TY - JOUR AB - Muscle degeneration is the most prevalent cause for frailty and dependency in inherited diseases and ageing. Elucidation of pathophysiological mechanisms, as well as effective treatments for muscle diseases, represents an important goal in improving human health. Here, we show that the lipid synthesis enzyme phosphatidylethanolamine cytidyltransferase (PCYT2/ECT) is critical to muscle health. Human deficiency in PCYT2 causes a severe disease with failure to thrive and progressive weakness. pcyt2-mutant zebrafish and muscle-specific Pcyt2-knockout mice recapitulate the participant phenotypes, with failure to thrive, progressive muscle weakness and accelerated ageing. Mechanistically, muscle Pcyt2 deficiency affects cellular bioenergetics and membrane lipid bilayer structure and stability. PCYT2 activity declines in ageing muscles of mice and humans, and adeno-associated virus-based delivery of PCYT2 ameliorates muscle weakness in Pcyt2-knockout and old mice, offering a therapy for individuals with a rare disease and muscle ageing. Thus, PCYT2 plays a fundamental and conserved role in vertebrate muscle health, linking PCYT2 and PCYT2-synthesized lipids to severe muscle dystrophy and ageing. AU - Cikes, Domagoj AU - Elsayad, Kareem AU - Sezgin, Erdinc AU - Koitai, Erika AU - Ferenc, Torma AU - Orthofer, Michael AU - Yarwood, Rebecca AU - Heinz, Leonhard X. AU - Sedlyarov, Vitaly AU - Darwish-Miranda, Nasser AU - Taylor, Adrian AU - Grapentine, Sophie AU - al-Murshedi, Fathiya AU - Abot, Anne AU - Weidinger, Adelheid AU - Kutchukian, Candice AU - Sanchez, Colline AU - Cronin, Shane J. F. AU - Novatchkova, Maria AU - Kavirayani, Anoop AU - Schuetz, Thomas AU - Haubner, Bernhard AU - Haas, Lisa AU - Hagelkruys, Astrid AU - Jackowski, Suzanne AU - Kozlov, Andrey AU - Jacquemond, Vincent AU - Knauf, Claude AU - Superti-Furga, Giulio AU - Rullman, Eric AU - Gustafsson, Thomas AU - McDermot, John AU - Lowe, Martin AU - Radak, Zsolt AU - Chamberlain, Jeffrey S. AU - Bakovic, Marica AU - Banka, Siddharth AU - Penninger, Josef M. ID - 12747 JF - Nature Metabolism KW - Cell Biology KW - Physiology (medical) KW - Endocrinology KW - Diabetes and Metabolism KW - Internal Medicine SN - 2522-5812 TI - PCYT2-regulated lipid biosynthesis is critical to muscle health and ageing VL - 5 ER - TY - JOUR AB - Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems. AU - Li, Hongjiang AU - von Wangenheim, Daniel AU - Zhang, Xixi AU - Tan, Shutang AU - Darwish-Miranda, Nasser AU - Naramoto, Satoshi AU - Wabnik, Krzysztof T AU - de Rycke, Riet AU - Kaufmann, Walter AU - Gütl, Daniel J AU - Tejos, Ricardo AU - Grones, Peter AU - Ke, Meiyu AU - Chen, Xu AU - Dettmer, Jan AU - Friml, Jiří ID - 8582 IS - 1 JF - New Phytologist SN - 0028646X TI - Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana VL - 229 ER - TY - JOUR AB - A novel magnetic scratch method achieves repeatability, reproducibility and geometric control greater than pipette scratch assays and closely approximating the precision of cell exclusion assays while inducing the cell injury inherently necessary for wound healing assays. The magnetic scratch is affordable, easily implemented and standardisable and thus may contribute toward better comparability of data generated in different studies and laboratories. AU - Fenu, M. AU - Bettermann, T. AU - Vogl, C. AU - Darwish-Miranda, Nasser AU - Schramel, J. AU - Jenner, F. AU - Ribitsch, I. ID - 6867 IS - 1 JF - Scientific Reports TI - A novel magnet-based scratch method for standardisation of wound-healing assays VL - 9 ER -