@article{10845,
abstract = {We study an impurity with a resonance level whose position coincides with the Fermi energy of the surrounding Fermi gas. An impurity causes a rapid variation of the scattering phase shift for fermions at the Fermi surface, introducing a new characteristic length scale into the problem. We investigate manifestations of this length scale in the self-energy of the impurity and in the density of the bath. Our calculations reveal a model-independent deformation of the density of the Fermi gas, which is determined by the width of the resonance. To provide a broader picture, we investigate time evolution of the density in quench dynamics, and study the behavior of the system at finite temperatures. Finally, we briefly discuss implications of our findings for the Fermi-polaron problem.},
author = {Maslov, Mikhail and Lemeshko, Mikhail and Volosniev, Artem},
issn = {2643-1564},
journal = {Physical Review Research},
publisher = {American Physical Society},
title = {{Impurity with a resonance in the vicinity of the Fermi energy}},
doi = {10.1103/PhysRevResearch.4.013160},
volume = {4},
year = {2022},
}
@article{11552,
abstract = {Rotational dynamics of D2 molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD+ ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant BHe of the in-droplet D2 molecule, determined by Fourier analysis, is the same as Bgas for an isolated D2 molecule. Our observations show that the D2 molecules inside helium nanodroplets essentially rotate as free D2 molecules.},
author = {Qiang, Junjie and Zhou, Lianrong and Lu, Peifen and Lin, Kang and Ma, Yongzhe and Pan, Shengzhe and Lu, Chenxu and Jiang, Wenyu and Sun, Fenghao and Zhang, Wenbin and Li, Hui and Gong, Xiaochun and Averbukh, Ilya Sh and Prior, Yehiam and Schouder, Constant A. and Stapelfeldt, Henrik and Cherepanov, Igor and Lemeshko, Mikhail and Jäger, Wolfgang and Wu, Jian},
issn = {10797114},
journal = {Physical Review Letters},
number = {24},
publisher = {American Physical Society},
title = {{Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets}},
doi = {10.1103/PhysRevLett.128.243201},
volume = {128},
year = {2022},
}
@article{11590,
abstract = {We investigate the ground-state properties of weakly repulsive one-dimensional bosons in the presence of an attractive zero-range impurity potential. First, we derive mean-field solutions to the problem on a finite ring for the two asymptotic cases: (i) all bosons are bound to the impurity and (ii) all bosons are in a scattering state. Moreover, we derive the critical line that separates these regimes in the parameter space. In the thermodynamic limit, this critical line determines the maximum number of bosons that can be bound by the impurity potential, forming an artificial atom. Second, we validate the mean-field results using the flow equation approach and the multi-layer multi-configuration time-dependent Hartree method for atomic mixtures. While beyond-mean-field effects destroy long-range order in the Bose gas, the critical boson number is unaffected. Our findings are important for understanding such artificial atoms in low-density Bose gases with static and mobile impurities.},
author = {Brauneis, Fabian and Backert, Timothy G. and Mistakidis, Simeon I. and Lemeshko, Mikhail and Hammer, Hans Werner and Volosniev, Artem},
issn = {1367-2630},
journal = {New Journal of Physics},
number = {6},
publisher = {IOP Publishing},
title = {{Artificial atoms from cold bosons in one dimension}},
doi = {10.1088/1367-2630/ac78d8},
volume = {24},
year = {2022},
}
@article{10771,
abstract = {A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects—in electron transmission, electron transport, and chemical reactions—is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.},
author = {Evers, Ferdinand and Aharony, Amnon and Bar-Gill, Nir and Entin-Wohlman, Ora and Hedegård, Per and Hod, Oded and Jelinek, Pavel and Kamieniarz, Grzegorz and Lemeshko, Mikhail and Michaeli, Karen and Mujica, Vladimiro and Naaman, Ron and Paltiel, Yossi and Refaely-Abramson, Sivan and Tal, Oren and Thijssen, Jos and Thoss, Michael and Van Ruitenbeek, Jan M. and Venkataraman, Latha and Waldeck, David H. and Yan, Binghai and Kronik, Leeor},
issn = {15214095},
journal = {Advanced Materials},
number = {13},
publisher = {Wiley},
title = {{Theory of chirality induced spin selectivity: Progress and challenges}},
doi = {10.1002/adma.202106629},
volume = {34},
year = {2022},
}
@article{10585,
abstract = {Recently it was shown that anyons on the two-sphere naturally arise from a system of molecular impurities exchanging angular momentum with a many-particle bath (Phys. Rev. Lett. 126, 015301 (2021)). Here we further advance this approach and rigorously demonstrate that in the experimentally realized regime the lowest spectrum of two linear molecules immersed in superfluid helium corresponds to the spectrum of two anyons on the sphere. We develop the formalism within the framework of the recently experimentally observed angulon quasiparticle},
author = {Brooks, Morris and Lemeshko, Mikhail and Lundholm, Douglas and Yakaboylu, Enderalp},
issn = {2218-2004},
journal = {Atoms},
keywords = {anyons, quasiparticles, Quantum Hall Effect, topological states of matter},
number = {4},
publisher = {MDPI},
title = {{Emergence of anyons on the two-sphere in molecular impurities}},
doi = {10.3390/atoms9040106},
volume = {9},
year = {2021},
}
@article{10631,
abstract = {We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS2 and I2 as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum-mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity, the angular momentum, transferred from the molecule to the droplet.},
author = {Cherepanov, Igor and Bighin, Giacomo and Schouder, Constant A. and Chatterley, Adam S. and Albrechtsen, Simon H. and Muñoz, Alberto Viñas and Christiansen, Lars and Stapelfeldt, Henrik and Lemeshko, Mikhail},
issn = {2469-9934},
journal = {Physical Review A},
number = {6},
publisher = {American Physical Society},
title = {{Excited rotational states of molecules in a superfluid}},
doi = {10.1103/PhysRevA.104.L061303},
volume = {104},
year = {2021},
}
@unpublished{10762,
abstract = {Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a new variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of non-additive systems very well. In particular, we observe substantial improvement over the standard coherent state estimates in the most challenging intermediate coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications.},
author = {Rzadkowski, Wojciech and Lemeshko, Mikhail and Mentink, Johan H.},
booktitle = {arXiv},
title = {{Artificial neural network states for non-additive systems}},
year = {2021},
}
@article{9005,
abstract = {Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field.},
author = {Brooks, Morris and Lemeshko, Mikhail and Lundholm, D. and Yakaboylu, Enderalp},
issn = {10797114},
journal = {Physical Review Letters},
number = {1},
publisher = {American Physical Society},
title = {{Molecular impurities as a realization of anyons on the two-sphere}},
doi = {10.1103/PhysRevLett.126.015301},
volume = {126},
year = {2021},
}
@article{10134,
abstract = {We investigate the effect of coupling between translational and internal degrees of freedom of composite quantum particles on their localization in a random potential. We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state. We perform numerical calculations for a two-particle system bound by a harmonic force in a 1D disordered lattice and a rigid rotor in a 2D disordered lattice. We illustrate that the coupling has a dramatic effect on localization properties, even with a small number of internal states participating in quantum dynamics.},
author = {Suzuki, Fumika and Lemeshko, Mikhail and Zurek, Wojciech H. and Krems, Roman V.},
issn = {1079-7114},
journal = {Physical Review Letters},
keywords = {General Physics and Astronomy},
number = {16},
publisher = {American Physical Society },
title = {{Anderson localization of composite particles}},
doi = {10.1103/physrevlett.127.160602},
volume = {127},
year = {2021},
}
@article{9769,
abstract = {A few years ago, flow equations were introduced as a technique for calculating the ground-state energies of cold Bose gases with and without impurities. In this paper, we extend this approach to compute observables other than the energy. As an example, we calculate the densities, and phase fluctuations of one-dimensional Bose gases with one and two impurities. For a single mobile impurity, we use flow equations to validate the mean-field results obtained upon the Lee-Low-Pines transformation. We show that the mean-field approximation is accurate for all values of the boson-impurity interaction strength as long as the phase coherence length is much larger than the healing length of the condensate. For two static impurities, we calculate impurity-impurity interactions induced by the Bose gas. We find that leading order perturbation theory fails when boson-impurity interactions are stronger than boson-boson interactions. The mean-field approximation reproduces the flow equation results for all values of the boson-impurity interaction strength as long as boson-boson interactions are weak.},
author = {Brauneis, Fabian and Hammer, Hans-Werner and Lemeshko, Mikhail and Volosniev, Artem},
issn = {2542-4653},
journal = {SciPost Physics},
number = {1},
publisher = {SciPost},
title = {{Impurities in a one-dimensional Bose gas: The flow equation approach}},
doi = {10.21468/scipostphys.11.1.008},
volume = {11},
year = {2021},
}
@article{9770,
abstract = {We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that the friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data.},
author = {Volosniev, Artem and Alpern, Hen and Paltiel, Yossi and Millo, Oded and Lemeshko, Mikhail and Ghazaryan, Areg},
issn = {2469-9969},
journal = {Physical Review B},
number = {2},
publisher = {American Physical Society},
title = {{Interplay between friction and spin-orbit coupling as a source of spin polarization}},
doi = {10.1103/physrevb.104.024430},
volume = {104},
year = {2021},
}
@article{7933,
abstract = {We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance.},
author = {Maslov, Mikhail and Lemeshko, Mikhail and Yakaboylu, Enderalp},
issn = {24699969},
journal = {Physical Review B},
number = {18},
publisher = {American Physical Society},
title = {{Synthetic spin-orbit coupling mediated by a bosonic environment}},
