@article{11373, abstract = {The actin-homologue FtsA is essential for E. coli cell division, as it links FtsZ filaments in the Z-ring to transmembrane proteins. FtsA is thought to initiate cell constriction by switching from an inactive polymeric to an active monomeric conformation, which recruits downstream proteins and stabilizes the Z-ring. However, direct biochemical evidence for this mechanism is missing. Here, we use reconstitution experiments and quantitative fluorescence microscopy to study divisome activation in vitro. By comparing wild-type FtsA with FtsA R286W, we find that this hyperactive mutant outperforms FtsA WT in replicating FtsZ treadmilling dynamics, FtsZ filament stabilization and recruitment of FtsN. We could attribute these differences to a faster exchange and denser packing of FtsA R286W below FtsZ filaments. Using FRET microscopy, we also find that FtsN binding promotes FtsA self-interaction. We propose that in the active divisome FtsA and FtsN exist as a dynamic copolymer that follows treadmilling filaments of FtsZ.}, author = {Radler, Philipp and Baranova, Natalia S. and Dos Santos Caldas, Paulo R and Sommer, Christoph M and Lopez Pelegrin, Maria D and Michalik, David and Loose, Martin}, issn = {2041-1723}, journal = {Nature Communications}, keywords = {General Physics and Astronomy, General Biochemistry, Genetics and Molecular Biology, General Chemistry}, publisher = {Springer Nature}, title = {{In vitro reconstitution of Escherichia coli divisome activation}}, doi = {10.1038/s41467-022-30301-y}, volume = {13}, year = {2022}, } @article{9243, abstract = {Peptidoglycan is an essential component of the bacterial cell envelope that surrounds the cytoplasmic membrane to protect the cell from osmotic lysis. Important antibiotics such as β-lactams and glycopeptides target peptidoglycan biosynthesis. Class A penicillin-binding proteins (PBPs) are bifunctional membrane-bound peptidoglycan synthases that polymerize glycan chains and connect adjacent stem peptides by transpeptidation. How these enzymes work in their physiological membrane environment is poorly understood. Here, we developed a novel Förster resonance energy transfer-based assay to follow in real time both reactions of class A PBPs reconstituted in liposomes or supported lipid bilayers and applied this assay with PBP1B homologues from Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii in the presence or absence of their cognate lipoprotein activator. Our assay will allow unravelling the mechanisms of peptidoglycan synthesis in a lipid-bilayer environment and can be further developed to be used for high-throughput screening for new antimicrobials.}, author = {Hernández-Rocamora, Víctor M. and Baranova, Natalia S. and Peters, Katharina and Breukink, Eefjan and Loose, Martin and Vollmer, Waldemar}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Real time monitoring of peptidoglycan synthesis by membrane-reconstituted penicillin binding proteins}}, doi = {10.7554/eLife.61525}, volume = {10}, year = {2021}, } @article{9907, abstract = {DivIVA is a protein initially identified as a spatial regulator of cell division in the model organism Bacillus subtilis, but its homologues are present in many other Gram-positive bacteria, including Clostridia species. Besides its role as topological regulator of the Min system during bacterial cell division, DivIVA is involved in chromosome segregation during sporulation, genetic competence, and cell wall synthesis. DivIVA localizes to regions of high membrane curvature, such as the cell poles and cell division site, where it recruits distinct binding partners. Previously, it was suggested that negative curvature sensing is the main mechanism by which DivIVA binds to these specific regions. Here, we show that Clostridioides difficile DivIVA binds preferably to membranes containing negatively charged phospholipids, especially cardiolipin. Strikingly, we observed that upon binding, DivIVA modifies the lipid distribution and induces changes to lipid bilayers containing cardiolipin. Our observations indicate that DivIVA might play a more complex and so far unknown active role during the formation of the cell division septal membrane. }, author = {Labajová, Naďa and Baranova, Natalia S. and Jurásek, Miroslav and Vácha, Robert and Loose, Martin and Barák, Imrich}, issn = {14220067}, journal = {International Journal of Molecular Sciences}, number = {15}, publisher = {MDPI}, title = {{Cardiolipin-containing lipid membranes attract the bacterial cell division protein diviva}}, doi = {10.3390/ijms22158350}, volume = {22}, year = {2021}, } @article{7387, abstract = {Most bacteria accomplish cell division with the help of a dynamic protein complex called the divisome, which spans the cell envelope in the plane of division. Assembly and activation of this machinery are coordinated by the tubulin-related GTPase FtsZ, which was found to form treadmilling filaments on supported bilayers in vitro1, as well as in live cells, in which filaments circle around the cell division site2,3. Treadmilling of FtsZ is thought to actively move proteins around the division septum, thereby distributing