--- _id: '14591' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scissin machinery in plants, but the precise roles of these proteins in this process is not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the Dsh3p1,2,3 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME. One Sentence Summary In contrast to predictions based on mammalian systems, plant Dynamin-related proteins 2 are recruited to the site of Clathrin-mediated endocytosis independently of BAR-SH3 proteins. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio article_processing_charge: No author: - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Marie-Kristin full_name: Nagel, Marie-Kristin last_name: Nagel - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Annamaria full_name: Hlavata, Annamaria id: 36062FEC-F248-11E8-B48F-1D18A9856A87 last_name: Hlavata - first_name: Erika full_name: Isono, Erika last_name: Isono - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Gnyliukh N, Johnson AJ, Nagel M-K, et al. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. doi:10.1101/2023.10.09.561523 apa: Gnyliukh, N., Johnson, A. J., Nagel, M.-K., Monzer, A., Hlavata, A., Isono, E., … Friml, J. (n.d.). Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. https://doi.org/10.1101/2023.10.09.561523 chicago: Gnyliukh, Nataliia, Alexander J Johnson, Marie-Kristin Nagel, Aline Monzer, Annamaria Hlavata, Erika Isono, Martin Loose, and Jiří Friml. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, n.d. https://doi.org/10.1101/2023.10.09.561523. ieee: N. Gnyliukh et al., “Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants,” bioRxiv. . ista: Gnyliukh N, Johnson AJ, Nagel M-K, Monzer A, Hlavata A, Isono E, Loose M, Friml J. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv, 10.1101/2023.10.09.561523. mla: Gnyliukh, Nataliia, et al. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, doi:10.1101/2023.10.09.561523. short: N. Gnyliukh, A.J. Johnson, M.-K. Nagel, A. Monzer, A. Hlavata, E. Isono, M. Loose, J. Friml, BioRxiv (n.d.). date_created: 2023-11-22T10:17:49Z date_published: 2023-10-10T00:00:00Z date_updated: 2023-12-01T13:51:06Z day: '10' department: - _id: JiFr - _id: MaLo - _id: CaBe doi: 10.1101/2023.10.09.561523 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2023.10.09.561523v2 month: '10' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: bioRxiv publication_status: submitted related_material: record: - id: '14510' relation: dissertation_contains status: public status: public title: Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14510' acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 citation: ama: Gnyliukh N. Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. 2023. doi:10.15479/at:ista:14510 apa: Gnyliukh, N. (2023). Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14510 chicago: Gnyliukh, Nataliia. “Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14510. ieee: N. Gnyliukh, “Mechanism of clathrin-coated vesicle  formation during endocytosis in plants,” Institute of Science and Technology Austria, 2023. ista: Gnyliukh N. 2023. Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. Institute of Science and Technology Austria. mla: Gnyliukh, Nataliia. Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14510. short: N. Gnyliukh, Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants, Institute of Science and Technology Austria, 2023. date_created: 2023-11-10T09:10:06Z date_published: 2023-11-10T00:00:00Z date_updated: 2024-03-28T23:30:46Z day: '10' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: JiFr - _id: MaLo doi: 10.15479/at:ista:14510 ec_funded: 1 file: - access_level: closed checksum: 3d5e680bfc61f98e308c434f45cc9bd6 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: ngnyliuk date_created: 2023-11-20T09:18:51Z date_updated: 2023-11-20T09:18:51Z file_id: '14567' file_name: Thesis_Gnyliukh_final_08_11_23.docx file_size: 20824903 relation: source_file - access_level: closed checksum: bfc96d47fc4e7e857dd71656097214a4 content_type: application/pdf creator: ngnyliuk date_created: 2023-11-20T09:23:11Z date_updated: 2023-11-23T13:10:55Z embargo: 2024-11-23 embargo_to: open_access file_id: '14568' file_name: Thesis_Gnyliukh_final_20_11_23.pdf file_size: 24871844 relation: main_file file_date_updated: 2023-11-23T13:10:55Z has_accepted_license: '1' keyword: - Clathrin-Mediated Endocytosis - vesicle scission - Dynamin-Related Protein 2 - SH3P2 - TPLATE complex - Total internal reflection fluorescence microscopy - Arabidopsis thaliana language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '11' oa_version: Published Version page: '180' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-037-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '14591' relation: part_of_dissertation status: public - id: '9887' relation: part_of_dissertation status: public - id: '8139' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: Mechanism of clathrin-coated vesicle formation during endocytosis in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '9887' abstract: - lang: eng text: Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: 'We gratefully thank Julie Neveu and Dr. Amanda Barranco of the Grégory Vert laboratory for help preparing plants in France, Dr. Zuzana Gelova for help and advice with protoplast generation, Dr. Stéphane Vassilopoulos and Dr. Florian Schur for advice regarding EM tomography, Alejandro Marquiegui Alvaro for help with material generation, and Dr. Lukasz Kowalski for generously gifting us the mWasabi protein. This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (IST Austria) through resources provided by the Electron Microscopy Facility, Lab Support Facility (particularly Dorota Jaworska), and the Bioimaging Facility. We acknowledge the Advanced Microscopy Facility of the Vienna BioCenter Core Facilities for use of the 3D SIM. For the mass spectrometry analysis of proteins, we acknowledge the University of Natural Resources and Life Sciences (BOKU) Core Facility Mass Spectrometry. This work was supported by the following funds: A.J. is supported by funding from the Austrian Science Fund I3630B25 to J.F. P.M. and E.B. are supported by Agence Nationale de la Recherche ANR-11-EQPX-0029 Morphoscope2 and ANR-10-INBS-04 France BioImaging. S.Y.B. is supported by the NSF No. 1121998 and 1614915. J.W. and D.V.D. are supported by the European Research Council Grant 682436 (to D.V.D.), a China Scholarship Council Grant 201508440249 (to J.W.), and by a Ghent University Special Research Co-funding Grant ST01511051 (to J.W.).' article_number: e2113046118 article_processing_charge: No article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Dana A full_name: Dahhan, Dana A last_name: Dahhan - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Pierre full_name: Mahou, Pierre last_name: Mahou - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Jie full_name: Wang, Jie last_name: Wang - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Daniël full_name: van Damme, Daniël last_name: van Damme - first_name: Emmanuel full_name: Beaurepaire, Emmanuel last_name: Beaurepaire - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Sebastian Y full_name: Bednarek, Sebastian Y last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Dahhan DA, Gnyliukh N, et al. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 2021;118(51). doi:10.1073/pnas.2113046118 apa: Johnson, A. J., Dahhan, D. A., Gnyliukh, N., Kaufmann, W., Zheden, V., Costanzo, T., … Friml, J. (2021). The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.2113046118 chicago: Johnson, Alexander J, Dana A Dahhan, Nataliia Gnyliukh, Walter Kaufmann, Vanessa Zheden, Tommaso Costanzo, Pierre Mahou, et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2113046118. ieee: A. J. Johnson et al., “The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis,” Proceedings of the National Academy of Sciences, vol. 118, no. 51. National Academy of Sciences, 2021. ista: Johnson AJ, Dahhan DA, Gnyliukh N, Kaufmann W, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera Servin JL, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. 2021. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 118(51), e2113046118. mla: Johnson, Alexander J., et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences, vol. 118, no. 51, e2113046118, National Academy of Sciences, 2021, doi:10.1073/pnas.2113046118. short: A.J. Johnson, D.A. Dahhan, N. Gnyliukh, W. Kaufmann, V. Zheden, T. Costanzo, P. Mahou, M. Hrtyan, J. Wang, J.L. Aguilera Servin, D. van Damme, E. Beaurepaire, M. Loose, S.Y. Bednarek, J. Friml, Proceedings of the National Academy of Sciences 118 (2021). date_created: 2021-08-11T14:11:43Z date_published: 2021-12-14T00:00:00Z date_updated: 2024-02-19T11:06:09Z day: '14' ddc: - '580' department: - _id: JiFr - _id: MaLo - _id: EvBe - _id: EM-Fac - _id: NanoFab doi: 10.1073/pnas.2113046118 external_id: isi: - '000736417600043' pmid: - '34907016' file: - access_level: open_access checksum: 8d01e72e22c4fb1584e72d8601947069 content_type: application/pdf creator: cchlebak date_created: 2021-12-15T08:59:40Z date_updated: 2021-12-15T08:59:40Z file_id: '10546' file_name: 2021_PNAS_Johnson.pdf file_size: 2757340 relation: main_file success: 1 