TY - JOUR AB - FGFs and their high-affinity receptors (FGFRs) play key roles in development, tissue repair, and disease. Because FGFRs bind overlapping sets of ligands, their individual functions cannot be determined using ligand stimulation. Here, we generated a light-activated FGFR2 variant (OptoR2) to selectively activate signaling by the major FGFR in keratinocytes. Illumination of OptoR2-expressing HEK 293T cells activated FGFR signaling with remarkable temporal precision and promoted cell migration and proliferation. In murine and human keratinocytes, OptoR2 activation rapidly induced the classical FGFR signaling pathways and expression of FGF target genes. Surprisingly, multi-level counter-regulation occurred in keratinocytes in vitro and in transgenic mice in vivo, including OptoR2 down-regulation and loss of responsiveness to light activation. These results demonstrate unexpected cell type-specific limitations of optogenetic FGFRs in long-term in vitro and in vivo settings and highlight the complex consequences of transferring optogenetic cell signaling tools into their relevant cellular contexts. AU - Rauschendorfer, Theresa AU - Gurri, Selina AU - Heggli, Irina AU - Maddaluno, Luigi AU - Meyer, Michael AU - Inglés Prieto, Álvaro AU - Janovjak, Harald L AU - Werner, Sabine ID - 10144 IS - 11 JF - Life Science Alliance TI - Acute and chronic effects of a light-activated FGF receptor in keratinocytes in vitro and in mice VL - 4 ER - TY - JOUR AB - Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair. AU - Inglés Prieto, Álvaro AU - Furthmann, Nikolas AU - Crossman, Samuel H. AU - Tichy, Alexandra Madelaine AU - Hoyer, Nina AU - Petersen, Meike AU - Zheden, Vanessa AU - Bicher, Julia AU - Gschaider-Reichhart, Eva AU - György, Attila AU - Siekhaus, Daria E AU - Soba, Peter AU - Winklhofer, Konstanze F. AU - Janovjak, Harald L ID - 9363 IS - 4 JF - PLoS genetics TI - Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease VL - 17 ER - TY - CHAP AB - Understanding how the activity of membrane receptors and cellular signaling pathways shapes cell behavior is of fundamental interest in basic and applied research. Reengineering receptors to react to light instead of their cognate ligands allows for generating defined signaling inputs with high spatial and temporal precision and facilitates the dissection of complex signaling networks. Here, we describe fundamental considerations in the design of light-regulated receptor tyrosine kinases (Opto-RTKs) and appropriate control experiments. We also introduce methods for transient receptor expression in HEK293 cells, quantitative assessment of signaling activity in reporter gene assays, semiquantitative assessment of (in)activation time courses through Western blot (WB) analysis, and easy to implement light stimulation hardware. AU - Kainrath, Stephanie AU - Janovjak, Harald L ED - Niopek, Dominik ID - 8173 T2 - Photoswitching Proteins TI - Design and application of light-regulated receptor tyrosine kinases VL - 2173 ER - TY - JOUR AB - Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections. AU - Henneberger, Christian AU - Bard, Lucie AU - Panatier, Aude AU - Reynolds, James P. AU - Kopach, Olga AU - Medvedev, Nikolay I. AU - Minge, Daniel AU - Herde, Michel K. AU - Anders, Stefanie AU - Kraev, Igor AU - Heller, Janosch P. AU - Rama, Sylvain AU - Zheng, Kaiyu AU - Jensen, Thomas P. AU - Sanchez-Romero, Inmaculada AU - Jackson, Colin J. AU - Janovjak, Harald L AU - Ottersen, Ole Petter AU - Nagelhus, Erlend Arnulf AU - Oliet, Stephane H.R. AU - Stewart, Michael G. AU - Nägerl, U. VAlentin AU - Rusakov, Dmitri A. ID - 8674 IS - 5 JF - Neuron SN - 08966273 TI - LTP induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia VL - 108 ER - TY - JOUR AB - Non-canonical Wnt signaling plays a central role for coordinated cell polarization and directed migration in metazoan development. While spatiotemporally restricted activation of non-canonical Wnt-signaling drives cell polarization in epithelial tissues, it remains unclear whether such instructive activity is also critical for directed mesenchymal cell migration. Here, we developed a light-activated version of the non-canonical Wnt receptor Frizzled 7 (Fz7) to analyze how restricted activation of non-canonical Wnt signaling affects directed anterior axial mesendoderm (prechordal plate, ppl) cell migration within the zebrafish gastrula. We found that Fz7 signaling is required for ppl cell protrusion formation and migration and that spatiotemporally restricted ectopic activation is capable of redirecting their migration. Finally, we show that uniform activation of Fz7 signaling in ppl cells fully rescues defective directed cell migration in fz7 mutant embryos. Together, our findings reveal that in contrast to the situation in epithelial cells, non-canonical Wnt signaling functions permissively rather than instructively in directed mesenchymal cell migration during gastrulation. AU - Capek, Daniel AU - Smutny, Michael AU - Tichy, Alexandra Madelaine AU - Morri, Maurizio AU - Janovjak, Harald L AU - Heisenberg, Carl-Philipp J ID - 6025 JF - eLife TI - Light-activated Frizzled7 reveals a permissive role of non-canonical wnt signaling in mesendoderm cell migration VL - 8 ER - TY - JOUR AB - Optogenetics enables the spatio-temporally precise control of cell and animal behavior. Many optogenetic tools are driven by light-controlled protein–protein interactions (PPIs) that are repurposed from natural light-sensitive domains (LSDs). Applying light-controlled PPIs to new target proteins is challenging because it is difficult to predict which of the many available LSDs, if any, will yield robust light regulation. As a consequence, fusion protein libraries need to be prepared and tested, but methods and platforms to facilitate this process are currently not available. Here, we developed a genetic engineering strategy and vector library for the rapid generation of light-controlled PPIs. The strategy permits fusing a target protein to multiple LSDs efficiently and in two orientations. The public and expandable library contains 29 vectors with blue, green or red light-responsive LSDs, many of which have been previously applied ex vivo and in vivo. We demonstrate the versatility of the approach and the necessity for sampling LSDs by generating light-activated caspase-9 (casp9) enzymes. Collectively, this work provides a new resource for optical regulation of a broad range of target proteins in cell and developmental biology. AU - Tichy, Alexandra-Madelaine AU - Gerrard, Elliot J. AU - Legrand, Julien M.D. AU - Hobbs, Robin M. AU - Janovjak, Harald L ID - 6564 IS - 17 JF - Journal of Molecular Biology SN - 00222836 TI - Engineering strategy and vector library for the rapid generation of modular light-controlled protein–protein interactions VL - 431 ER - TY - JOUR AB - Background Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures. New method Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus. Results We show that ∼108 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification. Comparison with existing methods Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations. Conclusions These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts. AU - Mckenzie, Catherine AU - Spanova, Miroslava AU - Johnson, Alexander J AU - Kainrath, Stephanie AU - Zheden, Vanessa AU - Sitte, Harald H. AU - Janovjak, Harald L ID - 7406 JF - Journal of Neuroscience Methods SN - 0165-0270 TI - Isolation of synaptic vesicles from genetically engineered cultured neurons VL - 312 ER - TY - JOUR AB - Fluorescent sensors are an essential part of the experimental toolbox of the life sciences, where they are used ubiquitously to visualize intra- and extracellular signaling. In the brain, optical neurotransmitter sensors can shed light on temporal and spatial aspects of signal transmission by directly observing, for instance, neurotransmitter release and spread. Here we report the development and application of the first optical sensor for the amino acid glycine, which is both an inhibitory neurotransmitter and a co-agonist of the N-methyl-d-aspartate receptors (NMDARs) involved in synaptic plasticity. Computational design of a glycine-specific binding protein allowed us to produce the optical glycine FRET sensor (GlyFS), which can be used with single and two-photon excitation fluorescence microscopy. We took advantage of this newly developed sensor to test predictions about the uneven spatial distribution of glycine in extracellular space and to demonstrate that extracellular glycine levels are controlled by plasticity-inducing stimuli. AU - Zhang, William AU - Herde, Michel