peptidoglycan synthesis and coordinating the inward growth of the septum to form the new poles of the daughter cells4. However, the molecular mechanisms underlying this function are largely unknown. Here, to study how FtsZ polymerization dynamics are coupled to downstream proteins, we reconstituted part of the bacterial cell division machinery using its purified components FtsZ, FtsA and truncated transmembrane proteins essential for cell division. We found that the membrane-bound cytosolic peptides of FtsN and FtsQ co-migrated with treadmilling FtsZ–FtsA filaments, but despite their directed collective behaviour, individual peptides showed random motion and transient confinement. Our work suggests that divisome proteins follow treadmilling FtsZ filaments by a diffusion-and-capture mechanism, which can give rise to a moving zone of signalling activity at the division site.}, author = {Baranova, Natalia S. and Radler, Philipp and Hernández-Rocamora, Víctor M. and Alfonso, Carlos and Lopez Pelegrin, Maria D and Rivas, Germán and Vollmer, Waldemar and Loose, Martin}, issn = {2058-5276}, journal = {Nature Microbiology}, pages = {407--417}, publisher = {Springer Nature}, title = {{Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins}}, doi = {10.1038/s41564-019-0657-5}, volume = {5}, year = {2020}, } @article{6297, abstract = {Cell-cell and cell-glycocalyx interactions under flow are important for the behaviour of circulating cells in blood and lymphatic vessels. However, such interactions are not well understood due in part to a lack of tools to study them in defined environments. Here, we develop a versatile in vitro platform for the study of cell-glycocalyx interactions in well-defined physical and chemical settings under flow. Our approach is demonstrated with the interaction between hyaluronan (HA, a key component of the endothelial glycocalyx) and its cell receptor CD44. We generate HA brushes in situ within a microfluidic device, and demonstrate the tuning of their physical (thickness and softness) and chemical (density of CD44 binding sites) properties using characterisation with reflection interference contrast microscopy (RICM) and application of polymer theory. We highlight the interactions of HA brushes with CD44-displaying beads and cells under flow. Observations of CD44+ beads on a HA brush with RICM enabled the 3-dimensional trajectories to be generated, and revealed interactions in the form of stop and go phases with reduced rolling velocity and reduced distance between the bead and the HA brush, compared to uncoated beads. Combined RICM and bright-field microscopy of CD44+ AKR1 T-lymphocytes revealed complementary information about the dynamics of cell rolling and cell morphology, and highlighted the formation of tethers and slings, as they interacted with a HA brush under flow. This platform can readily incorporate more complex models of the glycocalyx, and should permit the study of how mechanical and biochemical factors are orchestrated to enable highly selective blood cell-vessel wall interactions under flow.}, author = {Davies, Heather S. and Baranova, Natalia S. and El Amri, Nouha and Coche-Guérente, Liliane and Verdier, Claude and Bureau, Lionel and Richter, Ralf P. and Débarre, Delphine}, issn = {0945-053X}, journal = {Matrix Biology}, pages = {47--59}, publisher = {Elsevier}, title = {{An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments}}, doi = {10.1016/j.matbio.2018.12.002}, volume = {78-79}, year = {2019}, } @inproceedings{7010, abstract = {Numerous biophysical questions require the quantification of short-range interactions between (functionalized) surfaces and synthetic or biological objects such as cells. Here, we present an original, custom built setup for reflection interference contrast microscopy that can assess distances between a substrate and a flowing object at high speed with nanometric accuracy. We demonstrate its use to decipher the complex biochemical and mechanical interplay regulating blood cell homing at the vessel wall in the microcirculation using an in vitro approach. We show that in the absence of specific biochemical interactions, flowing cells are repelled from the soft layer lining the vessel wall, contributing to red blood cell repulsion in vivo. In contrast, this so-called glycocalyx stabilizes rolling of cells under flow in the presence of a specific receptor naturally present on activated leucocytes and a number of cancer cell lines.}, author = {Davies, Heather S. and Baranova, Natalia S. and El Amri, Nouha and Coche-Guérente, Liliane and Verdier, Claude and Bureau, Lionel and Richter, Ralf P. and Débarre, Delphine}, booktitle = {Advances in Microscopic Imaging II}, isbn = {9781510628458}, issn = {1605-7422}, location = {Munich, Germany}, publisher = {SPIE}, title = {{Blood cell-vessel wall interactions probed by reflection interference contrast microscopy}}, doi = {10.1117/12.2527058}, volume = {11076}, year = {2019}, } @article{555, abstract = {Conventional wisdom has it that proteins fold and assemble into definite structures, and that this defines their function. Glycosaminoglycans (GAGs) are different. In most cases the structures they form have a low degree of order, even when interacting with proteins. Here, we discuss how physical features common to all GAGs — hydrophilicity, charge, linearity and semi-flexibility — underpin the overall properties of GAG-rich matrices. By integrating soft matter physics concepts (e.g. polymer brushes and phase separation) with our molecular understanding of GAG–protein interactions, we can better comprehend how GAG-rich matrices assemble, what their properties are, and how they function. Taking perineuronal nets (PNNs) — a GAG-rich matrix enveloping neurons — as a relevant example, we propose that microphase separation determines the holey PNN anatomy that is pivotal to PNN functions.