@article{13267, abstract = {Three-dimensional (3D) reconstruction of living brain tissue down to an individual synapse level would create opportunities for decoding the dynamics and structure–function relationships of the brain’s complex and dense information processing network; however, this has been hindered by insufficient 3D resolution, inadequate signal-to-noise ratio and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine-learning technology, LIONESS (live information-optimized nanoscopy enabling saturated segmentation). This leverages optical modifications to stimulated emission depletion microscopy in comprehensively, extracellularly labeled tissue and previous information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise ratio and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D reconstruction at a synapse level, incorporating molecular, activity and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue.}, author = {Velicky, Philipp and Miguel Villalba, Eder and Michalska, Julia M and Lyudchik, Julia and Wei, Donglai and Lin, Zudi and Watson, Jake and Troidl, Jakob and Beyer, Johanna and Ben Simon, Yoav and Sommer, Christoph M and Jahr, Wiebke and Cenameri, Alban and Broichhagen, Johannes and Grant, Seth G.N. and Jonas, Peter M and Novarino, Gaia and Pfister, Hanspeter and Bickel, Bernd and Danzl, Johann G}, issn = {1548-7105}, journal = {Nature Methods}, pages = {1256--1265}, publisher = {Springer Nature}, title = {{Dense 4D nanoscale reconstruction of living brain tissue}}, doi = {10.1038/s41592-023-01936-6}, volume = {20}, year = {2023}, } @article{14770, abstract = {We developed LIONESS, a technology that leverages improvements to optical super-resolution microscopy and prior information on sample structure via machine learning to overcome the limitations (in 3D-resolution, signal-to-noise ratio and light exposure) of optical microscopy of living biological specimens. LIONESS enables dense reconstruction of living brain tissue and morphodynamics visualization at the nanoscale.}, author = {Danzl, Johann G and Velicky, Philipp}, issn = {1548-7105}, journal = {Nature Methods}, keywords = {Cell Biology, Molecular Biology, Biochemistry, Biotechnology}, number = {8}, pages = {1141--1142}, publisher = {Springer Nature}, title = {{LIONESS enables 4D nanoscale reconstruction of living brain tissue}}, doi = {10.1038/s41592-023-01937-5}, volume = {20}, year = {2023}, } @misc{13116, abstract = {The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ -- a prokaryotic homologue of the eukaryotic protein tubulin -- polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here, we connect single filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram captures these features quantitatively, demonstrating how the flexibility, density and chirality of active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division. }, author = {Dunajova, Zuzana and Prats Mateu, Batirtze and Radler, Philipp and Lim, Keesiang and Brandis, Dörte and Velicky, Philipp and Danzl, Johann G and Wong, Richard W. and Elgeti, Jens and Hannezo, Edouard B and Loose, Martin}, publisher = {Institute of Science and Technology Austria}, title = {{Chiral and nematic phases of flexible active filaments}}, doi = {10.15479/AT:ISTA:13116}, year = {2023}, } @article{13314, abstract = {The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ—a prokaryotic homologue of the eukaryotic protein tubulin—polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here we connect single-filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that the density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram quantitatively captures these features, demonstrating how the flexibility, density and chirality of the active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division.}, author = {Dunajova, Zuzana and Prats Mateu, Batirtze and Radler, Philipp and Lim, Keesiang and Brandis, Dörte and Velicky, Philipp and Danzl, Johann G and Wong, Richard W. and Elgeti, Jens and Hannezo, Edouard B and Loose, Martin}, issn = {1745-2481}, journal = {Nature Physics}, pages = {1916--1926}, publisher = {Springer Nature}, title = {{Chiral and nematic phases of flexible active filaments}}, doi = {10.1038/s41567-023-02218-w}, volume = {19}, year = {2023}, } @article{14257, abstract = {Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease.}, author = {Michalska, Julia M and Lyudchik, Julia and Velicky, Philipp and Korinkova, Hana and Watson, Jake and Cenameri, Alban and Sommer, Christoph M and Amberg, Nicole and Venturino, Alessandro and Roessler, Karl and Czech, Thomas and Höftberger, Romana and Siegert, Sandra and Novarino, Gaia and Jonas, Peter M and Danzl, Johann G}, issn = {1546-1696}, journal = {Nature Biotechnology}, publisher = {Springer Nature}, title = {{Imaging brain tissue architecture across millimeter to nanometer scales}}, doi = {10.1038/s41587-023-01911-8}, year = {2023}, } @article{11951, abstract = {The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.}, author = {Ben Simon, Yoav and Käfer, Karola and Velicky, Philipp and Csicsvari, Jozsef L and Danzl, Johann G and Jonas, Peter M}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry, Multidisciplinary}, publisher = {Springer Nature}, title = {{A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory}}, doi = {10.1038/s41467-022-32559-8}, volume = {13}, year = {2022}, } @unpublished{11943, abstract = {Complex wiring between neurons underlies the information-processing network enabling all brain functions, including cognition and memory. For understanding how the network is structured, processes information, and changes over time, comprehensive visualization of the architecture of living brain tissue with its cellular and molecular components would open up major opportunities. However, electron microscopy (EM) provides nanometre-scale resolution required for full in-silico reconstruction1–5, yet is limited to fixed specimens and static representations. Light microscopy allows live observation, with super-resolution approaches6–12 facilitating nanoscale visualization, but comprehensive 3D-reconstruction of living brain tissue has been hindered by tissue photo-burden, photobleaching, insufficient 3D-resolution, and inadequate signal-to-noise ratio (SNR). Here we demonstrate saturated reconstruction of living brain tissue. We developed an integrated imaging and analysis technology, adapting stimulated emission depletion (STED) microscopy6,13 in extracellularly labelled tissue14 for high SNR and near-isotropic resolution. Centrally, a two-stage deep-learning approach leveraged previously obtained information on sample structure to drastically reduce photo-burden and enable automated volumetric reconstruction down to single synapse level. Live reconstruction provides unbiased analysis of tissue architecture across time in relation to functional activity and targeted activation, and contextual understanding of molecular labelling. This adoptable technology will facilitate novel insights into the dynamic functional architecture of living brain tissue.}, author = {Velicky, Philipp and Miguel Villalba, Eder and Michalska, Julia M and Wei, Donglai and Lin, Zudi and Watson, Jake and Troidl, Jakob and Beyer, Johanna and Ben Simon, Yoav and Sommer, Christoph M and Jahr, Wiebke and Cenameri, Alban and Broichhagen, Johannes and Grant, Seth G. N. and Jonas, Peter M and Novarino, Gaia and Pfister, Hanspeter and Bickel, Bernd and Danzl, Johann G}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Saturated reconstruction of living brain tissue}}, doi = {10.1101/2022.03.16.484431}, year = {2022}, } @unpublished{11950, abstract = {Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanoscopic synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS leverages fixation-compatible extracellular labeling and advanced optical readout, in particular stimulated-emission depletion and expansion microscopy, to comprehensively delineate cellular structures. It enables 3D-reconstructing single synapses and mapping synaptic connectivity by identification and tailored analysis of putative synaptic cleft regions. Applying CATS to the hippocampal mossy fiber circuitry, we demonstrate its power to reveal the system’s molecularly informed ultrastructure across spatial scales and assess local connectivity by reconstructing and quantifying the synaptic input and output structure of identified neurons.}, author = {Michalska, Julia M and Lyudchik, Julia and Velicky, Philipp and Korinkova, Hana and Watson, Jake and Cenameri, Alban and Sommer, Christoph M and Venturino, Alessandro and Roessler, Karl and Czech, Thomas and Siegert, Sandra and Novarino, Gaia and Jonas, Peter M and Danzl, Johann G}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Uncovering brain tissue architecture across scales with super-resolution light microscopy}}, doi = {10.1101/2022.08.17.504272}, year = {2022}, } @article{6808, abstract = {Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.