@article{12875, abstract = {The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.}, author = {Cheung, Giselle T and Pauler, Florian and Koppensteiner, Peter and Krausgruber, Thomas and Streicher, Carmen and Schrammel, Martin and Özgen, Natalie Y and Ivec, Alexis and Bock, Christoph and Shigemoto, Ryuichi and Hippenmeyer, Simon}, issn = {0896-6273}, journal = {Neuron}, number = {2}, pages = {230--246.e11}, publisher = {Elsevier}, title = {{Multipotent progenitors instruct ontogeny of the superior colliculus}}, doi = {10.1016/j.neuron.2023.11.009}, volume = {112}, year = {2024}, } @article{11336, abstract = {The generation of a correctly-sized cerebral cortex with all-embracing neuronal and glial cell-type diversity critically depends on faithful radial glial progenitor (RGP) cell proliferation/differentiation programs. Temporal RGP lineage progression is regulated by Polycomb Repressive Complex 2 (PRC2) and loss of PRC2 activity results in severe neurogenesis defects and microcephaly. How PRC2-dependent gene expression instructs RGP lineage progression is unknown. Here we utilize Mosaic Analysis with Double Markers (MADM)-based single cell technology and demonstrate that PRC2 is not cell-autonomously required in neurogenic RGPs but rather acts at the global tissue-wide level. Conversely, cortical astrocyte production and maturation is cell-autonomously controlled by PRC2-dependent transcriptional regulation. We thus reveal highly distinct and sequential PRC2 functions in RGP lineage progression that are dependent on complex interplays between intrinsic and tissue-wide properties. In a broader context our results imply a critical role for the genetic and cellular niche environment in neural stem cell behavior.}, author = {Amberg, Nicole and Pauler, Florian and Streicher, Carmen and Hippenmeyer, Simon}, issn = {2375-2548}, journal = {Science Advances}, number = {44}, publisher = {American Association for the Advancement of Science}, title = {{Tissue-wide genetic and cellular landscape shapes the execution of sequential PRC2 functions in neural stem cell lineage progression}}, doi = {10.1126/sciadv.abq1263}, volume = {8}, year = {2022}, } @article{10791, abstract = {The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.}, author = {Hansen, Andi H and Pauler, Florian and Riedl, Michael and Streicher, Carmen and Heger, Anna-Magdalena and Laukoter, Susanne and Sommer, Christoph M and Nicolas, Armel and Hof, Björn and Tsai, Li Huei and Rülicke, Thomas and Hippenmeyer, Simon}, issn = {2753-149X}, journal = {Oxford Open Neuroscience}, number = {1}, publisher = {Oxford Academic}, title = {{Tissue-wide effects override cell-intrinsic gene function in radial neuron migration}}, doi = {10.1093/oons/kvac009}, volume = {1}, year = {2022}, } @article{8546, abstract = {Brain neurons arise from relatively few progenitors generating an enormous diversity of neuronal types. Nonetheless, a cardinal feature of mammalian brain neurogenesis is thought to be that excitatory and inhibitory neurons derive from separate, spatially segregated progenitors. Whether bi-potential progenitors with an intrinsic capacity to generate both lineages exist and how such a fate decision may be regulated are unknown. Using cerebellar development as a model, we discover that individual progenitors can give rise to both inhibitory and excitatory lineages. Gradations of Notch activity determine the fates of the progenitors and their daughters. Daughters with the highest levels of Notch activity retain the progenitor fate, while intermediate levels of Notch activity generate inhibitory neurons, and daughters with very low levels of Notch signaling adopt the excitatory fate. Therefore, Notch-mediated binary cell fate choice is a mechanism for regulating the ratio of excitatory to inhibitory neurons from common progenitors.}, author = {Zhang, Tingting and Liu, Tengyuan and Mora, Natalia and Guegan, Justine and Bertrand, Mathilde and Contreras, Ximena and Hansen, Andi H and Streicher, Carmen and Anderle, Marica and Danda, Natasha and Tiberi, Luca and Hippenmeyer, Simon and Hassan, Bassem A.}, issn = { 22111247}, journal = {Cell Reports}, number = {10}, publisher = {Elsevier}, title = {{Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum}}, doi = {10.1016/j.celrep.2021.109208}, volume = {35}, year = {2021}, } @article{9603, abstract = {Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.}, author = {Contreras, Ximena and Amberg, Nicole and Davaatseren, Amarbayasgalan and Hansen, Andi H and Sonntag, Johanna and Andersen, Lill and Bernthaler, Tina and Streicher, Carmen and Heger, Anna-Magdalena and Johnson, Randy L. and Schwarz, Lindsay A. and Luo, Liqun and Rülicke, Thomas and Hippenmeyer, Simon}, issn = {22111247}, journal = {Cell Reports}, number = {12}, publisher = {Cell Press}, title = {{A genome-wide library of MADM mice for single-cell genetic mosaic analysis}}, doi = {10.1016/j.celrep.2021.109274}, volume = {35}, year = {2021}, } @article{8162, abstract = {In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phenotypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of imprinted gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity.}, author = {Laukoter, Susanne and Pauler, Florian and Beattie, Robert J and Amberg, Nicole and Hansen, Andi H and Streicher, Carmen and Penz, Thomas and Bock, Christoph and Hippenmeyer, Simon}, issn = {0896-6273}, journal = {Neuron}, number = {6}, pages = {1160--1179.e9}, publisher = {Elsevier}, title = {{Cell-type specificity of genomic imprinting in cerebral cortex}}, doi = {10.1016/j.neuron.2020.06.031}, volume = {107}, year = {2020}, } @article{7815, abstract = {Beginning from a limited pool of progenitors, the mammalian cerebral cortex forms highly organized functional neural circuits. However, the underlying cellular and molecular mechanisms regulating lineage transitions of neural stem cells (NSCs) and eventual production of neurons and glia in the developing neuroepithelium remains unclear. Methods to trace NSC division patterns and map the lineage of clonally related cells have advanced dramatically. However, many contemporary lineage tracing techniques suffer from the lack of cellular resolution of progeny cell fate, which is essential for deciphering progenitor cell division patterns. Presented is a protocol using mosaic analysis with double markers (MADM) to perform in vivo clonal analysis. MADM concomitantly manipulates individual progenitor cells and visualizes precise division patterns and lineage progression at unprecedented single cell resolution. MADM-based interchromosomal recombination events during the G2-X phase of mitosis, together with temporally inducible CreERT2, provide exact information on the birth dates of clones and their division patterns. Thus, MADM lineage tracing provides unprecedented qualitative and quantitative optical readouts of the proliferation mode of stem cell progenitors at the single cell level. MADM also allows for examination of the mechanisms and functional requirements of candidate genes in NSC lineage progression. This method is unique in that comparative analysis of control and mutant subclones can be performed in the same tissue environment in vivo. Here, the protocol is described in detail, and experimental paradigms to employ MADM for clonal analysis and lineage tracing in the developing cerebral cortex are demonstrated. Importantly, this protocol can be adapted to perform MADM clonal analysis in any murine stem cell niche, as long as the CreERT2 driver is present.}, author = {Beattie, Robert J and Streicher, Carmen and Amberg, Nicole and Cheung, Giselle T and Contreras, Ximena and Hansen, Andi H and Hippenmeyer, Simon}, issn = {1940-087X}, journal = {Journal of Visual Experiments}, number = {159}, publisher = {MyJove Corporation}, title = {{Lineage tracing and clonal analysis in developing cerebral cortex using mosaic analysis with double markers (MADM)}}, doi = {10.3791/61147}, year = {2020}, } @article{6844, abstract = {Studying the progression of the proliferative and differentiative patterns of neural stem cells at the individual cell level is crucial to the understanding of cortex development and how the disruption of such patterns can lead to malformations and neurodevelopmental diseases. However, our understanding of the precise lineage progression programme at single-cell resolution is still incomplete due to the technical variations in lineage- tracing approaches. One of the key challenges involves developing a robust theoretical framework in which we can integrate experimental observations and introduce correction factors to obtain a reliable and representative description of the temporal modulation of proliferation and differentiation. In order to obtain more conclusive insights, we carry out virtual clonal analysis using mathematical modelling and compare our results against experimental data. Using a dataset obtained with Mosaic Analysis with Double Markers, we illustrate how the theoretical description can be exploited to interpret and reconcile the disparity between virtual and experimental results.}, author = {Picco, Noemi and Hippenmeyer, Simon and Rodarte, Julio and Streicher, Carmen and Molnár, Zoltán and Maini, Philip K. and Woolley, Thomas E.}, issn = {1469-7580}, journal = {Journal of Anatomy}, number = {3}, pages = {686--696}, publisher = {Wiley}, title = {{A mathematical insight into cell labelling experiments for clonal analysis}}, doi = {10.1111/joa.13001}, volume = {235}, year = {2019}, } @article{7202, abstract = {The cerebral cortex contains multiple areas with distinctive cytoarchitectonical patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have investigated the neuronal output of individual progenitor cells in the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. Our experimental results indicate that progenitor cells generate pyramidal cell lineages with a wide range of sizes and laminar configurations. Mathematical modelling indicates that these outcomes are compatible with a stochastic model of cortical neurogenesis in which progenitor cells undergo a series of probabilistic decisions that lead to the specification of very heterogeneous progenies. Our findings support a mechanism for cortical neurogenesis whose flexibility would make it capable to generate the diverse cytoarchitectures that characterize distinct neocortical areas.