TY - CONF AB - State-of-the-art detection systems are generally evaluated on their ability to exhaustively retrieve objects densely distributed in the image, across a wide variety of appearances and semantic categories. Orthogonal to this, many real-life object detection applications, for example in remote sensing, instead require dealing with large images that contain only a few small objects of a single class, scattered heterogeneously across the space. In addition, they are often subject to strict computational constraints, such as limited battery capacity and computing power.To tackle these more practical scenarios, we propose a novel flexible detection scheme that efficiently adapts to variable object sizes and densities: We rely on a sequence of detection stages, each of which has the ability to predict groups of objects as well as individuals. Similar to a detection cascade, this multi-stage architecture spares computational effort by discarding large irrelevant regions of the image early during the detection process. The ability to group objects provides further computational and memory savings, as it allows working with lower image resolutions in early stages, where groups are more easily detected than individuals, as they are more salient. We report experimental results on two aerial image datasets, and show that the proposed method is as accurate yet computationally more efficient than standard single-shot detectors, consistently across three different backbone architectures. AU - Royer, Amélie AU - Lampert, Christoph ID - 7936 SN - 9781728165530 T2 - IEEE Winter Conference on Applications of Computer Vision TI - Localizing grouped instances for efficient detection in low-resource scenarios ER - TY - CONF AB - Fine-tuning is a popular way of exploiting knowledge contained in a pre-trained convolutional network for a new visual recognition task. However, the orthogonal setting of transferring knowledge from a pretrained network to a visually different yet semantically close source is rarely considered: This commonly happens with real-life data, which is not necessarily as clean as the training source (noise, geometric transformations, different modalities, etc.).To tackle such scenarios, we introduce a new, generalized form of fine-tuning, called flex-tuning, in which any individual unit (e.g. layer) of a network can be tuned, and the most promising one is chosen automatically. In order to make the method appealing for practical use, we propose two lightweight and faster selection procedures that prove to be good approximations in practice. We study these selection criteria empirically across a variety of domain shifts and data scarcity scenarios, and show that fine-tuning individual units, despite its simplicity, yields very good results as an adaptation technique. As it turns out, in contrast to common practice, rather than the last fully-connected unit it is best to tune an intermediate or early one in many domain- shift scenarios, which is accurately detected by flex-tuning. AU - Royer, Amélie AU - Lampert, Christoph ID - 7937 SN - 9781728165530 T2 - 2020 IEEE Winter Conference on Applications of Computer Vision TI - A flexible selection scheme for minimum-effort transfer learning ER - TY - CONF AB - Multiple-environment Markov decision processes (MEMDPs) are MDPs equipped with not one, but multiple probabilistic transition functions, which represent the various possible unknown environments. While the previous research on MEMDPs focused on theoretical properties for long-run average payoff, we study them with discounted-sum payoff and focus on their practical advantages and applications. MEMDPs can be viewed as a special case of Partially observable and Mixed observability MDPs: the state of the system is perfectly observable, but not the environment. We show that the specific structure of MEMDPs allows for more efficient algorithmic analysis, in particular for faster belief updates. We demonstrate the applicability of MEMDPs in several domains. In particular, we formalize the sequential decision-making approach to contextual recommendation systems as MEMDPs and substantially improve over the previous MDP approach. AU - Chatterjee, Krishnendu AU - Chmelik, Martin AU - Karkhanis, Deep AU - Novotný, Petr AU - Royer, Amélie ID - 8193 SN - 23340835 T2 - Proceedings of the 30th International Conference on Automated Planning and Scheduling TI - Multiple-environment Markov decision processes: Efficient analysis and applications VL - 30 ER - TY - CHAP AB - Image translation refers to the task of mapping images from a visual domain to another. Given two unpaired collections of images, we aim to learn a mapping between the corpus-level style of each collection, while preserving semantic content shared across the two domains. We introduce xgan, a dual adversarial auto-encoder, which captures a shared representation of the common domain semantic content in an unsupervised way, while jointly learning the domain-to-domain image translations in both directions. We exploit ideas from the domain adaptation literature and define a semantic consistency loss which encourages the learned embedding to preserve semantics shared across domains. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset we collected for this purpose, “CartoonSet”, is also publicly available as a new benchmark for semantic style transfer at https://google.github.io/cartoonset/index.html. AU - Royer, Amélie AU - Bousmalis, Konstantinos AU - Gouws, Stephan AU - Bertsch, Fred AU - Mosseri, Inbar AU - Cole, Forrester AU - Murphy, Kevin ED - Singh, Richa ED - Vatsa, Mayank ED - Patel, Vishal M. ED - Ratha, Nalini ID - 8092 SN - 9783030306717 T2 - Domain Adaptation for Visual Understanding TI - XGAN: Unsupervised image-to-image translation for many-to-many mappings ER - TY - THES AB - Deep neural networks have established a new standard for data-dependent feature extraction pipelines in the Computer Vision literature. Despite their remarkable performance in the standard supervised learning scenario, i.e. when models are trained with labeled data and tested on samples that follow a similar distribution, neural networks have been shown to struggle with more advanced generalization abilities, such as transferring knowledge across visually different domains, or generalizing to new unseen combinations of known concepts. In this thesis we argue that, in contrast to the usual black-box behavior of neural networks, leveraging more structured internal representations is a promising direction for tackling such problems. In particular, we focus on two forms of structure. First, we tackle modularity: We show that (i) compositional architectures are a natural tool for modeling reasoning tasks, in that they efficiently capture their combinatorial nature, which is key for generalizing beyond the compositions seen during training. We investigate how to to learn such models, both formally and experimentally, for the task of abstract visual reasoning. Then, we show that (ii) in some settings, modularity allows us to efficiently break down complex tasks into smaller, easier, modules, thereby improving computational efficiency; We study this behavior in the context of generative models for colorization, as well as for small objects detection. Secondly, we investigate the inherently layered structure of representations learned by neural networks, and analyze its role in the context of transfer learning and domain adaptation across visually dissimilar domains. AU - Royer, Amélie ID - 8390 SN - 2663-337X TI - Leveraging structure in Computer Vision tasks for flexible Deep Learning models ER - TY - CONF AB - We develop a probabilistic technique for colorizing grayscale natural images. In light of the intrinsic uncertainty of this task, the proposed probabilistic framework has numerous desirable properties. In particular, our model is able to produce multiple plausible and vivid colorizations for a given grayscale image and is one of the first colorization models to provide a proper stochastic sampling scheme. Moreover, our training procedure is supported by a rigorous theoretical framework that does not require any ad hoc heuristics and allows for efficient modeling and learning of the joint pixel color distribution.We demonstrate strong quantitative and qualitative experimental results on the CIFAR-10 dataset and the challenging ILSVRC 2012 dataset. AU - Royer, Amélie AU - Kolesnikov, Alexander AU - Lampert, Christoph ID - 911 TI - Probabilistic image colorization ER -