@article{6752,
abstract = {Two-player games on graphs are widely studied in formal methods, as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. The following bidding rule was previously defined and called Richman bidding. Both players have separate budgets, which sum up to 1. In each turn, a bidding takes place: Both players submit bids simultaneously, where a bid is legal if it does not exceed the available budget, and the higher bidder pays his bid to the other player and moves the token. The central question studied in bidding games is a necessary and sufficient initial budget for winning the game: a threshold budget in a vertex is a value t ∈ [0, 1] such that if Player 1’s budget exceeds t, he can win the game; and if Player 2’s budget exceeds 1 − t, he can win the game. Threshold budgets were previously shown to exist in every vertex of a reachability game, which have an interesting connection with random-turn games—a sub-class of simple stochastic games in which the player who moves is chosen randomly. We show the existence of threshold budgets for a qualitative class of infinite-duration games, namely parity games, and a quantitative class, namely mean-payoff games. The key component of the proof is a quantitative solution to strongly connected mean-payoff bidding games in which we extend the connection with random-turn games to these games, and construct explicit optimal strategies for both players.},
author = {Avni, Guy and Henzinger, Thomas A and Chonev, Ventsislav K},
issn = {1557735X},
journal = {Journal of the ACM},
number = {4},
publisher = {ACM},
title = {{Infinite-duration bidding games}},
doi = {10.1145/3340295},
volume = {66},
year = {2019},
}
@inproceedings{950,
abstract = {Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the bidding mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. Both players have separate budgets, which sum up to $1$. In each turn, a bidding takes place. Both players submit bids simultaneously, and a bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to the other player and moves the token. For reachability objectives, repeated bidding games have been studied and are called Richman games. There, a central question is the existence and computation of threshold budgets; namely, a value t\in [0,1] such that if\PO's budget exceeds $t$, he can win the game, and if\PT's budget exceeds 1-t, he can win the game. We focus on parity games and mean-payoff games. We show the existence of threshold budgets in these games, and reduce the problem of finding them to Richman games. We also determine the strategy-complexity of an optimal strategy. Our most interesting result shows that memoryless strategies suffice for mean-payoff bidding games.
},
author = {Avni, Guy and Henzinger, Thomas A and Chonev, Ventsislav K},
issn = {1868-8969},
location = {Berlin, Germany},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Infinite-duration bidding games}},
doi = {10.4230/LIPIcs.CONCUR.2017.21},
volume = {85},
year = {2017},
}
@inproceedings{1389,
abstract = {The continuous evolution of a wide variety of systems, including continous-time Markov chains and linear hybrid automata, can be
described in terms of linear differential equations. In this paper we study the decision problem of whether the solution x(t) of a system of linear differential equations dx/dt = Ax reaches a target halfspace infinitely often. This recurrent reachability problem can
equivalently be formulated as the following Infinite Zeros Problem: does a real-valued function f:R≥0 --> R satisfying a given linear
differential equation have infinitely many zeros? Our main decidability result is that if the differential equation has order at most 7, then the Infinite Zeros Problem is decidable. On the other hand, we show that a decision procedure for the Infinite Zeros Problem at order 9 (and above) would entail a major breakthrough in Diophantine Approximation, specifically an algorithm for computing the Lagrange constants of arbitrary real algebraic numbers to arbitrary precision.},
author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James},
booktitle = {LICS '16},
location = {New York, NY, USA},
pages = {515 -- 524},
publisher = {IEEE},
title = {{On recurrent reachability for continuous linear dynamical systems}},
doi = {10.1145/2933575.2934548},
year = {2016},
}
@article{1380,
abstract = {We consider higher-dimensional versions of Kannan and Lipton's Orbit Problem - determining whether a target vector space V may be reached from a starting point x under repeated applications of a linear transformation A. Answering two questions posed by Kannan and Lipton in the 1980s, we show that when V has dimension one, this problem is solvable in polynomial time, and when V has dimension two or three, the problem is in NPRP.},
author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James},
journal = {Journal of the ACM},
number = {3},
publisher = {ACM},
title = {{On the complexity of the orbit problem}},
doi = {10.1145/2857050},
volume = {63},
year = {2016},
}
@inproceedings{1069,
abstract = {The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differen-
tial equation has a zero in a given interval of real numbers. This is a fundamental reachability
problem for continuous linear dynamical systems, such as linear hybrid automata and continuous-
time Markov chains. Decidability of the problem is currently open – indeed decidability is open
even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show
decidability of the bounded problem subject to Schanuel’s Conjecture, a unifying conjecture in
transcendental number theory. We furthermore analyse the unbounded problem in terms of the
frequencies of the differential equation, that is, the imaginary parts of the characteristic roots.
We show that the unbounded problem can be reduced to the bounded problem if there is at most
one rationally linearly independent frequency, or if there are two rationally linearly independent
frequencies and all characteristic roots are simple. We complete the picture by showing that de-
cidability of the unbounded problem in the case of two (or more) rationally linearly independent
frequencies would entail a major new effectiveness result in Diophantine approximation, namely
computability of the Diophantine-approximation types of all real algebraic numbers.},
author = {Chonev, Ventsislav K and Ouaknine, Joël and Worrell, James},
location = {Rome, Italy},
publisher = {Schloss Dagstuhl- Leibniz-Zentrum fur Informatik},
title = {{On the skolem problem for continuous linear dynamical systems}},
doi = {10.4230/LIPIcs.ICALP.2016.100},
volume = {55},
year = {2016},
}