doi = {10.1103/PhysRevB.101.184104},
volume = {101},
year = {2020},
}
@article{7968,
abstract = {Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role.},
author = {Ghazaryan, Areg and Paltiel, Yossi and Lemeshko, Mikhail},
issn = {1932-7447},
journal = {The Journal of Physical Chemistry C},
number = {21},
pages = {11716--11721},
publisher = {American Chemical Society},
title = {{Analytic model of chiral-induced spin selectivity}},
doi = {10.1021/acs.jpcc.0c02584},
volume = {124},
year = {2020},
}
@article{8170,
abstract = {Alignment of OCS, CS2, and I2 molecules embedded in helium nanodroplets is measured as a function
of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct
peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and
centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For
CS2 and I2, they are the first experimental results reported. The alignment dynamics calculated from the
gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in
detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in
helium droplets introduced here should apply to a range of molecules and complexes.},
author = {Chatterley, Adam S. and Christiansen, Lars and Schouder, Constant A. and Jørgensen, Anders V. and Shepperson, Benjamin and Cherepanov, Igor and Bighin, Giacomo and Zillich, Robert E. and Lemeshko, Mikhail and Stapelfeldt, Henrik},
issn = {10797114},
journal = {Physical Review Letters},
number = {1},
publisher = {American Physical Society},
title = {{Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains}},
doi = {10.1103/PhysRevLett.125.013001},
volume = {125},
year = {2020},
}
@article{8587,
abstract = {Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.},
author = {Li, Xiang and Yakaboylu, Enderalp and Bighin, Giacomo and Schmidt, Richard and Lemeshko, Mikhail and Deuchert, Andreas},
issn = {0021-9606},
journal = {The Journal of Chemical Physics},
keywords = {Physical and Theoretical Chemistry, General Physics and Astronomy},
number = {16},
publisher = {AIP Publishing},
title = {{Intermolecular forces and correlations mediated by a phonon bath}},
doi = {10.1063/1.5144759},
volume = {152},
year = {2020},
}
@article{8588,
abstract = {Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)].},
author = {Hubert, C. and Cohen, K. and Ghazaryan, Areg and Lemeshko, Mikhail and Rapaport, R. and Santos, P. V.},
issn = {2469-9950},
journal = {Physical Review B},
number = {4},
publisher = {American Physical Society},
title = {{Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids}},
doi = {10.1103/physrevb.102.045307},
volume = {102},
year = {2020},
}
@article{8652,
abstract = {Nature creates electrons with two values of the spin projection quantum number. In certain applications, it is important to filter electrons with one spin projection from the rest. Such filtering is not trivial, since spin-dependent interactions are often weak, and cannot lead to any substantial effect. Here we propose an efficient spin filter based upon scattering from a two-dimensional crystal, which is made of aligned point magnets. The polarization of the outgoing electron flux is controlled by the crystal, and reaches maximum at specific values of the parameters. In our scheme, polarization increase is accompanied by higher reflectivity of the crystal. High transmission is feasible in scattering from a quantum cavity made of two crystals. Our findings can be used for studies of low-energy spin-dependent scattering from two-dimensional ordered structures made of magnetic atoms or aligned chiral molecules.},
author = {Ghazaryan, Areg and Lemeshko, Mikhail and Volosniev, Artem},
issn = {2399-3650},
journal = {Communications Physics},
publisher = {Springer Nature},
title = {{Filtering spins by scattering from a lattice of point magnets}},
doi = {10.1038/s42005-020-00445-8},
volume = {3},
year = {2020},
}
@article{8769,
abstract = {One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas.},
author = {Yakaboylu, Enderalp and Ghazaryan, Areg and Lundholm, D. and Rougerie, N. and Lemeshko, Mikhail and Seiringer, Robert},
issn = {2469-9950},
journal = {Physical Review B},
number = {14},
publisher = {American Physical Society},
title = {{Quantum impurity model for anyons}},
doi = {10.1103/physrevb.102.144109},
volume = {102},
year = {2020},
}
@article{5886,
abstract = {Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling.},
author = {Li, Xiang and Bighin, Giacomo and Yakaboylu, Enderalp and Lemeshko, Mikhail},
issn = {00268976},
journal = {Molecular Physics},
publisher = {Taylor and Francis},
title = {{Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon}},
doi = {10.1080/00268976.2019.1567852},
year = {2019},
}
@article{7396,
abstract = {The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two-, and many-body scenarios, thereby allowing one to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed-matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control—from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting.},
author = {Koch, Christiane P. and Lemeshko, Mikhail and Sugny, Dominique},
issn = {0034-6861},
journal = {Reviews of Modern Physics},
number = {3},
publisher = {APS},
title = {{Quantum control of molecular rotation}},
doi = {10.1103/revmodphys.91.035005},
volume = {91},
year = {2019},
}
@article{6092,
abstract = {In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital angular momentum, and lattice degrees of freedom, understanding which is key for molecular magnets, nano-magneto-mechanics, spintronics, and ultrafast magnetism. Until now, the timescales of electron-to-lattice angular momentum transfer remain unclear, since modeling this process on a microscopic level requires the addition of an infinite amount of quantum angular momenta. We show that this problem can be solved by reformulating it in terms of the recently discovered angulon quasiparticles, which results in a rotationally invariant quantum many-body theory. In particular, we demonstrate that nonperturbative effects take place even if the electron-phonon coupling is weak and give rise to angular momentum transfer on femtosecond timescales.},
author = {Mentink, Johann H and Katsnelson, Mikhail and Lemeshko, Mikhail},
journal = {Physical Review B},
number = {6},
publisher = {APS},
title = {{Quantum many-body dynamics of the Einstein-de Haas effect}},
doi = {10.1103/PhysRevB.99.064428},
volume = {99},
year = {2019},
}
@article{6786,
abstract = {Dipolar coupling plays a fundamental role in the interaction between electrically or magnetically polarized species such as magnetic atoms and dipolar molecules in a gas or dipolar excitons in the solid state. Unlike Coulomb or contactlike interactions found in many atomic, molecular, and condensed-matter systems, this interaction is long-ranged and highly anisotropic, as it changes from repulsive to attractive depending on the relative positions and orientation of the dipoles. Because of this unique property, many exotic, symmetry-breaking collective states have been recently predicted for cold dipolar gases, but only a few have been experimentally detected and only in dilute atomic dipolar Bose-Einstein condensates. Here, we report on the first observation of attractive dipolar coupling between excitonic dipoles using a new design of stacked semiconductor bilayers. We show that the presence of a dipolar exciton fluid in one bilayer modifies the spatial distribution and increases the binding energy of excitonic dipoles in a vertically remote layer. The binding energy changes are explained using a many-body polaron model describing the deformation of the exciton cloud due to its interaction with a remote dipolar exciton. The surprising nonmonotonic dependence on the cloud density indicates the important role of dipolar correlations, which is unique to dense, strongly interacting dipolar solid-state systems. Our concept provides a route for the realization of dipolar lattices with strong anisotropic interactions in semiconductor systems, which open the way for the observation of theoretically predicted new and exotic collective phases, as well as for engineering and sensing their collective excitations.},
author = {Hubert, Colin and Baruchi, Yifat and Mazuz-Harpaz, Yotam and Cohen, Kobi and Biermann, Klaus and Lemeshko, Mikhail and West, Ken and Pfeiffer, Loren and Rapaport, Ronen and Santos, Paulo},
issn = {2160-3308},
journal = {Physical Review X},
number = {2},
publisher = {APS},
title = {{Attractive dipolar coupling between stacked exciton fluids}},
doi = {10.1103/PhysRevX.9.021026},
volume = {9},
year = {2019},
}
@article{5794,
abstract = {We present an approach to interacting quantum many-body systems based on the notion of quantum groups, also known as q-deformed Lie algebras. In particular, we show that, if the symmetry of a free quantum particle corresponds to a Lie group G, in the presence of a many-body environment this particle can be described by a deformed group, Gq. Crucially, the single deformation parameter, q, contains all the information about the many-particle interactions in the system. We exemplify our approach by considering a quantum rotor interacting with a bath of bosons, and demonstrate that extracting the value of q from closed-form solutions in the perturbative regime allows one to predict the behavior of the system for arbitrary values of the impurity-bath coupling strength, in good agreement with nonperturbative calculations. Furthermore, the value of the deformation parameter allows one to predict at which coupling strengths rotor-bath interactions result in a formation of a stable quasiparticle. The approach based on quantum groups does not only allow for a drastic simplification of impurity problems, but also provides valuable insights into hidden symmetries of interacting many-particle systems.},
author = {Yakaboylu, Enderalp and Shkolnikov, Mikhail and Lemeshko, Mikhail},
issn = {00319007},
journal = {Physical Review Letters},
number = {25},
publisher = {American Physical Society},
title = {{Quantum groups as hidden symmetries of quantum impurities}},
doi = {10.1103/PhysRevLett.121.255302},
volume = {121},
year = {2018},
}
@article{5983,
abstract = {We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.},
author = {Yakaboylu, Enderalp and Midya, Bikashkali and Deuchert, Andreas and Leopold, Nikolai K and Lemeshko, Mikhail},
issn = {2469-9950},
journal = {Physical Review B},
number = {22},
publisher = {American Physical Society},
