@article{8910, abstract = {A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.}, author = {Valentini, Marco and Peñaranda, Fernando and Hofmann, Andrea C and Brauns, Matthias and Hauschild, Robert and Krogstrup, Peter and San-Jose, Pablo and Prada, Elsa and Aguado, Ramón and Katsaros, Georgios}, issn = {10959203}, journal = {Science}, number = {6550}, publisher = {American Association for the Advancement of Science}, title = {{Nontopological zero-bias peaks in full-shell nanowires induced by flux-tunable Andreev states}}, doi = {10.1126/science.abf1513}, volume = {373}, year = {2021}, } @article{317, abstract = {We replace the established aluminium gates for the formation of quantum dots in silicon with gates made from palladium. We study the morphology of both aluminium and palladium gates with transmission electron microscopy. The native aluminium oxide is found to be formed all around the aluminium gates, which could lead to the formation of unintentional dots. Therefore, we report on a novel fabrication route that replaces aluminium and its native oxide by palladium with atomic-layer-deposition-grown aluminium oxide. Using this approach, we show the formation of low-disorder gate-defined quantum dots, which are reproducibly fabricated. Furthermore, palladium enables us to further shrink the gate design, allowing us to perform electron transport measurements in the few-electron regime in devices comprising only two gate layers, a major technological advancement. It remains to be seen, whether the introduction of palladium gates can improve the excellent results on electron and nuclear spin qubits defined with an aluminium gate stack.}, author = {Brauns, Matthias and Amitonov, Sergey and Spruijtenburg, Paul and Zwanenburg, Floris}, journal = {Scientific Reports}, number = {1}, publisher = {Nature Publishing Group}, title = {{Palladium gates for reproducible quantum dots in silicon}}, doi = {10.1038/s41598-018-24004-y}, volume = {8}, year = {2018}, } @article{5990, abstract = {A Ge–Si core–shell nanowire is used to realize a Josephson field‐effect transistor with highly transparent contacts to superconducting leads. By changing the electric field, access to two distinct regimes, not combined before in a single device, is gained: in the accumulation mode the device is highly transparent and the supercurrent is carried by multiple subbands, while near depletion, the supercurrent is carried by single‐particle levels of a strongly coupled quantum dot operating in the few‐hole regime. These results establish Ge–Si nanowires as an important platform for hybrid superconductor–semiconductor physics and Majorana fermions.}, author = {Ridderbos, Joost and Brauns, Matthias and Shen, Jie and de Vries, Folkert K. and Li, Ang and Bakkers, Erik P. A. M. and Brinkman, Alexander and Zwanenburg, Floris A.}, issn = {0935-9648}, journal = {Advanced Materials}, number = {44}, publisher = {Wiley}, title = {{Josephson effect in a few-hole quantum dot}}, doi = {10.1002/adma.201802257}, volume = {30}, year = {2018}, }