file_date_updated: 2021-12-15T08:59:40Z has_accepted_license: '1' intvolume: ' 118' isi: 1 issue: '51' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.1101/2021.04.26.441441 record: - id: '14510' relation: dissertation_contains status: public - id: '14988' relation: research_data status: public status: public title: The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '8139' abstract: - lang: eng text: 'Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and inter-cellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how it functions in planta. In order to facilitate the direct quantitative study of plant CME, here we review current routinely used methods and present refined, standardized quantitative imaging protocols which allow the detailed characterization of CME at multiple scales in plant tissues. These include: (i) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultra-structure of clathrin-coated vesicles; (ii) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (iii) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (iv) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.' acknowledged_ssus: - _id: EM-Fac - _id: Bio acknowledgement: "This paper is dedicated to the memory of Christien Merrifield. He pioneered quantitative\r\nimaging approaches in mammalian CME and his mentorship inspired the development of all\r\nthe analysis methods presented here. His joy in research, pure scientific curiosity and\r\nmicroscopy excellence remain a constant inspiration. We thank Daniel Van Damme for gifting\r\nus the CLC2-GFP x TPLATE-TagRFP plants used in this manuscript. We further thank the\r\nScientific Service Units at IST Austria; specifically, the Electron Microscopy Facility for\r\ntechnical assistance (in particular Vanessa Zheden) and the BioImaging Facility BioImaging\r\nFacility for access to equipment. " article_number: jcs248062 article_processing_charge: No article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: G full_name: Vert, G last_name: Vert - first_name: SY full_name: Bednarek, SY last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Gnyliukh N, Kaufmann W, et al. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. Journal of Cell Science. 2020;133(15). doi:10.1242/jcs.248062 apa: Johnson, A. J., Gnyliukh, N., Kaufmann, W., Narasimhan, M., Vert, G., Bednarek, S., & Friml, J. (2020). Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.248062 chicago: Johnson, Alexander J, Nataliia Gnyliukh, Walter Kaufmann, Madhumitha Narasimhan, G Vert, SY Bednarek, and Jiří Friml. “Experimental Toolbox for Quantitative Evaluation of Clathrin-Mediated Endocytosis in the Plant Model Arabidopsis.” Journal of Cell Science. The Company of Biologists, 2020. https://doi.org/10.1242/jcs.248062. ieee: A. J. Johnson et al., “Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis,” Journal of Cell Science, vol. 133, no. 15. The Company of Biologists, 2020. ista: Johnson AJ, Gnyliukh N, Kaufmann W, Narasimhan M, Vert G, Bednarek S, Friml J. 2020. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. Journal of Cell Science. 133(15), jcs248062. mla: Johnson, Alexander J., et al. “Experimental Toolbox for Quantitative Evaluation of Clathrin-Mediated Endocytosis in the Plant Model Arabidopsis.” Journal of Cell Science, vol. 133, no. 15, jcs248062, The Company of Biologists, 2020, doi:10.1242/jcs.248062. short: A.J. Johnson, N. Gnyliukh, W. Kaufmann, M. Narasimhan, G. Vert, S. Bednarek, J. Friml, Journal of Cell Science 133 (2020). date_created: 2020-07-21T08:58:19Z date_published: 2020-08-06T00:00:00Z date_updated: 2023-12-01T13:51:07Z day: '06' ddc: - '575' department: - _id: JiFr - _id: EM-Fac doi: 10.1242/jcs.248062 ec_funded: 1 external_id: isi: - '000561047900021' pmid: - '32616560' file: - access_level: open_access checksum: 2d11f79a0b4e0a380fb002b933da331a content_type: application/pdf creator: ajohnson date_created: 2020-11-26T17:12:51Z date_updated: 2021-08-08T22:30:03Z embargo: 2021-08-07 file_id: '8815' file_name: 2020 - Johnson - JSC - plant CME toolbox.pdf file_size: 15150403 relation: main_file file_date_updated: 2021-08-08T22:30:03Z has_accepted_license: '1' intvolume: ' 133' isi: 1 issue: '15' language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Journal of Cell Science publication_identifier: eissn: - 1477-9137 issn: - 0021-9533 publication_status: published publisher: The Company of Biologists quality_controlled: '1' related_material: record: - id: '14510' relation: dissertation_contains status: public scopus_import: '1' status: public title: Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 133 year: '2020' ...