title = {{Theory of the rotating polaron: Spectrum and self-localization}},
doi = {10.1103/physrevb.98.224506},
volume = {98},
year = {2018},
}
@article{195,
abstract = {We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using atomic impurities in ultracold gases.},
author = {Yakaboylu, Enderalp and Lemeshko, Mikhail},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {4},
publisher = {American Physical Society},
title = {{Anyonic statistics of quantum impurities in two dimensions}},
doi = {10.1103/PhysRevB.98.045402},
volume = {98},
year = {2018},
}
@article{6339,
abstract = {We introduce a diagrammatic Monte Carlo approach to angular momentum properties of quantum many-particle systems possessing a macroscopic number of degrees of freedom. The treatment is based on a diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach is applicable at arbitrary coupling, is free of systematic errors and of finite-size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model; however, the method is quite general and can be applied to a broad variety of systems in which particles exchange quantum angular momentum with their many-body environment.},
author = {Bighin, Giacomo and Tscherbul, Timur and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {16},
publisher = {APS},
title = {{Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems}},
doi = {10.1103/physrevlett.121.165301},
volume = {121},
year = {2018},
}
@article{415,
abstract = {Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the “angulon” quasiparticle [M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field.},
author = {Rzadkowski, Wojciech and Lemeshko, Mikhail},
journal = {The Journal of Chemical Physics},
number = {10},
publisher = {AIP},
title = {{Effect of a magnetic field on molecule–solvent angular momentum transfer}},
doi = {10.1063/1.5017591},
volume = {148},
year = {2018},
}
@article{417,
abstract = {We introduce a Diagrammatic Monte Carlo (DiagMC) approach to complex molecular impurities with rotational degrees of freedom interacting with a many-particle environment. The treatment is based on the diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach works at arbitrary coupling, is free of systematic errors and of finite size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model, however, the method is quite general and can be applied to a broad variety of quantum impurities possessing angular momentum degrees of freedom. },
author = {Bighin, Giacomo and Tscherbul, Timur and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {16},
publisher = {APS Physics},
title = {{Diagrammatic Monte Carlo approach to rotating molecular impurities}},
doi = {10.1103/PhysRevLett.121.165301},
volume = {121},
year = {2018},
}
@inbook{604,
abstract = {In several settings of physics and chemistry one has to deal with molecules interacting with some kind of an external environment, be it a gas, a solution, or a crystal surface. Understanding molecular processes in the presence of such a many-particle bath is inherently challenging, and usually requires large-scale numerical computations. Here, we present an alternative approach to the problem, based on the notion of the angulon quasiparticle. We show that molecules rotating inside superfluid helium nanodroplets and Bose–Einstein condensates form angulons, and therefore can be described by straightforward solutions of a simple microscopic Hamiltonian. Casting the problem in the language of angulons allows us not only to greatly simplify it, but also to gain insights into the origins of the observed phenomena and to make predictions for future experimental studies.},
author = {Lemeshko, Mikhail and Schmidt, Richard},
booktitle = {Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero },
editor = {Dulieu, Oliver and Osterwalder, Andreas},
issn = {20413181},
pages = {444 -- 495},
publisher = {The Royal Society of Chemistry},
title = {{Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets}},
doi = {10.1039/9781782626800-00444},
volume = {11},
year = {2017},
}
@article{1109,
abstract = {Rotation of molecules embedded in He nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation shell can be set into coherent collective rotation lasting long enough to form revivals. With increasing fluence, however, the revivals disappear -- instead, rotational dynamics as rapid as for an isolated molecule is observed during the first few picoseconds. Classical calculations trace this phenomenon to transient decoupling of the molecule from its He shell. Our results open novel opportunities for studying non-equilibrium solute-solvent dynamics and quantum thermalization. },
author = {Shepperson, Benjamin and Søndergaard, Anders and Christiansen, Lars and Kaczmarczyk, Jan and Zillich, Robert and Lemeshko, Mikhail and Stapelfeldt, Henrik},
journal = {Physical Review Letters},
number = {20},
publisher = {American Physical Society},
title = {{Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free}},
doi = {10.1103/PhysRevLett.118.203203},
volume = {118},
year = {2017},
}
@article{1119,
abstract = {Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently-predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)]. Most importantly, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.},
author = {Lemeshko, Mikhail},
issn = {00319007},
journal = {Physical Review Letters},
number = {9},
publisher = {American Physical Society},
title = {{Quasiparticle approach to molecules interacting with quantum solvents}},
doi = {10.1103/PhysRevLett.118.095301},
volume = {118},
year = {2017},
}
@article{1120,
abstract = {The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates. },
author = {Li, Xiang and Seiringer, Robert and Lemeshko, Mikhail},
issn = {24699926},
journal = {Physical Review A},
number = {3},
publisher = {American Physical Society},
title = {{Angular self-localization of impurities rotating in a bosonic bath}},
doi = {10.1103/PhysRevA.95.033608},
volume = {95},
year = {2017},
}
@article{1133,
abstract = {It is a common knowledge that an effective interaction of a quantum impurity with an electromagnetic field can be screened by surrounding charge carriers, whether mobile or static. Here we demonstrate that very strong, "anomalous" screening can take place in the presence of a neutral, weakly polarizable environment, due to an exchange of orbital angular momentum between the impurity and the bath. Furthermore, we show that it is possible to generalize all phenomena related to isolated impurities in an external field to the case when a many-body environment is present, by casting the problem in terms of the angulon quasiparticle. As a result, the relevant observables such as the effective Rabi frequency, geometric phase, and impurity spatial alignment are straightforward to evaluate in terms of a single parameter: the angular-momentum-dependent screening factor.},
author = {Yakaboylu, Enderalp and Lemeshko, Mikhail},
issn = {00319007},
journal = {Physical Review Letters},
number = {8},
publisher = {American Physical Society},
title = {{Anomalous screening of quantum impurities by a neutral environment}},
doi = {10.1103/PhysRevLett.118.085302},
volume = {118},
year = {2017},
}
@article{994,
abstract = {The formation of vortices is usually considered to be the main mechanism of angular momentum disposal in superfluids. Recently, it was predicted that a superfluid can acquire angular momentum via an alternative, microscopic route -- namely, through interaction with rotating impurities, forming so-called `angulon quasiparticles' [Phys. Rev. Lett. 114, 203001 (2015)]. The angulon instabilities correspond to transfer of a small number of angular momentum quanta from the impurity to the superfluid, as opposed to vortex instabilities, where angular momentum is quantized in units of ℏ per atom. Furthermore, since conventional impurities (such as molecules) represent three-dimensional (3D) rotors, the angular momentum transferred is intrinsically 3D as well, as opposed to a merely planar rotation which is inherent to vortices. Herein we show that the angulon theory can explain the anomalous broadening of the spectroscopic lines observed for CH 3 and NH 3 molecules in superfluid helium nanodroplets, thereby providing a fingerprint of the emerging angulon instabilities in experiment.},
author = {Cherepanov, Igor and Lemeshko, Mikhail},
journal = {Physical Review Materials},
number = {3},
publisher = {American Physical Society},
title = {{Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules}},
doi = {10.1103/PhysRevMaterials.1.035602},
volume = {1},
year = {2017},
}
@article{995,
abstract = {Recently it was shown that an impurity exchanging orbital angular momentum with a surrounding bath can be described in terms of the angulon quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. The angulon consists of a quantum rotor dressed by a many-particle field of boson excitations, and can be formed out of, for example, a molecule or a nonspherical atom in superfluid helium, or out of an electron coupled to lattice phonons or a Bose condensate. Here we develop an approach to the angulon based on the path-integral formalism, which sets the ground for a systematic, perturbative treatment of the angulon problem. The resulting perturbation series can be interpreted in terms of Feynman diagrams, from which, in turn, one can derive a set of diagrammatic rules. These rules extend the machinery of the graphical theory of angular momentum - well known from theoretical atomic spectroscopy - to the case where an environment with an infinite number of degrees of freedom is present. In particular, we show that each diagram can be interpreted as a 'skeleton', which enforces angular momentum conservation, dressed by an additional many-body contribution. This connection between the angulon theory and the graphical theory of angular momentum is particularly important as it allows to systematically and substantially simplify the analytical representation of each diagram. In order to exemplify the technique, we calculate the 1- and 2-loop contributions to the angulon self-energy, the spectral function, and the quasiparticle weight. The diagrammatic theory we develop paves the way to investigate next-to-leading order quantities in a more compact way compared to the variational approaches.},
author = {Bighin, Giacomo and Lemeshko, Mikhail},
issn = {24699950},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {8},
publisher = {American Physical Society},
