TY - JOUR AB - As developing tissues grow in size and undergo morphogenetic changes, their material properties may be altered. Such changes result from tension dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular mechanisms controlling the physical state of growing tissues are unclear. We found that at early developmental stages, the epithelium in the developing mouse spinal cord maintains both high junctional tension and high fluidity. This is achieved via a mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the cell proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification uncovered here resembles a glass transition that depends on the dynamical stresses generated by proliferation and differentiation. Our finding that the fluidity of developing epithelia is linked to interkinetic nuclear movements and the dynamics of growth is likely to be relevant to multiple developing tissues. AU - Bocanegra, Laura AU - Singh, Amrita AU - Hannezo, Edouard B AU - Zagórski, Marcin P AU - Kicheva, Anna ID - 12837 JF - Nature Physics SN - 1745-2473 TI - Cell cycle dynamics control fluidity of the developing mouse neuroepithelium VL - 19 ER - TY - JOUR AB - Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. AU - Guerrero, Pilar AU - Perez-Carrasco, Ruben AU - Zagórski, Marcin P AU - Page, David AU - Kicheva, Anna AU - Briscoe, James AU - Page, Karen M. ID - 7165 IS - 23 JF - Development SN - 0950-1991 TI - Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium VL - 146 ER - TY - CHAP AB - Developmental processes are inherently dynamic and understanding them requires quantitative measurements of gene and protein expression levels in space and time. While live imaging is a powerful approach for obtaining such data, it is still a challenge to apply it over long periods of time to large tissues, such as the embryonic spinal cord in mouse and chick. Nevertheless, dynamics of gene expression and signaling activity patterns in this organ can be studied by collecting tissue sections at different developmental stages. In combination with immunohistochemistry, this allows for measuring the levels of multiple developmental regulators in a quantitative manner with high spatiotemporal resolution. The mean protein expression levels over time, as well as embryo-to-embryo variability can be analyzed. A key aspect of the approach is the ability to compare protein levels across different samples. This requires a number of considerations in sample preparation, imaging and data analysis. Here we present a protocol for obtaining time course data of dorsoventral expression patterns from mouse and chick neural tube in the first 3 days of neural tube development. The described workflow starts from embryo dissection and ends with a processed dataset. Software scripts for data analysis are included. The protocol is adaptable and instructions that allow the user to modify different steps are provided. Thus, the procedure can be altered for analysis of time-lapse images and applied to systems other than the neural tube. AU - Zagórski, Marcin P AU - Kicheva, Anna ID - 37 SN - 1064-3745 T2 - Morphogen Gradients TI - Measuring dorsoventral pattern and morphogen signaling profiles in the growing neural tube VL - 1863 ER - TY - JOUR AB - Like many developing tissues, the vertebrate neural tube is patterned by antiparallel morphogen gradients. To understand how these inputs are interpreted, we measured morphogen signaling and target gene expression in mouse embryos and chick ex vivo assays. From these data, we derived and validated a characteristic decoding map that relates morphogen input to the positional identity of neural progenitors. Analysis of the observed responses indicates that the underlying interpretation strategy minimizes patterning errors in response to the joint input of noisy opposing gradients. We reverse-engineered a transcriptional network that provides a mechanistic basis for the observed cell fate decisions and accounts for the precision and dynamics of pattern formation. Together, our data link opposing gradient dynamics in a growing tissue to precise pattern formation. AU - Zagórski, Marcin P AU - Tabata, Yoji AU - Brandenberg, Nathalie AU - Lutolf, Matthias AU - Tkacik, Gasper AU - Bollenbach, Tobias AU - Briscoe, James AU - Kicheva, Anna ID - 943 IS - 6345 JF - Science SN - 00368075 TI - Decoding of position in the developing neural tube from antiparallel morphogen gradients VL - 356 ER - TY - JOUR AB - Polymicrobial infections constitute small ecosystems that accommodate several bacterial species. Commonly, these bacteria are investigated in isolation. However, it is unknown to what extent the isolates interact and whether their interactions alter bacterial growth and ecosystem resilience in the presence and absence of antibiotics. We quantified the complete ecological interaction network for 72 bacterial isolates collected from 23 individuals diagnosed with polymicrobial urinary tract infections and found that most interactions cluster based on evolutionary relatedness. Statistical network analysis revealed that competitive and cooperative reciprocal interactions are enriched in the global network, while cooperative interactions are depleted in the individual host community networks. A population dynamics model parameterized by our measurements suggests that interactions restrict community stability, explaining the observed species diversity of these communities. We further show that the clinical isolates frequently protect each other from clinically relevant antibiotics. Together, these results highlight that ecological interactions are crucial for the growth and survival of bacteria in polymicrobial infection communities and affect their assembly and resilience. AU - De Vos, Marjon AU - Zagórski, Marcin P AU - Mcnally, Alan AU - Bollenbach, Mark Tobias ID - 822 IS - 40 JF - PNAS SN - 00278424 TI - Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections VL - 114 ER - TY - JOUR AB - Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure. AU - Martin, Olivier AU - Krzywicki, André AU - Zagórski, Marcin P ID - 1371 JF - Physics of Life Reviews TI - Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function VL - 17 ER - TY - JOUR AU - Martin, Olivier AU - Zagórski, Marcin P ID - 1373 JF - Physics of Life Reviews TI - Network architectures and operating principles. Reply to comments on "Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function" VL - 17 ER - TY - JOUR AB - Evolutionary pathways describe trajectories of biological evolution in the space of different variants of organisms (genotypes). The probability of existence and the number of evolutionary pathways that lead from a given genotype to a better-adapted genotype are important measures of accessibility of local fitness optima and the reproducibility of evolution. Both quantities have been studied in simple mathematical models where genotypes are represented as binary sequences of two types of basic units, and the network of permitted mutations between the genotypes is a hypercube graph. However, it is unclear how these results translate to the biologically relevant case in which genotypes are represented by sequences of more than two units, for example four nucleotides (DNA) or 20 amino acids (proteins), and the mutational graph is not the hypercube. Here we investigate accessibility of the best-adapted genotype in the general case of K > 2 units. Using computer generated and experimental fitness landscapes we show that accessibility of the global fitness maximum increases with K and can be much higher than for binary sequences. The increase in accessibility comes from the increase in the number of indirect trajectories exploited by evolution for higher K. As one of the consequences, the fraction of genotypes that are accessible increases by three orders of magnitude when the number of units K increases from 2 to 16 for landscapes of size N ∼ 106genotypes. This suggests that evolution can follow many different trajectories on such landscapes and the reconstruction of evolutionary pathways from experimental data might be an extremely difficult task. AU - Zagórski, Marcin P AU - Burda, Zdzisław AU - Wacław, Bartłomiej ID - 1167 IS - 12 JF - PLoS Computational Biology TI - Beyond the hypercube evolutionary accessibility of fitness landscapes with realistic mutational networks VL - 12 ER - TY - GEN AU - Zagórski, Marcin P AU - Burda, Zdzisław AU - Wacław, Bartłomiej ID - 9866 TI - ZIP-archived directory containing all data and computer programs ER -