}, author = {Jahr, Wiebke and Velicky, Philipp and Danzl, Johann G}, issn = {1046-2023}, journal = {Methods}, number = {3}, pages = {27--41}, publisher = {Elsevier}, title = {{Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens}}, doi = {10.1016/j.ymeth.2019.07.019}, volume = {174}, year = {2020}, } @article{7665, abstract = {Acute brain slice preparation is a powerful experimental model for investigating the characteristics of synaptic function in the brain. Although brain tissue is usually cut at ice-cold temperature (CT) to facilitate slicing and avoid neuronal damage, exposure to CT causes molecular and architectural changes of synapses. To address these issues, we investigated ultrastructural and electrophysiological features of synapses in mouse acute cerebellar slices prepared at ice-cold and physiological temperature (PT). In the slices prepared at CT, we found significant spine loss and reconstruction, synaptic vesicle rearrangement and decrease in synaptic proteins, all of which were not detected in slices prepared at PT. Consistent with these structural findings, slices prepared at PT showed higher release probability. Furthermore, preparation at PT allows electrophysiological recording immediately after slicing resulting in higher detectability of long-term depression (LTD) after motor learning compared with that at CT. These results indicate substantial advantages of the slice preparation at PT for investigating synaptic functions in different physiological conditions.}, author = {Eguchi, Kohgaku and Velicky, Philipp and Hollergschwandtner, Elena and Itakura, Makoto and Fukazawa, Yugo and Danzl, Johann G and Shigemoto, Ryuichi}, issn = {16625102}, journal = {Frontiers in Cellular Neuroscience}, publisher = {Frontiers Media}, title = {{Advantages of acute brain slices prepared at physiological temperature in the characterization of synaptic functions}}, doi = {10.3389/fncel.2020.00063}, volume = {14}, year = {2020}, } @article{5998, abstract = {Genome amplification and cellular senescence are commonly associated with pathological processes. While physiological roles for polyploidization and senescence have been described in mouse development, controversy exists over their significance in humans. Here, we describe tetraploidization and senescence as phenomena of normal human placenta development. During pregnancy, placental extravillous trophoblasts (EVTs) invade the pregnant endometrium, termed decidua, to establish an adapted microenvironment required for the developing embryo. This process is critically dependent on continuous cell proliferation and differentiation, which is thought to follow the classical model of cell cycle arrest prior to terminal differentiation. Strikingly, flow cytometry and DNAseq revealed that EVT formation is accompanied with a genome-wide polyploidization, independent of mitotic cycles. DNA replication in these cells was analysed by a fluorescent cell-cycle indicator reporter system, cell cycle marker expression and EdU incorporation. Upon invasion into the decidua, EVTs widely lose their replicative potential and enter a senescent state characterized by high senescence-associated (SA) β-galactosidase activity, induction of a SA secretory phenotype as well as typical metabolic alterations. Furthermore, we show that the shift from endocycle-dependent genome amplification to growth arrest is disturbed in androgenic complete hydatidiform moles (CHM), a hyperplastic pregnancy disorder associated with increased risk of developing choriocarinoma. Senescence is decreased in CHM-EVTs, accompanied by exacerbated endoreduplication and hyperploidy. We propose induction of cellular senescence as a ploidy-limiting mechanism during normal human placentation and unravel a link between excessive polyploidization and reduced senescence in CHM.}, author = {Velicky, Philipp and Meinhardt, Gudrun and Plessl, Kerstin and Vondra, Sigrid and Weiss, Tamara and Haslinger, Peter and Lendl, Thomas and Aumayr, Karin and Mairhofer, Mario and Zhu, Xiaowei and Schütz, Birgit and Hannibal, Roberta L. and Lindau, Robert and Weil, Beatrix and Ernerudh, Jan and Neesen, Jürgen and Egger, Gerda and Mikula, Mario and Röhrl, Clemens and Urban, Alexander E. and Baker, Julie and Knöfler, Martin and Pollheimer, Jürgen}, issn = {1553-7404}, journal = {PLOS Genetics}, number = {10}, publisher = {Public Library of Science}, title = {{Genome amplification and cellular senescence are hallmarks of human placenta development}}, doi = {10.1371/journal.pgen.1007698}, volume = {14}, year = {2018}, }