title = {{Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment}},
doi = {10.1103/PhysRevB.96.085410},
volume = {96},
year = {2017},
}
@article{996,
abstract = {Iodine (I 2 ) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos 2 θ 2D ⟩ , is measured as a function of the laser intensity. The results are well described by ⟨cos 2 θ 2D ⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a ∼ 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of ⟨cos 2 θ 2D ⟩ achieved in He droplets exceed 0.96. },
author = {Shepperson, Benjamin and Chatterley, Adam and Søndergaard, Anders and Christiansen, Lars and Lemeshko, Mikhail and Stapelfeldt, Henrik},
issn = {00219606},
journal = {The Journal of Chemical Physics},
number = {1},
publisher = {AIP},
title = {{Strongly aligned molecules inside helium droplets in the near-adiabatic regime}},
doi = {10.1063/1.4983703},
volume = {147},
year = {2017},
}
@article{997,
abstract = {Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems.},
author = {Yakaboylu, Enderalp and Deuchert, Andreas and Lemeshko, Mikhail},
issn = {00319007},
journal = {APS Physics, Physical Review Letters},
number = {23},
publisher = {American Physiological Society},
title = {{Emergence of non-abelian magnetic monopoles in a quantum impurity problem}},
doi = {10.1103/PhysRevLett.119.235301},
volume = {119},
year = {2017},
}
@article{1204,
abstract = {In science, as in life, "surprises" can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like π or e. The inverse problem also arises, whereby the measured value of a physical constant admits a "surprisingly" simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence, rather than an inkling of some theory? We answer the question in the most naive form.},
author = {Amir, Ariel and Lemeshko, Mikhail and Tokieda, Tadashi},
journal = {American Mathematical Monthly},
number = {6},
pages = {609 -- 612},
publisher = {Mathematical Association of America},
title = {{Surprises in numerical expressions of physical constants}},
doi = {10.4169/amer.math.monthly.123.6.609},
volume = {123},
year = {2016},
}
@article{1206,
abstract = {We study a polar molecule immersed in a superfluid environment, such as a helium nanodroplet or a Bose–Einstein condensate, in the presence of a strong electrostatic field. We show that coupling of the molecular pendular motion, induced by the field, to the fluctuating bath leads to formation of pendulons—spherical harmonic librators dressed by a field of many-particle excitations. We study the behavior of the pendulon in a broad range of molecule–bath and molecule–field interaction strengths, and reveal that its spectrum features a series of instabilities which are absent in the field-free case of the angulon quasiparticle. Furthermore, we show that an external field allows to fine-tune the positions of these instabilities in the molecular rotational spectrum. This opens the door to detailed experimental studies of redistribution of orbital angular momentum in many-particle systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim},
author = {Redchenko, Elena and Lemeshko, Mikhail},
journal = {ChemPhysChem},
number = {22},
pages = {3649 -- 3654},
publisher = {Wiley-Blackwell},
title = {{Libration of strongly oriented polar molecules inside a superfluid}},
doi = {10.1002/cphc.201601042},
volume = {17},
year = {2016},
}
@article{1286,
abstract = {We use recently developed angulon theory [R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001] to study the rotational spectrum of a cyanide molecular anion immersed into Bose-Einstein condensates of rubidium and strontium. Based on ab initio potential energy surfaces, we provide a detailed study of the rotational Lamb shift and many-body-induced fine structure which arise due to dressing of molecular rotation by a field of phonon excitations. We demonstrate that the magnitude of these effects is large enough in order to be observed in modern experiments on cold molecular ions. Furthermore, we introduce a novel method to construct pseudopotentials starting from the ab initio potential energy surfaces, which provides a means to obtain effective coupling constants for low-energy polaron models.},
author = {Midya, Bikashkali and Tomza, Michał and Schmidt, Richard and Lemeshko, Mikhail},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {4},
publisher = {American Physical Society},
title = {{Rotation of cold molecular ions inside a Bose-Einstein condensate}},
doi = {10.1103/PhysRevA.94.041601},
volume = {94},
year = {2016},
}
@article{1343,
abstract = {The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a
potential for explaining the mystery of high-temperature superconductivity. Recent progress in
ultracold atoms in optical lattices has paved the way to studying the model’s phase diagram using
the tools of quantum simulation, which emerged as a promising alternative to the numerical
calculations plagued by the infamous sign problem. However, the temperatures achieved using
elaborate laser cooling protocols so far have been too high to show the appearance of
antiferromagnetic (AF) and superconducting quantum phases directly. In this work, we demonstrate
that using the machinery of dissipative quantum state engineering, one can observe the emergence of
the AF order in the Fermi-Hubbard model with fermions in optical lattices. The core of the approach
is to add incoherent laser scattering in such a way that the AF state emerges as the dark state of
the driven-dissipative dynamics. The proposed controlled dissipation channels described in this work
are straightforward to add to already existing experimental setups.},
author = {Kaczmarczyk, Jan and Weimer, Hendrik and Lemeshko, Mikhail},
journal = {New Journal of Physics},
number = {9},
publisher = {IOP Publishing Ltd.},
title = {{Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model}},
doi = {10.1088/1367-2630/18/9/093042},
volume = {18},
year = {2016},
}
@article{1347,
abstract = {During the past 70 years, the quantum theory of angular momentum has been successfully applied to describing the properties of nuclei, atoms, and molecules, and their interactions with each other as well as with external fields. Because of the properties of quantum rotations, the angular-momentum algebra can be of tremendous complexity even for a few interacting particles, such as valence electrons of an atom, not to mention larger many-particle systems. In this work, we study an example of the latter: A rotating quantum impurity coupled to a many-body bosonic bath. In the regime of strong impurity-bath couplings, the problem involves the addition of an infinite number of angular momenta, which renders it intractable using currently available techniques. Here, we introduce a novel canonical transformation that allows us to eliminate the complex angular-momentum algebra from such a class of many-body problems. In addition, the transformation exposes the problem's constants of motion, and renders it solvable exactly in the limit of a slowly rotating impurity. We exemplify the technique by showing that there exists a critical rotational speed at which the impurity suddenly acquires one quantum of angular momentum from the many-particle bath. Such an instability is accompanied by the deformation of the phonon density in the frame rotating along with the impurity.},
author = {Schmidt, Richard and Lemeshko, Mikhail},
journal = {Physical Review X},
number = {1},
publisher = {American Physical Society},
title = {{Deformation of a quantum many-particle system by a rotating impurity}},
doi = {10.1103/PhysRevX.6.011012},
volume = {6},
year = {2016},
}
@article{1416,
abstract = {Anisotropic dipole-dipole interactions between ultracold dipolar fermions break the symmetry of the Fermi surface and thereby deform it. Here we demonstrate that such a Fermi surface deformation induces a topological phase transition - the so-called Lifshitz transition - in the regime accessible to present-day experiments. We describe the impact of the Lifshitz transition on observable quantities such as the Fermi surface topology, the density-density correlation function, and the excitation spectrum of the system. The Lifshitz transition in ultracold atoms can be controlled by tuning the dipole orientation and, in contrast to the transition studied in crystalline solids, is completely interaction driven.},
author = {Van Loon, Erik and Katsnelson, Mikhail and Chomaz, Lauriane and Lemeshko, Mikhail},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {19},
publisher = {American Physical Society},
title = {{Interaction-driven Lifshitz transition with dipolar fermions in optical lattices}},
doi = {10.1103/PhysRevB.93.195145},
volume = {93},
year = {2016},
}
@article{1700,
abstract = {We use the dual boson approach to reveal the phase diagram of the Fermi-Hubbard model with long-range dipole-dipole interactions. By using a large-scale finite-temperature calculation on a 64×64 square lattice we demonstrate the existence of a novel phase, possessing an "ultralong-range" order. The fingerprint of this phase - the density correlation function - features a nontrivial behavior on a scale of tens of lattice sites. We study the properties and the stability of the ultralong-range-ordered phase, and show that it is accessible in modern experiments with ultracold polar molecules and magnetic atoms.},
author = {Van Loon, Erik and Katsnelson, Mikhail and Lemeshko, Mikhail},
journal = {Physical Review B},
number = {8},
publisher = {American Physical Society},
title = {{Ultralong-range order in the Fermi-Hubbard model with long-range interactions}},
doi = {10.1103/PhysRevB.92.081106},
volume = {92},
year = {2015},
}
@article{1812,
abstract = {We investigate the occurrence of rotons in a quadrupolar Bose–Einstein condensate confined to two dimensions. Depending on the particle density, the ratio of the contact and quadrupole–quadrupole interactions, and the alignment of the quadrupole moments with respect to the confinement plane, the dispersion relation features two or four point-like roton minima or one ring-shaped minimum. We map out the entire parameter space of the roton behavior and identify the instability regions. We propose to observe the exotic rotons by monitoring the characteristic density wave dynamics resulting from a short local perturbation, and discuss the possibilities to detect the predicted effects in state-of-the-art experiments with ultracold homonuclear molecules.