AU - Mitchell, Joshua AU - Whitfield, Jason AU - Wulff, Andreas AU - Vongsouthi, Vanessa AU - Sanchez Romero, Inmaculada AU - Gulakova, Polina AU - Minge, Daniel AU - Breithausen, Björn AU - Schoch, Susanne AU - Janovjak, Harald L AU - Jackson, Colin AU - Henneberger, Christian ID - 137 IS - 9 JF - Nature Chemical Biology TI - Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS VL - 14 ER - TY - JOUR AB - G-protein-coupled receptors (GPCRs) form the largest receptor family, relay environmental stimuli to changes in cell behavior and represent prime drug targets. Many GPCRs are classified as orphan receptors because of the limited knowledge on their ligands and coupling to cellular signaling machineries. Here, we engineer a library of 63 chimeric receptors that contain the signaling domains of human orphan and understudied GPCRs functionally linked to the light-sensing domain of rhodopsin. Upon stimulation with visible light, we identify activation of canonical cell signaling pathways, including cAMP-, Ca2+-, MAPK/ERK-, and Rho-dependent pathways, downstream of the engineered receptors. For the human pseudogene GPR33, we resurrect a signaling function that supports its hypothesized role as a pathogen entry site. These results demonstrate that substituting unknown chemical activators with a light switch can reveal information about protein function and provide an optically controlled protein library for exploring the physiology and therapeutic potential of understudied GPCRs. AU - Morri, Maurizio AU - Sanchez-Romero, Inmaculada AU - Tichy, Alexandra-Madelaine AU - Kainrath, Stephanie AU - Gerrard, Elliot J. AU - Hirschfeld, Priscila AU - Schwarz, Jan AU - Janovjak, Harald L ID - 5984 IS - 1 JF - Nature Communications SN - 2041-1723 TI - Optical functionalization of human class A orphan G-protein-coupled receptors VL - 9 ER - TY - JOUR AB - Optogenetik und Photopharmakologie ermöglichen präzise räumliche und zeitliche Kontrolle von Proteinwechselwirkung und -funktion in Zellen und Tieren. Optogenetische Methoden, die auf grünes Licht ansprechen und zum Trennen von Proteinkomplexen geeignet sind, sind nichtweitläufig verfügbar, würden jedoch mehrfarbige Experimente zur Beantwortung von biologischen Fragestellungen ermöglichen. Hier demonstrieren wir die Verwendung von Cobalamin(Vitamin B12)-bindenden Domänen von bakteriellen CarH-Transkriptionsfaktoren zur Grünlicht-induzierten Dissoziation von Rezeptoren. Fusioniert mit dem Fibroblasten-W achstumsfaktor-Rezeptor 1 führten diese im Dunkeln in kultivierten Zellen zu Signalaktivität durch Oligomerisierung, welche durch Beleuchten umgehend aufgehoben wurde. In Zebrafischembryonen, die einen derartigen Rezeptor exprimieren, ermöglichte grünes Licht die Kontrolle über abnormale Signalaktivität während der Embryonalentwicklung. AU - Kainrath, Stephanie AU - Stadler, Manuela AU - Gschaider-Reichhart, Eva AU - Distel, Martin AU - Janovjak, Harald L ID - 538 IS - 16 JF - Angewandte Chemie TI - Grünlicht-induzierte Rezeptorinaktivierung durch Cobalamin-bindende Domänen VL - 129 ER - TY - CHAP AB - Small molecule biosensors based on Forster resonance energy transfer (FRET) enable small molecule signaling to be monitored with high spatial and temporal resolution in complex cellular environments. FRET sensors can be constructed by fusing a pair of fluorescent proteins to a suitable recognition domain, such as a member of the solute-binding protein (SBP) superfamily. However, naturally occurring SBPs may be unsuitable for incorporation into FRET sensors due to their low thermostability, which may preclude imaging under physiological conditions, or because the positions of their N- and C-termini may be suboptimal for fusion of fluorescent proteins, which may limit the dynamic range of the resulting sensors. Here, we show how these problems can be overcome using ancestral protein reconstruction and circular permutation. Ancestral protein reconstruction, used as a protein engineering strategy, leverages phylogenetic information to improve the thermostability of proteins, while circular permutation enables the termini of an SBP to be repositioned to maximize the dynamic range of the resulting FRET sensor. We also provide a protocol for cloning the engineered SBPs into FRET sensor constructs using Golden Gate assembly and discuss considerations