@unpublished{10579, abstract = {We consider a totally asymmetric simple exclusion process (TASEP) consisting of particles on a lattice that require binding by a "token" to move. Using a combination of theory and simulations, we address the following questions: (i) How token binding kinetics affects the current-density relation; (ii) How the current-density relation depends on the scarcity of tokens; (iii) How tokens propagate the effects of the locally-imposed disorder (such a slow site) over the entire lattice; (iv) How a shared pool of tokens couples concurrent TASEPs running on multiple lattices; (v) How our results translate to TASEPs with open boundaries that exchange particles with the reservoir. Since real particle motion (including in systems that inspired the standard TASEP model, e.g., protein synthesis or movement of molecular motors) is often catalyzed, regulated, actuated, or otherwise mediated, the token-driven TASEP dynamics analyzed in this paper should allow for a better understanding of real systems and enable a closer match between TASEP theory and experimental observations.}, author = {Kavcic, Bor and Tkačik, Gašper}, booktitle = {arXiv}, title = {{Token-driven totally asymmetric simple exclusion process}}, doi = {10.48550/arXiv.2112.13558}, year = {2021}, } @article{8997, abstract = {Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.}, author = {Kavcic, Bor and Tkačik, Gašper and Bollenbach, Tobias}, issn = {1553-7358}, journal = {PLOS Computational Biology}, keywords = {Modelling and Simulation, Genetics, Molecular Biology, Antibiotics, Drug interactions}, publisher = {Public Library of Science}, title = {{Minimal biophysical model of combined antibiotic action}}, doi = {10.1371/journal.pcbi.1008529}, volume = {17}, year = {2021}, } @article{9283, abstract = {Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks (GRNs) remains a major challenge. Here, we use a well-defined synthetic GRN to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one GRN with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit (TU) within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual TUs, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of GRNs.}, author = {Nagy-Staron, Anna A and Tomasek, Kathrin and Caruso Carter, Caroline and Sonnleitner, Elisabeth and Kavcic, Bor and Paixão, Tiago and Guet, Calin C}, issn = {2050-084X}, journal = {eLife}, keywords = {Genetics and Molecular Biology}, publisher = {eLife Sciences Publications}, title = {{Local genetic context shapes the function of a gene regulatory network}}, doi = {10.7554/elife.65993}, volume = {10}, year = {2021}, } @techreport{8151, abstract = {The main idea behind the Core Project is to teach first year students at IST scientific communication skills and let them practice by presenting their research within an interdisciplinary environment. Over the course of the first semester, students participated in seminars, where they shared their results with the colleagues from other fields and took part in discussions on relevant subjects. The main focus during this sessions was on delivering the information in a simplified and comprehensible way, going into the very basics of a subject if necessary. At the end, the students were asked to present their research in the written form to exercise their writing skills. The reports were gathered in this document. All of them were reviewed by the teaching assistants and write-ups illustrating unique stylistic features and, in general, an outstanding level of writing skills, were honorably mentioned in the section "Selected Reports".}, author = {Maslov, Mikhail and Kondrashov, Fyodor and Artner, Christina and Hennessey-Wesen, Mike and Kavcic, Bor and Machnik, Nick N and Satapathy, Roshan K and Tomanek, Isabella}, pages = {425}, publisher = {IST Austria}, title = {{Core Project Proceedings}}, year = {2020}, } @misc{8097, abstract = {Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by "translation bottlenecks": points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of "continuous epistasis" in bacterial physiology.}, author = {Kavcic, Bor}, keywords = {Escherichia coli, antibiotic combinations, translation, growth laws, drug interactions, bacterial physiology, translation inhibitors}, publisher = {Institute of Science and Technology Austria}, title = {{Analysis scripts and research data for the paper "Mechanisms of drug interactions between translation-inhibiting antibiotics"}}, doi = {10.15479/AT:ISTA:8097}, year = {2020}, } @misc{8930, abstract = {Phenomenological relations such as Ohm’s or Fourier’s law have a venerable history in physics but are still scarce in biology. This situation restrains predictive theory. Here, we build on bacterial “growth laws,” which capture physiological feedback between translation and cell growth, to construct a minimal biophysical model for the combined action of ribosome-targeting antibiotics. Our model predicts drug interactions like antagonism or synergy solely from responses to individual drugs. We