},
author = {Lahrz, Martin and Lemeshko, Mikhail and Mathey, Ludwig},
journal = {New Journal of Physics},
number = {4},
publisher = {IOP Publishing Ltd.},
title = {{Exotic roton excitations in quadrupolar Bose–Einstein condensates }},
doi = {10.1088/1367-2630/17/4/045005},
volume = {17},
year = {2015},
}
@article{1813,
abstract = {We develop a microscopic theory describing a quantum impurity whose rotational degree of freedom is coupled to a many-particle bath. We approach the problem by introducing the concept of an “angulon”—a quantum rotor dressed by a quantum field—and reveal its quasiparticle properties using a combination of variational and diagrammatic techniques. Our theory predicts renormalization of the impurity rotational structure, such as that observed in experiments with molecules in superfluid helium droplets, in terms of a rotational Lamb shift induced by the many-particle environment. Furthermore, we discover a rich many-body-induced fine structure, emerging in rotational spectra due to a redistribution of angular momentum within the quantum many-body system.},
author = {Schmidt, Richard and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {20},
publisher = {American Physical Society},
title = {{Rotation of quantum impurities in the presence of a many-body environment}},
doi = {10.1103/PhysRevLett.114.203001},
volume = {114},
year = {2015},
}
@article{2140,
abstract = {We propose a technique for engineering momentum-dependent dissipation in Bose-Einstein condensates with non-local interactions. The scheme relies on the use of momentum-dependent dark-states in close analogy to velocity-selective coherent population trapping. During the short-time dissipative dynamics, the system is driven into a particular finite-momentum phonon mode, which in real space corresponds to an ordered structure with non-local density-density correlations. Dissipation-induced ordering can be observed and studied in present-day experiments using cold atoms with dipole-dipole or off-resonant Rydberg interactions. Due to its dissipative nature, the ordering does not require artificial breaking of translational symmetry by an opticallattice or harmonic trap. This opens up a perspective of direct cooling of quantum gases into strongly-interacting phases.},
author = {Otterbach, Johannes and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {7},
publisher = {American Physical Society},
title = {{Dissipative preparation of spatial order in Rydberg-dressed Bose-Einstein condensates}},
doi = {10.1103/PhysRevLett.113.070401},
volume = {113},
year = {2014},
}
@article{2208,
abstract = {We propose to detect quadrupole interactions of neutral ultracold atoms via their induced mean-field shift. We consider a Mott insulator state of spin-polarized atoms in a two-dimensional optical square lattice. The quadrupole moments of the atoms are aligned by an external magnetic field. As the alignment angle is varied, the mean-field shift shows a characteristic angular dependence, which constitutes the defining signature of the quadrupole interaction. For the 3P2 states of Yb and Sr atoms, we find a frequency shift of the order of tens of Hertz, which can be realistically detected in experiment with current technology. We compare our results to the mean-field shift of a spin-polarized quasi-two-dimensional Fermi gas in continuum. },
author = {Lahrz, Martin and Lemeshko, Mikhail and Sengstock, Klaus and Becker, Christoph and Mathey, Ludwig},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {4},
publisher = {American Physical Society},
title = {{Detecting quadrupole interactions in ultracold Fermi gases}},
doi = {10.1103/PhysRevA.89.043616},
volume = {89},
year = {2014},
}
@article{2139,
abstract = {Recently it has been shown that pairs of atoms can form metastable bonds due to non-conservative forces induced by dissipation [Lemeshko&Weimer, Nature Comm. 4, 2230 (2013)]. Here we study the dynamics of interaction-induced coherent population trapping - the process responsible for the formation of dissipatively bound molecules. We derive the effective dissipative potentials induced between ultracold atoms by laser light, and study the time evolution of the scattering states. We demonstrate that binding occurs on short timescales of ~10 microseconds, even if the initial kinetic energy of the atoms significantly exceeds the depth of the dissipative potential. Dissipatively-bound molecules with preordained bond lengths and vibrational wavefunctions can be created and detected in current experiments with ultracold atoms.},
author = {Mikhail Lemeshko},
journal = {Frontiers Physics},
number = {17},
publisher = {Frontiers Media},
title = {{Manipulating scattering of ultracold atoms with light-induced dissipation}},
doi = {10.3389/fphy.2013.00017},
volume = {1},
year = {2013},
}
@article{2204,
abstract = {We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moments but possessing a significant value of electric quadrupole moments. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create a topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities.},
author = {Bhongale, Satyan and Mathey, Ludwig and Zhao, Erhai and Yelin, Susanne and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {15},
publisher = {American Physical Society},
title = {{Quantum phases of quadrupolar fermi gases in optical lattices}},
doi = {10.1103/PhysRevLett.110.155301},
volume = {110},
year = {2013},
}
@misc{2205,
abstract = {The goal of the present article is to review the major developments that have led to the current understanding of molecule-field interactions and experimental methods for manipulating molecules with electromagnetic fields. Molecule-field interactions are at the core of several, seemingly distinct areas of molecular physics. This is reflected in the organisation of this article, which includes sections on field control of molecular beams, external field traps for cold molecules, control of molecular orientation and molecular alignment, manipulation of molecules by non-conservative forces, ultracold molecules and ultracold chemistry, controlled many-body phenomena, entanglement of molecules and dipole arrays, and stability of molecular systems in high-frequency super-intense laser fields. The article contains 852 references.},
author = {Mikhail Lemeshko and Krems, Roman V and Doyle, John M and Kais, Sabre},
booktitle = {Molecular Physics},
number = {12-13},
pages = {1648 -- 1682},
publisher = {Taylor & Francis},
title = {{Manipulation of molecules with electromagnetic fields}},
doi = {10.1080/00268976.2013.813595},
volume = {111},
year = {2013},
}
@article{2206,
abstract = {Magnetic impurities embedded in inert solids can exhibit long coherence times and interact with one another via their intrinsic anisotropic dipolar interaction. We argue that, as a consequence of these properties, disordered ensembles of magnetic impurities provide an effective platform for realizing a controllable, tunable version of the dipolar quantum spin glass seen in LiHoxY1-xF4. Specifically, we propose and analyze a system composed of dysprosium atoms embedded in solid helium. We describe the phase diagram of the system and discuss the realizability and detectability of the quantum spin glass and antiglass phases.},
author = {Mikhail Lemeshko and Yao, Norman Y and Gorshkov, Alexey V and Weimer, Hendrik and Bennett, Steven D and Momose, Takamasa and Gopalakrishnan, Sarang},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {1},
publisher = {American Physical Society},
title = {{Controllable quantum spin glasses with magnetic impurities embedded in quantum solids}},
doi = {10.1103/PhysRevB.88.014426},
volume = {88},
year = {2013},
}
@article{2207,
abstract = {The formation of molecules and supramolecular structures results from bonding by conservative forces acting among electrons and nuclei and giving rise to equilibrium configurations defined by minima of the interaction potential. Here we show that bonding can also occur by the non-conservative forces responsible for interaction-induced coherent population trapping. The bound state arises in a dissipative process and manifests itself as a stationary state at a preordained interatomic distance. Remarkably, such a dissipative bonding is present even when the interactions among the atoms are purely repulsive. The dissipative bound states can be created and studied spectroscopically in present-day experiments with ultracold atoms or molecules and can potentially serve for cooling strongly interacting quantum gases.},
author = {Mikhail Lemeshko and Weimer, Hendrik},
journal = {Nature Communications},
publisher = {Nature Publishing Group},
title = {{Dissipative binding of atoms by non-conservative forces}},
doi = {10.1038/ncomms3230},
volume = {4},
year = {2013},
}
@article{2201,
abstract = {We study the growth dynamics of ordered structures of strongly interacting polar molecules in optical lattices. Using a dipole blockade of microwave excitations, we map the system onto an interacting spin-1/2 model possessing ground states with crystalline order, and describe a way to prepare these states by nonadiabatically driving the transitions between molecular rotational levels. The proposed technique bypasses the need to cross a phase transition and allows for the creation of ordered domains of considerably larger size compared to approaches relying on adiabatic preparation.},
author = {Lemeshko, Mikhail and Krems, Roman and Weimer, Hendrik},
journal = {Physical Review Letters},
number = {3},
publisher = {American Physical Society},
title = {{Nonadiabatic preparation of spin crystals with ultracold polar molecules}},
doi = {10.1103/PhysRevLett.109.035301},
volume = {109},
year = {2012},
}
@article{2202,
abstract = {We propose a method for sensitive parallel detection of low-frequency electromagnetic fields based on the fine structure interactions in paramagnetic polar molecules. Compared to the recently implemented scheme employing ultracold 87Rb atoms by Böhi, the technique based on molecules offers a 100-fold higher sensitivity, the possibility to measure both the electric and magnetic field components, and a probe of a wide range of frequencies from the dc limit to the THz regime.},
author = {Alyabyshev, Sergey V and Mikhail Lemeshko and Krems, Roman V},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {1},
publisher = {American Physical Society},
title = {{Sensitive imaging of electromagnetic fields with paramagnetic polar molecules}},
doi = {10.1103/PhysRevA.86.013409},