}, author = {Llorca, Alfredo and Ciceri, Gabriele and Beattie, Robert J and Wong, Fong Kuan and Diana, Giovanni and Serafeimidou-Pouliou, Eleni and Fernández-Otero, Marian and Streicher, Carmen and Arnold, Sebastian J. and Meyer, Martin and Hippenmeyer, Simon and Maravall, Miguel and Marín, Oscar}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture}}, doi = {10.7554/eLife.51381}, volume = {8}, year = {2019}, } @unpublished{8547, abstract = {The cerebral cortex contains multiple hierarchically organized areas with distinctive cytoarchitectonical patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have quantitatively investigated the neuronal output of individual progenitor cells in the ventricular zone of the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. We found that individual cortical progenitor cells show a high degree of stochasticity and generate pyramidal cell lineages that adopt a wide range of laminar configurations. Mathematical modelling these lineage data suggests that a small number of progenitor cell populations, each generating pyramidal cells following different stochastic developmental programs, suffice to generate the heterogenous complement of pyramidal cell lineages that collectively build the complex cytoarchitecture of the neocortex.}, author = {Llorca, Alfredo and Ciceri, Gabriele and Beattie, Robert J and Wong, Fong K. and Diana, Giovanni and Serafeimidou, Eleni and Fernández-Otero, Marian and Streicher, Carmen and Arnold, Sebastian J. and Meyer, Martin and Hippenmeyer, Simon and Maravall, Miguel and Marín, Oscar}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{Heterogeneous progenitor cell behaviors underlie the assembly of neocortical cytoarchitecture}}, doi = {10.1101/494088}, year = {2018}, } @article{944, abstract = {The concerted production of neurons and glia by neural stem cells (NSCs) is essential for neural circuit assembly. In the developing cerebral cortex, radial glia progenitors (RGPs) generate nearly all neocortical neurons and certain glia lineages. RGP proliferation behavior shows a high degree of non-stochasticity, thus a deterministic characteristic of neuron and glia production. However, the cellular and molecular mechanisms controlling RGP behavior and proliferation dynamics in neurogenesis and glia generation remain unknown. By using mosaic analysis with double markers (MADM)-based genetic paradigms enabling the sparse and global knockout with unprecedented single-cell resolution, we identified Lgl1 as a critical regulatory component. We uncover Lgl1-dependent tissue-wide community effects required for embryonic cortical neurogenesis and novel cell-autonomous Lgl1 functions controlling RGP-mediated glia genesis and postnatal NSC behavior. These results suggest that NSC-mediated neuron and glia production is tightly regulated through the concerted interplay of sequential Lgl1-dependent global and cell intrinsic mechanisms.}, author = {Beattie, Robert J and Postiglione, Maria P and Burnett, Laura and Laukoter, Susanne and Streicher, Carmen and Pauler, Florian and Xiao, Guanxi and Klezovitch, Olga and Vasioukhin, Valeri and Ghashghaei, Troy and Hippenmeyer, Simon}, issn = {08966273}, journal = {Neuron}, number = {3}, pages = {517 -- 533.e3}, publisher = {Cell Press}, title = {{Mosaic analysis with double markers reveals distinct sequential functions of Lgl1 in neural stem cells}}, doi = {10.1016/j.neuron.2017.04.012}, volume = {94}, year = {2017}, } @article{1550, abstract = {The medial ganglionic eminence (MGE) gives rise to the majority of mouse forebrain interneurons. Here, we examine the lineage relationship among MGE-derived interneurons using a replication-defective retroviral library containing a highly diverse set of DNA barcodes. Recovering the barcodes from the mature progeny of infected progenitor cells enabled us to unambiguously determine their respective lineal relationship. We found that clonal dispersion occurs across large areas of the brain and is not restricted by anatomical divisions. As such, sibling interneurons can populate the cortex, hippocampus striatum, and globus pallidus. The majority of interneurons appeared to be generated from asymmetric divisions of MGE progenitor cells, followed by symmetric divisions within the subventricular zone. Altogether, our findings uncover that lineage relationships do not appear to determine interneuron allocation to particular regions. As such, it is likely that clonally related interneurons have considerable flexibility as to the particular forebrain circuits to which they can contribute.}, author = {Mayer, Christian and Jaglin, Xavier and Cobbs, Lucy and Bandler, Rachel and Streicher, Carmen and Cepko, Constance and Hippenmeyer, Simon and Fishell, Gord}, journal = {Neuron}, number = {5}, pages = {989 -- 998}, publisher = {Elsevier}, title = {{Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries}}, doi = {10.1016/j.neuron.2015.07.011}, volume = {87}, year = {2015}, } @article{2022, abstract = {Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ∼8–9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ∼1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.}, author = {Gao, Peng and Postiglione, Maria P and Krieger, Teresa and Hernandez, Luisirene and Wang, Chao and Han, Zhi and Streicher, Carmen and Papusheva, Ekaterina and Insolera, Ryan and Chugh, Kritika and Kodish, Oren and Huang, Kun and Simons, Benjamin and Luo, Liqun and Hippenmeyer, Simon and Shi, Song}, journal = {Cell}, number = {4}, pages = {775 -- 788}, publisher = {Cell Press}, title = {{Deterministic progenitor behavior and unitary production of neurons in the neocortex}}, doi = {10.1016/j.cell.2014.10.027}, volume = {159}, year = {2014}, }