provide analytical results for limiting cases, which agree well with numerical results. We systematically refine the model by including direct physical interactions of different antibiotics on the ribosome. In a limiting case, our model provides a mechanistic underpinning for recent predictions of higher-order interactions that were derived using entropy maximization. We further refine the model to include the effects of antibiotics that mimic starvation and the presence of resistance genes. We describe the impact of a starvation-mimicking antibiotic on drug interactions analytically and verify it experimentally. Our extended model suggests a change in the type of drug interaction that depends on the strength of resistance, which challenges established rescaling paradigms. We experimentally show that the presence of unregulated resistance genes can lead to altered drug interaction, which agrees with the prediction of the model. While minimal, the model is readily adaptable and opens the door to predicting interactions of second and higher-order in a broad range of biological systems.}, author = {Kavcic, Bor}, keywords = {Escherichia coli, antibiotic combinations, translation, growth laws, drug interactions, bacterial physiology, translation inhibitors}, publisher = {Institute of Science and Technology Austria}, title = {{Analysis scripts and research data for the paper "Minimal biophysical model of combined antibiotic action"}}, doi = {10.15479/AT:ISTA:8930}, year = {2020}, } @phdthesis{8657, abstract = {Synthesis of proteins – translation – is a fundamental process of life. Quantitative studies anchor translation into the context of bacterial physiology and reveal several mathematical relationships, called “growth laws,” which capture physiological feedbacks between protein synthesis and cell growth. Growth laws describe the dependency of the ribosome abundance as a function of growth rate, which can change depending on the growth conditions. Perturbations of translation reveal that bacteria employ a compensatory strategy in which the reduced translation capability results in increased expression of the translation machinery. Perturbations of translation are achieved in various ways; clinically interesting is the application of translation-targeting antibiotics – translation inhibitors. The antibiotic effects on bacterial physiology are often poorly understood. Bacterial responses to two or more simultaneously applied antibiotics are even more puzzling. The combined antibiotic effect determines the type of drug interaction, which ranges from synergy (the effect is stronger than expected) to antagonism (the effect is weaker) and suppression (one of the drugs loses its potency). In the first part of this work, we systematically measure the pairwise interaction network for translation inhibitors that interfere with different steps in translation. We find that the interactions are surprisingly diverse and tend to be more antagonistic. To explore the underlying mechanisms, we begin with a minimal biophysical model of combined antibiotic action. We base this model on the kinetics of antibiotic uptake and binding together with the physiological response described by the growth laws. The biophysical model explains some drug interactions, but not all; it specifically fails to predict suppression. In the second part of this work, we hypothesize that elusive suppressive drug interactions result from the interplay between ribosomes halted in different stages of translation. To elucidate this putative mechanism of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using in- ducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks partially causes these interactions. We extend this approach by varying two translation bottlenecks simultaneously. This approach reveals the suppression of translocation inhibition by inhibited translation. We rationalize this effect by modeling dense traffic of ribosomes that move on transcripts in a translation factor-mediated manner. This model predicts a dissolution of traffic jams caused by inhibited translocation when the density of ribosome traffic is reduced by lowered initiation. We base this model on the growth laws and quantitative relationships between different translation and growth parameters. In the final part of this work, we describe a set of tools aimed at quantification of physiological and translation parameters. We further develop a simple model that directly connects the abundance of a translation factor with the growth rate, which allows us to extract physiological parameters describing initiation. We demonstrate the development of tools for measuring translation rate. This thesis showcases how a combination of high-throughput growth rate mea- surements, genetics, and modeling can reveal mechanisms of drug interactions. Furthermore, by a gradual transition from combinations of antibiotics to precise genetic interventions, we demonstrated the equivalency between genetic and chemi- cal perturbations of translation. These findings tile the path for quantitative studies of antibiotic combinations and illustrate future approaches towards the quantitative description of translation.