EMBO Journal. 2013;32(21):2783-2784. doi:10.1038/emboj.2013.225 apa: Campinho, P., & Heisenberg, C.-P. J. (2013). The force and effect of cell proliferation. EMBO Journal. Wiley-Blackwell. https://doi.org/10.1038/emboj.2013.225 chicago: Campinho, Pedro, and Carl-Philipp J Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal. Wiley-Blackwell, 2013. https://doi.org/10.1038/emboj.2013.225. ieee: P. Campinho and C.-P. J. Heisenberg, “The force and effect of cell proliferation,” EMBO Journal, vol. 32, no. 21. Wiley-Blackwell, pp. 2783–2784, 2013. ista: Campinho P, Heisenberg C-PJ. 2013. The force and effect of cell proliferation. EMBO Journal. 32(21), 2783–2784. mla: Campinho, Pedro, and Carl-Philipp J. Heisenberg. “The Force and Effect of Cell Proliferation.” EMBO Journal, vol. 32, no. 21, Wiley-Blackwell, 2013, pp. 2783–84, doi:10.1038/emboj.2013.225. short: P. Campinho, C.-P.J. Heisenberg, EMBO Journal 32 (2013) 2783–2784. date_created: 2018-12-11T11:56:46Z date_published: 2013-10-04T00:00:00Z date_updated: 2021-01-12T06:56:32Z day: '04' department: - _id: CaHe doi: 10.1038/emboj.2013.225 external_id: pmid: - '24097062' intvolume: ' 32' issue: '21' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817470/ month: '10' oa: 1 oa_version: Submitted Version page: 2783 - 2784 pmid: 1 publication: EMBO Journal publication_status: published publisher: Wiley-Blackwell publist_id: '4645' quality_controlled: '1' scopus_import: 1 status: public title: The force and effect of cell proliferation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 32 year: '2013' ... --- _id: '1406' abstract: - lang: eng text: Epithelial spreading is a critical part of various developmental and wound repair processes. Here we use zebrafish epiboly as a model system to study the cellular and molecular mechanisms underlying the spreading of epithelial sheets. During zebrafish epiboly the enveloping cell layer (EVL), a simple squamous epithelium, spreads over the embryo to eventually cover the entire yolk cell by the end of gastrulation. The EVL leading edge is anchored through tight junctions to the yolk syncytial layer (YSL), where directly adjacent to the EVL margin a contractile actomyosin ring is formed that is thought to drive EVL epiboly. The prevalent view in the field was that the contractile ring exerts a pulling force on the EVL margin, which pulls the EVL towards the vegetal pole. However, how this force is generated and how it affects EVL morphology still remains elusive. Moreover, the cellular mechanisms mediating the increase in EVL surface area, while maintaining tissue integrity and function are still unclear. Here we show that the YSL actomyosin ring pulls on the EVL margin by two distinct force-generating mechanisms. One mechanism is based on contraction of the ring around its circumference, as previously proposed. The second mechanism is based on actomyosin retrogade flows, generating force through resistance against the substrate. The latter can function at any epiboly stage even in situations where the contraction-based mechanism is unproductive. Additionally, we demonstrate that during epiboly the EVL is subjected to anisotropic tension, which guides the orientation of EVL cell division along the main axis (animal-vegetal) of tension. The influence of tension in cell division orientation involves cell elongation and requires myosin-2 activity for proper spindle alignment. Strikingly, we reveal that tension-oriented cell divisions release anisotropic tension within the EVL and that in the absence of such divisions, EVL cells undergo ectopic fusions. We conclude that forces applied to the EVL by the action of the YSL actomyosin ring generate a tension anisotropy in the EVL that orients cell divisions, which in turn limit tissue tension increase thereby facilitating tissue spreading. acknowledged_ssus: - _id: Bio - _id: PreCl alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 citation: ama: 'Campinho P. Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading. 2013.' apa: 'Campinho, P. (2013). Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading. Institute of Science and Technology Austria.' chicago: 'Campinho, Pedro. “Mechanics of Zebrafish Epiboly: Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading.” Institute of Science and Technology Austria, 2013.' ieee: 'P. Campinho, “Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading,” Institute of Science and Technology Austria, 2013.' ista: 'Campinho P. 2013. Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading. Institute of Science and Technology Austria.' mla: 'Campinho, Pedro. Mechanics of Zebrafish Epiboly: Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading. Institute of Science and Technology Austria, 2013.' short: 'P. Campinho, Mechanics of Zebrafish Epiboly: Tension-Oriented Cell Divisions Limit Anisotropic Tissue Tension in Epithelial Spreading, Institute of Science and Technology Austria, 2013.' date_created: 2018-12-11T11:51:50Z date_published: 2013-10-01T00:00:00Z date_updated: 2023-09-07T11:36:07Z day: '01' degree_awarded: PhD department: - _id: CaHe language: - iso: eng month: '10' oa_version: None page: '123' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5801' status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: 'Mechanics of zebrafish epiboly: Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2013' ... --- _id: '2950' abstract: - lang: eng text: Contractile actomyosin rings drive various fundamental morphogenetic processes ranging from cytokinesis to wound healing. Actomyosin rings are generally thought to function by circumferential contraction. Here, we show that the spreading of the enveloping cell layer (EVL) over the yolk cell during zebrafish gastrulation is driven by a contractile actomyosin ring. In contrast to previous suggestions, we find that this ring functions not only by circumferential contraction but also by a flow-friction mechanism. This generates a pulling force through resistance against retrograde actomyosin flow. EVL spreading proceeds normally in situations where circumferential contraction is unproductive, indicating that the flow-friction mechanism is sufficient. Thus, actomyosin rings can function in epithelial morphogenesis through a combination of cable-constriction and flow-friction mechanisms. acknowledged_ssus: - _id: SSU author: - first_name: Martin full_name: Behrndt, Martin id: 3ECECA3A-F248-11E8-B48F-1D18A9856A87 last_name: Behrndt - first_name: Guillaume full_name: Salbreux, Guillaume last_name: Salbreux - first_name: Pedro full_name: Campinho, Pedro id: 3AFBBC42-F248-11E8-B48F-1D18A9856A87 last_name: Campinho orcid: 0000-0002-8526-5416 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Felix full_name: Oswald, Felix last_name: Oswald - first_name: Julia full_name: Roensch, Julia id: 4220E59C-F248-11E8-B48F-1D18A9856A87 last_name: Roensch - first_name: Stephan full_name: Grill, Stephan last_name: Grill - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Behrndt M, Salbreux G, Campinho P, et al. Forces driving epithelial spreading in zebrafish gastrulation. Science. 2012;338(6104):257-260. doi:10.1126/science.1224143 apa: Behrndt, M., Salbreux, G., Campinho, P., Hauschild, R., Oswald, F., Roensch, J., … Heisenberg, C.-P. J. (2012). Forces driving epithelial spreading in zebrafish gastrulation. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.1224143 chicago: Behrndt, Martin, Guillaume Salbreux, Pedro Campinho, Robert Hauschild, Felix Oswald, Julia Roensch, Stephan Grill, and Carl-Philipp J Heisenberg. “Forces Driving Epithelial Spreading in Zebrafish Gastrulation.” Science. American Association for the Advancement of Science, 2012. https://doi.org/10.1126/science.1224143. ieee: M. Behrndt et al., “Forces driving epithelial spreading in zebrafish gastrulation,” Science, vol. 338, no. 6104. American Association for the Advancement of Science, pp. 257–260, 2012. ista: Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F, Roensch J, Grill S, Heisenberg C-PJ. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science. 338(6104), 257–260. mla: Behrndt, Martin, et al. “Forces Driving Epithelial Spreading in Zebrafish Gastrulation.” Science, vol. 338, no. 6104, American Association for the Advancement of Science, 2012, pp. 257–60, doi:10.1126/science.1224143. short: M. Behrndt, G. Salbreux, P. Campinho, R. Hauschild, F. Oswald, J. Roensch, S. Grill, C.-P.J. Heisenberg, Science 338 (2012) 257–260. date_created: 2018-12-11T12:00:30Z date_published: 2012-10-12T00:00:00Z date_updated: 2023-02-21T17:02:44Z day: '12' department: - _id: CaHe - _id: Bio doi: 10.1126/science.1224143 intvolume: ' 338' issue: '6104' language: - iso: eng month: '10' oa_version: None page: 257 - 260 project: - _id: 252ABD0A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 930-B20 name: Control of Epithelial Cell Layer Spreading in Zebrafish publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '3778' quality_controlled: '1' related_material: record: - id: '1403' relation: dissertation_contains status: public scopus_import: 1 status: public title: Forces driving epithelial spreading in zebrafish gastrulation type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 338 year: '2012' ...