volume = {86},
year = {2012},
}
@article{2203,
abstract = {We show that the electric dipole-dipole interaction between a pair of polar molecules undergoes an all-out transformation when superimposed by a far-off-resonant optical field. The combined interaction potential becomes tunable by variation of wavelength, polarisation and intensity of the optical field and its dependence on the intermolecular separation exhibits a crossover from an inverse-power to an oscillating behaviour. The ability thereby offered to control molecular interactions opens up avenues toward the creation and manipulation of novel phases of ultracold polar gases among whose characteristics is a long-range entanglement of the dipoles' mutual orientation. We devised an accurate analytic model of such optical-field-dressed dipole-dipole interaction potentials, which enables a straightforward access to the optical-field parameters required for the design of intermolecular interactions in the laboratory.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Molecular Physics},
number = {15-16},
pages = {1873 -- 1881},
publisher = {Taylor & Francis},
title = {{Interaction between polar molecules subject to a far-off-resonant optical field: Entangled dipoles up- or down-holding each other}},
doi = {10.1080/00268976.2012.689868},
volume = {110},
year = {2012},
}
@unpublished{2138,
abstract = {A (diatomic) shape resonance is a metastable state of a pair of colliding atoms quasi-bound by the centrifugal barrier imposed by the angular momentum involved in the collision. The temporary trapping of the atoms' scattering wavefunction corresponds to an enhanced atom pair density at low interatomic separations. This leads to larger overlap of the wavefunctions involved in a molecule formation process such as photoassociation, rendering the process more efficient. However, for an ensemble of atoms, the atom pair density will only be enhanced if the energy of the resonance comes close to the temperature of the atomic ensemble. Herein we explore the possibility of controlling the energy of a shape resonance by shifting it toward the temperature of atoms confined in a trap. The shifts are imparted by the interaction of non-resonant light with the anisotropic polarizability of the atom pair, which affects both the centrifugal barrier and the pair's rotational and vibrational levels. We find that at laser intensities of up to 5×109 W/cm2 the pair density is increased by one order of magnitude for 87Rb atoms at 100μK and by two orders of magnitude for 88Sr atoms at 20μK.},
author = {Ağanoğlu, Ruzin and Mikhail Lemeshko and Friedrich, Břetislav and González-Férez, Rosario and Koch, Christiane P},
booktitle = {Unknown},
publisher = {ArXiv},
title = {{Controlling a diatomic shape resonance with non-resonant light}},
year = {2011},
}
@article{2198,
abstract = {We show that dressing polar molecules with a far-off-resonant optical field leads to new types of intermolecular potentials, which undergo a crossover from the inverse power to oscillating behavior depending on the intermolecular distance, and whose parameters can be tuned by varying the laser intensity and wavelength. We present analytic expressions for the potential energy surfaces, thereby providing direct access to the parameters of an optical field required to design intermolecular interactions experimentally.},
author = {Mikhail Lemeshko},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {5},
publisher = {American Physical Society},
title = {{Shaping interactions between polar molecules with far-off-resonant light}},
doi = {10.1103/PhysRevA.83.051402},
volume = {83},
year = {2011},
}
@article{2199,
abstract = {By invoking supersymmetry, we found a condition under which the Stark-effect problem for a polar and polarizable molecule subject to nonresonant electric fields becomes exactly solvable for the family of stretched states. The analytic expressions for the wave function and eigenenergy and other expectation values allow one to readily reverse-engineer the problem of finding the values of the interaction parameters required for creating quantum states with preordained characteristics. The method also allows the construction of families of isospectral potentials, realizable with combined fields.},
author = {Mikhail Lemeshko and Mustafa, Mustafa K and Kais, Sabre and Friedrich, Břetislav},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {4},
publisher = {American Physical Society},
title = {{Supersymmetric factorization yields exact solutions to the molecular Stark-effect problem for "stretched" states}},
doi = {10.1103/PhysRevA.83.043415},
volume = {83},
year = {2011},
}
@article{2200,
abstract = {We made use of supersymmetric (SUSY) quantum mechanics to find the condition under which the Stark effect problem for a polar and polarizable closed-shell diatomic molecule subjected to collinear electrostatic and nonresonant radiative fields becomes exactly solvable. The condition Δω = ω2/4(m+1)2 connects values of the dimensionless parameters ω and Δω that characterize the strengths of the permanent and induced dipole interactions of the molecule with the respective fields. The exact solutions are obtained for the \J̃ = m, m; ω, Δω) family of 'stretched' states. The field-free and strong-field limits of the combined-fields problem were found to exhibit supersymmetry and shape invariance, which is indeed the reason why they are analytically solvable. By making use of the analytic form of the \J̃ = m,m; ω, Δω) wavefunctions, we obtained simple formulae for the expectation values of the space-fixed electric dipole moment, the alignment cosine and the angular momentum squared, and derived a 'sum rule' that combines the above expectation values into a formula for the eigenenergy. The analytic expressions for the characteristics of the strongly oriented and aligned states provide direct access to the values of the interaction parameters required for creating such states in the laboratory.},
author = {Mikhail Lemeshko and Mustafa, Mustafa K and Kais, Sabre and Friedrich, Břetislav},
journal = {New Journal of Physics},
publisher = {IOP Publishing Ltd.},
title = {{Supersymmetry identifies molecular Stark states whose eigenproperties can be obtained analytically}},
doi = {10.1088/1367-2630/13/6/063036},
volume = {13},
year = {2011},
}
@article{2194,
abstract = {We develop an analytic model of vector correlations in rotationally inelastic atom-diatom collisions and test it against the much examined Ar-NO (X2Π) system. Based on the Fraunhofer scattering of matter waves, the model furnishes complex scattering amplitudes needed to evaluate the polarization moments characterizing the quantum stereodynamics. The analytic polarization moments are found to be in an excellent agreement with experimental results and with close-coupling calculations available at thermal energies. The model reveals that the stereodynamics is governed by diffraction from the repulsive core of the Ar-NO potential, which can be characterized by a single Legendre moment.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Chemistry Chemical Physics},
number = {5},
pages = {1038 -- 1041},
publisher = {Royal Society of Chemistry},
title = {{An analytic model of the stereodynamics of rotationally inelastic molecular collisions}},
doi = {10.1039/B920899B },
volume = {12},
year = {2010},
}
@article{2195,
abstract = {Following upon our recent work on vector correlations in the Ar-NO collisions [Lemeshko and Friedrich, Phys. Chem. Chem. Phys. 12, 1038 (2010)], we compare model results with close-coupling calculations for a range of channels and collision energies for the He-NO system. The striking agreement between the model and exact polarization moments indicates that the stereodynamics of rotationally inelastic atom-molecule collisions at thermal energies is governed by diffraction of matter waves from a two-dimensional repulsive core of the atom-molecule potential. Furthermore, the model polarization moments characterizing the He-NO, He- O2, He-OH, and He-CaH stereodynamics are found to coalesce into a single, distinctive pattern, which can serve as a "fingerprint" to identify diffraction-driven stereodynamics in future work. },
author = {Mikhail Lemeshko and Jambrina, Pablo G and De Miranda, Marcelo P and Friedrich, Břetislav},
journal = {Journal of Chemical Physics},
number = {16},
publisher = {American Institute of Physics},
title = {{Communications: When diffraction rules the stereodynamics of rotationally inelastic collisions}},
doi = {10.1063/1.3386530},
volume = {132},
year = {2010},
}
@article{2196,
abstract = {We evaluate the shifts imparted to vibrational and rotational levels of a linear molecule by a nonresonant laser field at intensities of up to 10 12 W/cm2. Both types of shift are found to be either positive or negative, depending on the initial rotational state acted upon by the field. An adiabatic field-molecule interaction imparts a rotational energy shift which is negative and exceeds the concomitant positive vibrational shift by a few orders of magnitude. The rovibrational states are thus pushed downward in such a field. A nonresonant pulsed laser field that interacts nonadiabatically with the molecule is found to impart rotational and vibrational shifts of the same order of magnitude. The nonadiabatic energy transfer occurs most readily at a pulse duration which amounts to about a tenth of the molecule's rotational period and vanishes when the sudden regime is attained for shorter pulses. We applied our treatment to the much-studied 87Rb2 molecule in the last bound vibrational levels of its lowest singlet and triplet electronic states. Our calculations indicate that 15 and 1.5 ns laser pulses of an intensity in excess of 5 × 109 W/cm2 are capable of dissociating the molecule due to the vibrational shift. Lesser shifts can be used to fine-tune the rovibrational levels and thereby affect collisional resonances by the nonresonant light. The energy shifts due to laser intensities of 109 W/cm2 may be discernible spectroscopically, with a 10 MHz resolution.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Journal of Physical Chemistry A},
number = {36},
pages = {9848 -- 9854},
publisher = {American Chemical Society},
title = {{Fine-tuning molecular energy levels by nonresonant laser pulses}},
doi = {10.1021/jp1032299},
volume = {114},
year = {2010},
}
@article{2197,