}, author = {Richter, Ralf and Baranova, Natalia and Day, Anthony and Kwok, Jessica}, journal = {Current Opinion in Structural Biology}, pages = {65 -- 74}, publisher = {Elsevier}, title = {{Glycosaminoglycans in extracellular matrix organisation: Are concepts from soft matter physics key to understanding the formation of perineuronal nets?}}, doi = {10.1016/j.sbi.2017.12.002}, volume = {50}, year = {2018}, } @inbook{1213, abstract = {Bacterial cytokinesis is commonly initiated by the Z-ring, a dynamic cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin-like GTPase, that like its eukaryotic relative forms protein filaments in the presence of GTP. Since the discovery of the Z-ring 25 years ago, various models for the role of FtsZ have been suggested. However, important information about the architecture and dynamics of FtsZ filaments during cytokinesis is still missing. One reason for this lack of knowledge has been the small size of bacteria, which has made it difficult to resolve the orientation and dynamics of individual FtsZ filaments in the Z-ring. While superresolution microscopy experiments have helped to gain more information about the organization of the Z-ring in the dividing cell, they were not yet able to elucidate a mechanism of how FtsZ filaments reorganize during assembly and disassembly of the Z-ring. In this chapter, we explain how to use an in vitro reconstitution approach to investigate the self-organization of FtsZ filaments recruited to a biomimetic lipid bilayer by its membrane anchor FtsA. We show how to perform single-molecule experiments to study the behavior of individual FtsZ monomers during the constant reorganization of the FtsZ-FtsA filament network. We describe how to analyze the dynamics of single molecules and explain why this information can help to shed light onto possible mechanism of Z-ring constriction. We believe that similar experimental approaches will be useful to study the mechanism of membrane-based polymerization of other cytoskeletal systems, not only from prokaryotic but also eukaryotic origin.}, author = {Baranova, Natalia and Loose, Martin}, booktitle = {Cytokinesis}, editor = {Echard, Arnaud }, issn = {0091679X}, pages = {355 -- 370}, publisher = {Academic Press}, title = {{Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers}}, doi = {10.1016/bs.mcb.2016.03.036}, volume = {137}, year = {2017}, } @article{6298, abstract = {Tumor necrosis factor-stimulated gene-6 (TSG-6) is a hyalu-ronan (HA)-binding protein that plays important roles ininflammation and ovulation. TSG-6-mediated cross-linking ofHA has been proposed as a functional mechanism (e.g.for regu-lating leukocyte adhesion), but direct evidence for cross-linkingis lacking, and we know very little about its impact on HA ultra-structure. Here we used films of polymeric and oligomeric HAchains, end-grafted to a solid support, and a combination ofsurface-sensitive biophysical techniques to quantify the bindingof TSG-6 into HA films and to correlate binding to morpholog-ical changes. We find that full-length TSG-6 binds with pro-nounced positive cooperativity and demonstrate that it cancross-link HA at physiologically relevant concentrations. Ourdata indicate that cooperative binding of full-length TSG-6arises from HA-induced protein oligomerization and that theTSG-6 oligomers act as cross-linkers. In contrast, the HA-bind-ing domain of TSG-6 (the Link module) alone binds withoutpositive cooperativity and weaker than the full-length protein.Both the Link module and full-length TSG-6 condensed andrigidified HA films, and the degree of condensation scaled withthe affinity between the TSG-6 constructs and HA. We proposethat condensation is the result of protein-mediated HA cross-linking. Our findings firmly establish that TSG-6 is a potent HAcross-linking agent and might hence have important implica-tions for the mechanistic understanding of the biological func-tion of TSG-6 (e.g.in inflammation).}, author = {Baranova, Natalia and Nilebäck, Erik and Haller, F. Michael and Briggs, David C. and Svedhem, Sofia and Day, Anthony J. and Richter, Ralf P.}, issn = {0021-9258}, journal = {Journal of Biological Chemistry}, number = {29}, pages = {25675--25686}, publisher = {American Society for Biochemistry & Molecular Biology}, title = {{The inflammation-associated protein TSG-6 cross-links hyaluronan via hyaluronan-induced TSG-6 oligomers}}, doi = {10.1074/jbc.m111.247395}, volume = {286}, year = {2011}, }