@article{9603, abstract = {Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.}, author = {Contreras, Ximena and Amberg, Nicole and Davaatseren, Amarbayasgalan and Hansen, Andi H and Sonntag, Johanna and Andersen, Lill and Bernthaler, Tina and Streicher, Carmen and Heger, Anna-Magdalena and Johnson, Randy L. and Schwarz, Lindsay A. and Luo, Liqun and Rülicke, Thomas and Hippenmeyer, Simon}, issn = {22111247}, journal = {Cell Reports}, number = {12}, publisher = {Cell Press}, title = {{A genome-wide library of MADM mice for single-cell genetic mosaic analysis}}, doi = {10.1016/j.celrep.2021.109274}, volume = {35}, year = {2021}, }