abstract = {We present an analytic model of the refractive index for matter waves propagating through atomic or molecular gases. The model, which combines the Wentzel-Kramers-Brillouin (WKB) treatment of the long-range attraction with the Fraunhofer model treatment of the short-range repulsion, furnishes a refractive index in compelling agreement with recent experiments of Jacquey [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.240405 98, 240405 (2007)] on Li atom matter waves passing through dilute noble gases. We show that the diffractive contribution, which arises from scattering by a two-dimensional "hard core" of the potential, is essential for obtaining a correct imaginary part of the refractive index.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {2},
publisher = {American Physical Society},
title = {{Multiple scattering of matter waves: An analytic model of the refractive index for atomic and molecular gases}},
doi = {10.1103/PhysRevA.82.022711},
volume = {82},
year = {2010},
}
@inproceedings{2136,
abstract = {The local atomic structure of PbTiO3, BaTiO3, and KNbO3 perovskite-type crystals and K x Na1 − x NbO3 solid solutions in different phases is investigated using the angular dependence of the pre-edge structure of the Ti and Nb K X-ray absorption spectra and the EXAFS data. In noncubic phases, a considerable deviation of the local structure from the structure determined from diffraction data is observed only for the tetragonal phase of the BaTiO3 crystal. It is revealed that, in the cubic phase of niobates, the niobium atoms are characterized by significant displacements from the centrosymmetric positions along the threefold axes, so that they are close in the magnitude and the direction to the displacements in the low-temperatures rhombohedral phases.},
author = {Vedrinskiǐ, Rostislav V and Kraǐzman, V. L and Mikhail Lemeshko and Nazarenko, Elena S and Novakovich, Alexander A and Reznichenko, Larisa A and Fokin, Vladimir N and Shuvaeva, Victoria A},
number = {7},
pages = {1394 -- 1398},
publisher = {Springer},
title = {{Local atomic structure of niobates and titanates from X-ray absorption spectroscopic data}},
doi = {10.1134/S106378340907018X},
volume = {51},
year = {2009},
}
@article{2137,
abstract = {Relying on the quantization rule of Raab and Friedrich [Phys. Rev. A (2009) in press], we derive simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level of a diatomic molecular ion. We also provide analytic estimates of the rotational constants of any such levels up to threshold for dissociation and obtain a criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend solely on the long-range part of the molecular potential.},
author = {Mikhail Lemeshko and Frierich, Bretislav},
journal = {Journal of Atomic and Molecular Sciences},
number = {1},
pages = {41 -- 47},
publisher = {Global Science Press},
title = {{Rotational structure of weakly bound molecular ions}},
doi = {10.4208/jams.101009.110209a},
volume = {1},
year = {2009},
}
@article{2149,
abstract = {We investigate the effects of a magnetic field on the dynamics of rotationally inelastic collisions of open-shell molecules (Σ2, Σ3, and Π2) with closed-shell atoms. Our treatment makes use of the Fraunhofer model of matter wave scattering and its recent extension to collisions in electric [M. Lemeshko and B. Friedrich, J. Chem. Phys. 129, 024301 (2008)] and radiative fields [M. Lemeshko and B. Friedrich, Int. J. Mass. Spec. 280, 19 (2009)]. A magnetic field aligns the molecule in the space-fixed frame and thereby alters the effective shape of the diffraction target. This significantly affects the differential and integral scattering cross sections. We exemplify our treatment by evaluating the magnetic-field-dependent scattering characteristics of the He-CaH (XΣ+2), He-O2 (XΣ–3), and He-OH (XΠΩ2) systems at thermal collision energies. Since the cross sections can be obtained for different orientations of the magnetic field with respect to the relative velocity vector, the model also offers predictions about the frontal-versus-lateral steric asymmetry of the collisions. The steric asymmetry is found to be almost negligible for the He-OH system, weak for the He-CaH collisions, and strong for the He-O2. While odd ΔM transitions dominate the He-OH [J=3/2,f→J′,e/f] integral cross sections in a magnetic field parallel to the relative velocity vector, even ΔM transitions prevail in the case of the He-CaH (X2Σ+) and He-O2 (XΣ−3) collision systems. For the latter system, the magnetic field opens inelastic channels that are closed in the absence of the field. These involve the transitions N=1,J=0→N′, J′ with J′=N′.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {1},
publisher = {American Physical Society},
title = {{Collisions of paramagnetic molecules in magnetic fields: An analytic model based on Fraunhofer diffraction of matter waves}},
doi = {10.1103/PhysRevA.79.012718},
volume = {79},
year = {2009},
}
@article{2150,
abstract = {We examine the effects of a linearly polarized nonresonant radiative field on the dynamics of rotationally inelastic Na+ + N2 collisions at eV collision energies. Our treatment is based on the Fraunhofer model of matter wave scattering and its recent extension to collisions in electric fields [M. Lemeshko, B. Friedrich, J. Chem. Phys. 129 (2008) 024301]. The nonresonant radiative field changes the effective shape of the target molecule by aligning it in the space-fixed frame. This markedly alters the differential and integral scattering cross-sections. As the cross-sections can be evaluated for a polarization of the radiative field collinear or perpendicular to the relative velocity vector, the model also offers predictions about steric asymmetry of the collisions.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {International Journal of Mass Spectrometry},
number = {1-3},
pages = {19 -- 25},
publisher = {Elsevier},
title = {{The effect of a nonresonant radiative field on low-energy rotationally inelastic Na+ + N2 collisions}},
doi = {10.1016/j.ijms.2008.06.010 },
volume = {280},
year = {2009},
}
@article{2191,
abstract = {By making use of the quantization rule of Raab and Friedrich [Phys. Rev. A 78, 022707 (2008)], we derive simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level of a diatomic molecule and the rotational constants of any such levels up to the threshold, and provide a criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend solely on the long-range part of the molecular potential and are applicable to halo molecules. },
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {5},
publisher = {American Physical Society},
title = {{Rotational and rotationless states of weakly bound molecules}},
doi = {10.1103/PhysRevA.79.050501},
volume = {79},
year = {2009},
}
@article{2192,
abstract = {We develop an analytic model of thermal state-to-state rotationally inelastic collisions of asymmetric-top molecules with closed-shell atoms in electric fields and apply it to the Ar-H2O collision system. The predicted cross sections as well as the steric asymmetry of the collisions show at fields up to 150 kV/cm characteristic field-dependent features which can be experimentally tested. Particularly suitable candidates for such tests are the 000 → 220 and 101→ 221 channels, arising from the relaxation of the field-free selection rules due to the hybridization of J states by the field. Averaging over the M' product channels is found to largely obliterate the orientation effects brought about by the field.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Journal of Physical Chemistry A},
number = {52},
pages = {15055 -- 15063},
publisher = {American Chemical Society},
title = {{Model analysis of rotationally inelastic Ar + H2O scattering in an electric field}},
doi = {10.1021/jp9051598},
volume = {113},
year = {2009},
}
@article{2193,
abstract = {We show that weakly bound molecules can be probed by "shaking" in a pulsed nonresonant laser field. The field introduces a centrifugal term which expels the highest vibrational level from the potential that binds it. Our numerical simulations applied to the Rb2 and KRb Feshbach molecules indicate that shaking by feasible laser pulses can be used to accurately recover the square of the vibrational wave function and, by inversion, also the long-range part of the molecular potential.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Physical Review Letters},
number = {5},
publisher = {American Physical Society},
title = {{Probing weakly bound molecules with nonresonant light}},
doi = {10.1103/PhysRevLett.103.053003},
volume = {103},
year = {2009},
}
@article{2146,
abstract = {We present an analytic model of thermal state-to-state rotationally inelastic collisions of polar molecules in electric fields. The model is based on the Fraunhofer scattering of matter waves and requires Legendre moments characterizing the “shape” of the target in the body-fixed frame as its input. The electric field orients the target in the space-fixed frame and thereby effects a striking alteration of the dynamical observables: both the phase and amplitude of the oscillations in the partial differential cross sections undergo characteristic field-dependent changes that transgress into the partial integral cross sections. As the cross sections can be evaluated for a field applied parallel or perpendicular to the relative velocity, the model also offers predictions about steric asymmetry. We exemplify the field-dependent quantum collision dynamics with the behavior of the Ne–OCS(Σ1) and Ar–NO(Π2) systems. A comparison with the close-coupling calculations available for the latter system [Chem. Phys. Lett.313, 491 (1999)] demonstrates the model’s ability to qualitatively explain the field dependence of all the scattering features observed.},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
journal = {Journal of Chemical Physics},
number = {2},
publisher = {American Institute of Physics},
title = {{An analytic model of rotationally inelastic collisions of polar molecules in electric fields}},
doi = {10.1063/1.2948392},
volume = {129},
year = {2008},
}
@misc{2147,
