@article{10301, abstract = {De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.}, author = {Conde-Dusman, María J and Dey, Partha N and Elía-Zudaire, Óscar and Garcia Rabaneda, Luis E and García-Lira, Carmen and Grand, Teddy and Briz, Victor and Velasco, Eric R and Andero Galí, Raül and Niñerola, Sergio and Barco, Angel and Paoletti, Pierre and Wesseling, John F and Gardoni, Fabrizio and Tavalin, Steven J and Perez-Otaño, Isabel}, issn = {2050-084X}, journal = {eLife}, keywords = {general immunology and microbiology, general biochemistry, genetics and molecular biology, general medicine, general neuroscience}, publisher = {eLife Sciences Publications}, title = {{Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly}}, doi = {10.7554/elife.71575}, volume = {10}, year = {2021}, } @article{7957, abstract = {Neurodevelopmental disorders (NDDs) are a class of disorders affecting brain development and function and are characterized by wide genetic and clinical variability. In this review, we discuss the multiple factors that influence the clinical presentation of NDDs, with particular attention to gene vulnerability, mutational load, and the two-hit model. Despite the complex architecture of mutational events associated with NDDs, the various proteins involved appear to converge on common pathways, such as synaptic plasticity/function, chromatin remodelers and the mammalian target of rapamycin (mTOR) pathway. A thorough understanding of the mechanisms behind these pathways will hopefully lead to the identification of candidates that could be targeted for treatment approaches.}, author = {Parenti, Ilaria and Garcia Rabaneda, Luis E and Schön, Hanna and Novarino, Gaia}, issn = {1878108X}, journal = {Trends in Neurosciences}, number = {8}, pages = {608--621}, publisher = {Elsevier}, title = {{Neurodevelopmental disorders: From genetics to functional pathways}}, doi = {10.1016/j.tins.2020.05.004}, volume = {43}, year = {2020}, }