for in situ characterization of the FRET sensors. AU - Clifton, Ben AU - Whitfield, Jason AU - Sanchez Romero, Inmaculada AU - Herde, Michel AU - Henneberger, Christian AU - Janovjak, Harald L AU - Jackson, Colin ED - Stein, Viktor ID - 957 SN - 10643745 T2 - Synthetic Protein Switches TI - Ancestral protein reconstruction and circular permutation for improving the stability and dynamic range of FRET sensors VL - 1596 ER - TY - CHAP AB - Biosensors that exploit Forster resonance energy transfer (FRET) can be used to visualize biological and physiological processes and are capable of providing detailed information in both spatial and temporal dimensions. In a FRET-based biosensor, substrate binding is associated with a change in the relative positions of two fluorophores, leading to a change in FRET efficiency that may be observed in the fluorescence spectrum. As a result, their design requires a ligand-binding protein that exhibits a conformational change upon binding. However, not all ligand-binding proteins produce responsive sensors upon conjugation to fluorescent proteins or dyes, and identifying the optimum locations for the fluorophores often involves labor-intensive iterative design or high-throughput screening. Combining the genetic fusion of a fluorescent protein to the ligand-binding protein with site-specific covalent attachment of a fluorescent dye can allow fine control over the positions of the two fluorophores, allowing the construction of very sensitive sensors. This relies upon the accurate prediction of the locations of the two fluorophores in bound and unbound states. In this chapter, we describe a method for computational identification of dye-attachment sites that allows the use of cysteine modification to attach synthetic dyes that can be paired with a fluorescent protein for the purposes of creating FRET sensors. AU - Mitchell, Joshua AU - Zhang, William AU - Herde, Michel AU - Henneberger, Christian AU - Janovjak, Harald L AU - O'Mara, Megan AU - Jackson, Colin ED - Stein, Viktor ID - 958 SN - 10643745 T2 - Synthetic Protein Switches TI - Method for developing optical sensors using a synthetic dye fluorescent protein FRET pair and computational modeling and assessment VL - 1596 ER - TY - JOUR AB - The optogenetic revolution enabled spatially-precise and temporally-precise control over protein function, signaling pathway activation, and animal behavior with tremendous success in the dissection of signaling networks and neural circuits. Very recently, optogenetic methods have been paired with optical reporters in novel drug screening platforms. In these all-optical platforms, light remotely activated ion channels and kinases thereby obviating the use of electrophysiology or reagents. Consequences were remarkable operational simplicity, throughput, and cost-effectiveness that culminated in the identification of new drug candidates. These blueprints for all-optical assays also revealed potential pitfalls and inspire all-optical variants of other screens, such as those that aim at better understanding dynamic drug action or orphan protein function. AU - Agus, Viviana AU - Janovjak, Harald L ID - 1026 JF - Current Opinion in Biotechnology SN - 09581669 TI - Optogenetic methods in drug screening: Technologies and applications VL - 48 ER - TY - JOUR AB - Optogenetics and photopharmacology provide spatiotemporally precise control over protein interactions and protein function in cells and animals. Optogenetic methods that are sensitive to green light and can be used to break protein complexes are not broadly available but would enable multichromatic experiments with previously inaccessible biological targets. Herein, we repurposed cobalamin (vitamin B12) binding domains of bacterial CarH transcription factors for green-light-induced receptor dissociation. In cultured cells, we observed oligomerization-induced cell signaling for the fibroblast growth factor receptor 1 fused to cobalamin-binding domains in the dark that was rapidly eliminated upon illumination. In zebrafish embryos expressing fusion receptors, green light endowed control over aberrant fibroblast growth factor signaling during development. Green-light-induced domain dissociation and light-inactivated receptors will critically expand the optogenetic toolbox for control of biological