abstract = {We present the physics of the quantum Zeno effect, whose gist is often expressed by invoking the adage "a watched pot never boils". We review aspects of the theoretical and experimental work done on the effect since its inception in 1977, and mention some applications. We dedicate the article - with our very best wishes - to Rudolf Zahradnik at the occasion of his great jubilee. Perhaps Rudolf's lasting youthfulness and freshness are due to that he himself had been frequently observed throughout his life: until the political turn-around in 1989 by those who wished, by their surveillance, to prevent Rudolf from spoiling the youth by his personal culture and his passion for science and things beautiful and useful in general. This attempt had failed. Out of gratitude, the youth has infected Rudolf with its youthfulness. Chronically. Since 1989, Rudolf has been closely watched by the public at large. For the same traits of his as before, but with the opposite goal and for the benefit of all generations. We relish keeping him in sight...},
author = {Mikhail Lemeshko and Friedrich, Břetislav},
booktitle = {Chemicke Listy},
number = {10},
pages = {880 -- 883},
publisher = {Czech Society of Chemical Engineering},
title = {{Kvantový Zenonův jev aneb co nesejde z očí, nezestárne}},
volume = {102},
year = {2008},
}
@article{2148,
abstract = {Despite the growing geological evidence that fluid boiling and vapour-liquid separation affect the distribution of metals in magmatic-hydrothermal systems significantly, there are few experimental data on the chemical status and partitioning of metals in the vapour and liquid phases. Here we report on an in situ measurement, using X-ray absorption fine structure (XAFS) spectroscopy, of antimony speciation and partitioning in the system Sb2O3-H2O-NaCl-HCl at 400°C and pressures 270–300 bar corresponding to the vapour-liquid equilibrium. Experiments were performed using a spectroscopic cell which allows simultaneous determination of the total concentration and atomic environment of the absorbing element (Sb) in each phase. Results show that quantitative vapour-brine separation of a supercritical aqueous salt fluid can be achieved by a controlled decompression and monitoring the X-ray absorbance of the fluid phase. Antimony concentrations in equilibrium with Sb2O3 (cubic, senarmontite) in the coexisting vapour and liquid phases and corresponding SbIII vapour-liquid partitioning coefficients are in agreement with recent data obtained using batch-reactor solubility techniques. The XAFS spectra analysis shows that hydroxy-chloride complexes, probably Sb(OH)2Cl0, are dominant both in the vapour and liquid phase in a salt-water system at acidic conditions. This first in situ XAFS study of element fractionation between coexisting volatile and dense phases opens new possibilities for systematic investigations of vapour-brine and fluid-melt immiscibility phenomena, avoiding many experimental artifacts common in less direct techniques.},
author = {Pokrovski, Gleb S and Roux, Jacques L and Hazemann, Jean L and Borisova, Anastassia Y and Gonchar, Anastasia A and Mikhail Lemeshko},
journal = {Mineralogical Magazine},
number = {2},
pages = {667 -- 681},
publisher = {Mineralogical Society},
title = {{In situ X-ray absorption spectroscopy measurement of vapour-brine fractionation of antimony at hydrothermal conditions}},
doi = {10.1180/minmag.2008.072.2.667 },
volume = {72},
year = {2008},
}
@article{2135,
abstract = {We use the x-ray absorption fine structure spectroscopy at Nb K edge to reveal the local atomic structure of KxNa1−xNbO3 (PSN) solid solutions. The study is performed over the temperature range 10–1023K for six different x values. We show that only the combined analysis of extended x-ray absorption fine structure and preedge fine structure provides complete and reliable information about the local structure of NbO6 octahedra. Such extensive treatment of the experimental data shows that the local structure of PSN could be described within the spherical model proposed earlier as a hypothesis for perovskite-type ferroelectric zirconates. We reveal that the Nb atoms are localized near their average positions on the sphere surfaces for all temperatures and x values. With regard to previous results we point out the features of microscopic structure common for PSN and perovskite-type zirconates.},
author = {Mikhail Lemeshko and Nazarenko, Elena S and Gonchar, A.A and Reznichenko, Larisa A and Nedoseykina, Tatiana I and Novakovich, Alexander A and Mathon, Olivier and Joly, Yves and Vedrinskiǐ, Rostislav V},
journal = {Physical Review B - Condensed Matter and Materials Physics},
publisher = {American Physical Society},
title = {{EXAFS studies of the local atomic structure of the lead-free piezoelectric ceramics KxNa1−xNbO3 over the temperature range 10–1023K}},
doi = {http://dx.doi.org/10.1103/PhysRevB.76.134106},
volume = {76},
year = {2007},
}
@article{2143,
abstract = {Local atomic structure of the piezoelectric ceramics KxNa 1-xNbO3 (x≤0.00, 0.05, 0.30, 0.40, 0.50 and 0.65) is studied in all phase regions (10 K-1023 K) using Nb K-edge extended X-ray absorption fine-structure (EXAFS) spectroscopy. We have shown the validity of a new spherical model for phase transitions on the basis of both fitting of EXAFS signal in the R-space and differential EXAFS analysis. Within this model the Nb atoms are located on the surfaces of small spheres of constant radii surrounding centers of NbO6 octahedrons in all phases. The distribution of the Nb atom on this surface changes during phase transitions. Besides, the analysis of local structure reveals that the geometry of NbO6 octahedra does not depend on the x value at each temperature, whereas the octahedra rotation angles do. },
author = {Mikhail Lemeshko and Nazarenko, Elena S and Gonchar, Anastasia A and Reznichenko, Larisa A and Mathon, Olivier and Joly, Yves and Vedrinskiǐ, Rostislav V},
journal = {EPL},
number = {2},
publisher = {IOP Publishing Ltd.},
title = {{Phase transitions in lead-free piezoelectric ceramics: Study of local atomic structure}},
doi = {10.1209/0295-5075/77/26003 },
volume = {77},
year = {2007},
}
@article{2145,
abstract = {We use the x-ray absorption fine structure spectroscopy at Nb K edge to reveal the local atomic structure of Kx Na1-x Nb O3 (PSN) solid solutions. The study is performed over the temperature range 10-1023 K for six different x values. We show that only the combined analysis of extended x-ray absorption fine structure and preedge fine structure provides complete and reliable information about the local structure of Nb O6 octahedra. Such extensive treatment of the experimental data shows that the local structure of PSN could be described within the spherical model proposed earlier as a hypothesis for perovskite-type ferroelectric zirconates. We reveal that the Nb atoms are localized near their average positions on the sphere surfaces for all temperatures and x values. With regard to previous results we point out the features of microscopic structure common for PSN and perovskite-type zirconates. },
author = {Mikhail Lemeshko and Nazarenko, Elena S and Gonchar, Anastasia A and Reznichenko, Larisa A and Nedoseykina, Tatiana I and Novakovich, Alexander A and Mathon, Olivier and Joly, Yves and Vedrinskiǐ, Rostislav V},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {13},
publisher = {American Physical Society},
title = {{EXAFS studies of the local atomic structure of the lead free piezoelectric ceramics Kx Na1-x Nb O3 over the temperature range 10-1023 K}},
doi = {10.1103/PhysRevB.76.134106},
volume = {76},
year = {2007},
}
@article{2134,
abstract = {Predissociation of the N+2 C 2Σ+u(v') vibrational levels with v' ≥ 3 was observed via dispersed C 2Σ+u → X 2Σ+g fluorescence in the spectral range of 165–208 nm after resonant 1s−1π*(vr) excitation of N2 and its subsequent autoionization into the N+2 C state. This range is dominated by lines in atomic nitrogen, by overlapped C 2Σ+u(v') → X 2Σ+g(v'') vibrational band sequences with Δv = const and broad unresolved band systems (D, (2))2Πg(v') → A2Πu(v'') in the N+2 molecular ion. With very high fluorescence resolution of about 0.1 nm FWHM individual C 2Σ+u(v') → X 2Σ+g(v'') vibrational bands have been resolved. Calculation of the observed fluorescence spectra by taking into account predissociation and molecular rotation describes well the shape of both individual vibrational bands C 2Σ+u(v') → X 2Σ+g(v'') and the whole band system.},
author = {Ehresmann, Arno and Werner, Lutz and Klumpp, Stefan and Demekhin, Ph V and Mikhail Lemeshko and Sukhorukov, V. L and Schartner, Karl H and Schmoranzer, Hans P},
journal = {Journal of Physics B: Atomic, Molecular and Optical Physics},
number = {6},
pages = {L119 -- L126},
publisher = {IOP Publishing Ltd.},
title = {{Predissociation of the N+2(C 2Σ+u) state observed via C 2Σ+u → X 2Σ+g fluorescence after resonant 1s−1π* excitation of N2 molecule}},
doi = {10.1088/0953-4075/39/6/L03},
volume = {39},
year = {2006},
}
@article{2142,
abstract = {Fluorescence from fragments formed after the de-excitation of the N*2(1s−1π*) resonance has been measured in the spectral range of 135–190 nm. This range is dominated by lines in atomic nitrogen and lines formed by overlapping C2Σ+u(v') → X2Σ+g(v'') bands with Δv = const in the N+2 molecular ion which result from the spectator Auger decays of the N*2(1s−1π*(vr)) resonances. Ab initio calculations of the corresponding potential curves and transition probabilities showed that the observed irregular intensity dependence of the C2Σ+u(v') → X2Σ+g(v'')(Δv = const) fluorescence lines on the vibrational quantum number vr is due to transitions between vibrational levels during the reaction N2(v0 = 0)→ N*2(1s−1π*(vr)) Longrightarrow C2Σ+u(v') → X2Σ+g(v'').},
author = {Ehresmann, Arno and Werner, Lutz and Klumpp, Stefan and Lucht, S and Schmoranzer, Hans P and Mickat, Sascha and Schill, Rüdiger H and Schartner, Karl H and Demekhin, Philipp and Mikhail Lemeshko and Sukhorukov, Victor L},
journal = {Journal of Physics B: Atomic, Molecular and Optical Physics},
number = {2},
pages = {283 -- 304},
publisher = {IOP Publishing Ltd.},
title = {{Studying the N+2(C2Σ+u → X2Σ+g) fluorescence excited via the 1s−1π* resonance}},
doi = {10.1088/0953-4075/39/2/006},
volume = {39},
year = {2006},
}
@article{2144,
abstract = {Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates Pb Zr0.515 Ti0.485 O3 (PZT), PbZr O3 (PZ), and BaZr O3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ (k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed.},
author = {Vedrinskiǐ, Rostislav V and Nazarenko, Elena S and Mikhail Lemeshko and Nassif, Vivian M and Proux, Olivier and Novakovich, Alexander A and Joly, Yves},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {13},
publisher = {American Physical Society},
title = {{Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates}},
doi = {10.1103/PhysRevB.73.134109},
volume = {73},
year = {2006},
}