}, author = {Kavcic, Bor}, isbn = {978-3-99078-011-4}, issn = {2663-337X}, pages = {271}, publisher = {Institute of Science and Technology Austria}, title = {{Perturbations of protein synthesis: from antibiotics to genetics and physiology}}, doi = {10.15479/AT:ISTA:8657}, year = {2020}, } @article{8250, abstract = {Antibiotics that interfere with translation, when combined, interact in diverse and difficult-to-predict ways. Here, we explain these interactions by “translation bottlenecks”: points in the translation cycle where antibiotics block ribosomal progression. To elucidate the underlying mechanisms of drug interactions between translation inhibitors, we generate translation bottlenecks genetically using inducible control of translation factors that regulate well-defined translation cycle steps. These perturbations accurately mimic antibiotic action and drug interactions, supporting that the interplay of different translation bottlenecks causes these interactions. We further show that growth laws, combined with drug uptake and binding kinetics, enable the direct prediction of a large fraction of observed interactions, yet fail to predict suppression. However, varying two translation bottlenecks simultaneously supports that dense traffic of ribosomes and competition for translation factors account for the previously unexplained suppression. These results highlight the importance of “continuous epistasis” in bacterial physiology.}, author = {Kavcic, Bor and Tkačik, Gašper and Bollenbach, Tobias}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Mechanisms of drug interactions between translation-inhibiting antibiotics}}, doi = {10.1038/s41467-020-17734-z}, volume = {11}, year = {2020}, } @unpublished{7673, abstract = {Combining drugs can improve the efficacy of treatments. However, predicting the effect of drug combinations is still challenging. The combined potency of drugs determines the drug interaction, which is classified as synergistic, additive, antagonistic, or suppressive. While probabilistic, non-mechanistic models exist, there is currently no biophysical model that can predict antibiotic interactions. Here, we present a physiologically relevant model of the combined action of antibiotics that inhibit protein synthesis by targeting the ribosome. This model captures the kinetics of antibiotic binding and transport, and uses bacterial growth laws to predict growth in the presence of antibiotic combinations. We find that this biophysical model can produce all drug interaction types except suppression. We show analytically that antibiotics which cannot bind to the ribosome simultaneously generally act as substitutes for one another, leading to additive drug interactions. Previously proposed null expectations for higher-order drug interactions follow as a limiting case of our model. We further extend the model to include the effects of direct physical or allosteric interactions between individual drugs on the ribosome. Notably, such direct interactions profoundly change the combined drug effect, depending on the kinetic parameters of the drugs used. The model makes additional predictions for the effects of resistance genes on drug interactions and for interactions between ribosome-targeting antibiotics and antibiotics with other targets. These findings enhance our understanding of the interplay between drug action and cell physiology and are a key step toward a general framework for predicting drug interactions.}, author = {Kavcic, Bor and Tkačik, Gašper and Bollenbach, Tobias}, booktitle = {bioRxiv}, publisher = {Cold Spring Harbor Laboratory}, title = {{A minimal biophysical model of combined antibiotic action}}, doi = {10.1101/2020.04.18.047886}, year = {2020}, } @article{5817, abstract = {We theoretically study the shapes of lipid vesicles confined to a spherical cavity, elaborating a framework based on the so-called limiting shapes constructed from geometrically simple structural elements such as double-membrane walls and edges. Partly inspired by numerical results, the proposed non-compartmentalized and compartmentalized limiting shapes are arranged in the bilayer-couple phase diagram which is then compared to its free-vesicle counterpart. We also compute the area-difference-elasticity phase diagram of the limiting shapes and we use it to interpret shape transitions experimentally observed in vesicles confined within another vesicle. The limiting-shape framework may be generalized to theoretically investigate the structure of certain cell organelles such as the mitochondrion.}, author = {Kavcic, Bor and Sakashita, A. and Noguchi, H. and Ziherl, P.}, issn = {1744-6848}, journal = {Soft Matter}, number = {4}, pages = {602--614}, publisher = {Royal Society of Chemistry}, title = {{Limiting shapes of confined lipid vesicles}}, doi = {10.1039/c8sm01956h}, volume = {15}, year = {2019}, }