processes. AU - Kainrath, Stephanie AU - Stadler, Manuela AU - Gschaider-Reichhart, Eva AU - Distel, Martin AU - Janovjak, Harald L ID - 1028 IS - 16 JF - Angewandte Chemie - International Edition SN - 14337851 TI - Green-light-induced inactivation of receptor signaling using cobalamin-binding domains VL - 56 ER - TY - JOUR AU - Janovjak, Harald L ID - 1440 IS - 2 JF - Structure TI - Light at the end of the protein: Crystal structure of a C-terminal light-sensing domain VL - 24 ER - TY - JOUR AB - Optical sensors based on the phenomenon of Förster resonance energy transfer (FRET) are powerful tools that have advanced the study of small molecules in biological systems. However, sensor construction is not trivial and often requires multiple rounds of engineering or an ability to screen large numbers of variants. A method that would allow the accurate rational design of FRET sensors would expedite the production of biologically useful sensors. Here, we present Rangefinder, a computational algorithm that allows rapid in silico screening of dye attachment sites in a ligand-binding protein for the conjugation of a dye molecule to act as a Förster acceptor for a fused fluorescent protein. We present three ratiometric fluorescent sensors designed with Rangefinder, including a maltose sensor with a dynamic range of >300% and the first sensors for the most abundant sialic acid in human cells, N-acetylneuraminic acid. Provided a ligand-binding protein exists, it is our expectation that this model will facilitate the design of an optical sensor for any small molecule of interest. AU - Mitchell, Joshua AU - Whitfield, Jason AU - Zhang, William AU - Henneberger, Christian AU - Janovjak, Harald L AU - O'Mara, Megan AU - Jackson, Colin ID - 1101 IS - 11 JF - ACS SENSORS TI - Rangefinder: A semisynthetic FRET sensor design algorithm VL - 1 ER - TY - JOUR AB - Optogenetics and photopharmacology enable the spatio-temporal control of cell and animal behavior by light. Although red light offers deep-tissue penetration and minimal phototoxicity, very few red-light-sensitive optogenetic methods are currently available. We have now developed a red-light-induced homodimerization domain. We first showed that an optimized sensory domain of the cyanobacterial phytochrome 1 can be expressed robustly and without cytotoxicity in human cells. We then applied this domain to induce the dimerization of two receptor tyrosine kinases—the fibroblast growth factor receptor 1 and the neurotrophin receptor trkB. This new optogenetic method was then used to activate the MAPK/ERK pathway non-invasively in mammalian tissue and in multicolor cell-signaling experiments. The light-controlled dimerizer and red-light-activated receptor tyrosine kinases will prove useful to regulate a variety of cellular processes with light. Go deep with red: The sensory domain (S) of the cyanobacterial phytochrome 1 (CPH1) was repurposed to induce the homodimerization of proteins in living cells by red light. By using this domain, light-activated protein kinases were engineered that can be activated orthogonally from many fluorescent proteins and through mammalian tissue. Pr/Pfr=red-/far-red-absorbing state of CPH1. AU - Gschaider-Reichhart, Eva AU - Inglés Prieto, Álvaro AU - Tichy, Alexandra-Madelaine AU - Mckenzie, Catherine AU - Janovjak, Harald L ID - 1441 IS - 21 JF - Angewandte Chemie - International Edition TI - A phytochrome sensory domain permits receptor activation by red light VL - 55 ER - TY - JOUR AB - During metazoan development, the temporal pattern of morphogen signaling is critical for organizing cell fates in space and time. Yet, tools for temporally controlling morphogen signaling within the embryo are still scarce. Here, we developed a photoactivatable Nodal receptor to determine how the temporal pattern of Nodal signaling affects cell fate specification during zebrafish gastrulation. By using this receptor to manipulate the duration of Nodal signaling in vivo by light, we show that extended Nodal signaling within the organizer promotes prechordal plate specification and suppresses endoderm differentiation. Endoderm differentiation is suppressed by extended Nodal signaling inducing expression of the transcriptional repressor goosecoid (gsc) in prechordal plate progenitors, which in turn restrains Nodal signaling from upregulating the endoderm differentiation gene sox17 within these cells. Thus, optogenetic manipulation of Nodal signaling identifies a critical role of Nodal signaling duration for organizer cell fate specification during gastrulation. AU - Sako, Keisuke AU - Pradhan, Saurabh AU - Barone, Vanessa AU - Inglés Prieto, Álvaro AU - Mueller, Patrick AU - Ruprecht, Verena AU - Capek, Daniel AU - Galande, Sanjeev AU - Janovjak, Harald L AU - Heisenberg, Carl-Philipp J ID - 1100 IS - 3 JF - Cell Reports TI - Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation VL - 16 ER - TY - CHAP AB - Nature has incorporated small photochromic molecules, colloquially termed 'photoswitches', in photoreceptor proteins to sense optical cues in photo-taxis and vision. While Nature's ability to employ light-responsive functionalities has long been recognized, it was not until recently that scientists designed, synthesized and applied synthetic photochromes to manipulate many of which open rapidly and locally in their native cell types, biological processes with the temporal and spatial resolution of light. Ion channels in particular have come to the forefront of proteins that can be put under the designer control of synthetic photochromes. Photochromic ion channel controllers are comprised of three classes, photochromic soluble ligands (PCLs), photochromic tethered ligands (PTLs) and photochromic crosslinkers (PXs), and in each class ion channel functionality is controlled through reversible changes in photochrome structure. By acting as light-dependent ion channel agonists, antagonist or modulators, photochromic controllers effectively converted a wide range of ion channels, including voltage-gated ion channels, 'leak channels', tri-, tetra- and pentameric ligand-gated ion channels, and temperaturesensitive ion channels, into man-made photoreceptors. Control by photochromes can be reversible, unlike in the case of 'caged' compounds, and non-invasive with high spatial precision, unlike pharmacology and electrical manipulation. Here, we introduce design principles of emerging photochromic molecules that act on ion channels and discuss the impact that these molecules are beginning to have on ion channel biophysics and neuronal physiology. AU - Mckenzie, Catherine AU - Sanchez Romero, Inmaculada AU - Janovjak, Harald L ID - 1549 SN - 978-1-4939-2844-6 T2 - Novel chemical tools to study ion channel biology TI - Flipping the photoswitch: Ion channels under light control VL - 869 ER - TY - JOUR AB - Biosensors for signaling molecules allow the study of physiological processes by bringing together the fields of protein engineering, fluorescence imaging, and cell biology. Construction of genetically encoded biosensors generally relies on the availability of a binding "core" that is both specific and stable, which can then be combined with fluorescent molecules to create a sensor. However, binding proteins with the desired properties are often not available in nature and substantial improvement to sensors can be required, particularly with regard to their durability. Ancestral protein reconstruction is a powerful protein-engineering tool able to generate highly stable and functional proteins. In this work, we sought to establish the utility of ancestral protein reconstruction to biosensor development, beginning with the construction of an l-arginine biosensor. l-arginine, as the immediate precursor to nitric oxide, is an important molecule in many physiological contexts including brain function. Using a combination of ancestral reconstruction and circular permutation, we constructed a Förster resonance energy transfer (FRET) biosensor for l-arginine (cpFLIPR). cpFLIPR displays high sensitivity and specificity, with a Kd of ∼14 μM and a maximal dynamic range of 35%. Importantly, cpFLIPR was highly robust, enabling accurate l-arginine measurement at physiological temperatures. We established that cpFLIPR is compatible with two-photon excitation fluorescence microscopy and report l-arginine concentrations in brain tissue. AU - Whitfield, Jason AU - Zhang, William AU - Herde, Michel AU - Clifton, Ben AU - Radziejewski, Johanna AU - Janovjak, Harald L AU - Henneberger, Christian AU - Jackson, Colin ID - 1611 IS - 9 JF - Protein Science TI - Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction VL - 24 ER -