--- _id: '9629' abstract: - lang: eng text: Intestinal organoids derived from single cells undergo complex crypt–villus patterning and morphogenesis. However, the nature and coordination of the underlying forces remains poorly characterized. Here, using light-sheet microscopy and large-scale imaging quantification, we demonstrate that crypt formation coincides with a stark reduction in lumen volume. We develop a 3D biophysical model to computationally screen different mechanical scenarios of crypt morphogenesis. Combining this with live-imaging data and multiple mechanical perturbations, we show that actomyosin-driven crypt apical contraction and villus basal tension work synergistically with lumen volume reduction to drive crypt morphogenesis, and demonstrate the existence of a critical point in differential tensions above which crypt morphology becomes robust to volume changes. Finally, we identified a sodium/glucose cotransporter that is specific to differentiated enterocytes that modulates lumen volume reduction through cell swelling in the villus region. Together, our study uncovers the cellular basis of how cell fate modulates osmotic and actomyosin forces to coordinate robust morphogenesis. acknowledgement: 'We acknowledge the members of the Lennon-Duménil laboratory for sharing the mouse line of Myh9-GFP. We are grateful to the members of the Liberali laboratory and the FMI facilities for their support. We thank E. Tagliavini for IT support; L. Gelman for assistance and training; S. Bichet and A. Bogucki for helping with histology of mouse tissues; H. Kohler for fluorescence-activated cell sorting; G. Q. G. de Medeiros for maintenance of light-sheet microscopy; M. G. Stadler for scRNA-seq analysis; G. Gay for discussions on the 3D vertex model; the members of the Liberali laboratory, C. P. Heisenberg and C. Tsiairis for reading and providing feedback on the manuscript. Funding: Q.Y. is supported by a Postdoc fellowship from Peter und Taul Engelhorn Stiftung (PTES). This work received funding from the European Research Council (ERC) under the EU Horizon 2020 research and Innovation Programme Grant Agreement no. 758617 (to P.L.), the Swiss National Foundation (SNF) (POOP3_157531, to P.L.) and from the ERC under the EU Horizon 2020 Research and Innovation Program Grant Agreements 851288 (to E.H.) and the Austrian Science Fund (FWF) (P31639, to E.H.).' article_processing_charge: No article_type: original author: - first_name: Qiutan full_name: Yang, Qiutan last_name: Yang - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Chii Jou full_name: Chan, Chii Jou last_name: Chan - first_name: Markus full_name: Rempfler, Markus last_name: Rempfler - first_name: Dario full_name: Vischi, Dario last_name: Vischi - first_name: Francisca full_name: Maurer-Gutierrez, Francisca last_name: Maurer-Gutierrez - first_name: Takashi full_name: Hiiragi, Takashi last_name: Hiiragi - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Prisca full_name: Liberali, Prisca last_name: Liberali citation: ama: Yang Q, Xue S, Chan CJ, et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nature Cell Biology. 2021;23:733–744. doi:10.1038/s41556-021-00700-2 apa: Yang, Q., Xue, S., Chan, C. J., Rempfler, M., Vischi, D., Maurer-Gutierrez, F., … Liberali, P. (2021). Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nature Cell Biology. Springer Nature. https://doi.org/10.1038/s41556-021-00700-2 chicago: Yang, Qiutan, Shi-lei Xue, Chii Jou Chan, Markus Rempfler, Dario Vischi, Francisca Maurer-Gutierrez, Takashi Hiiragi, Edouard B Hannezo, and Prisca Liberali. “Cell Fate Coordinates Mechano-Osmotic Forces in Intestinal Crypt Formation.” Nature Cell Biology. Springer Nature, 2021. https://doi.org/10.1038/s41556-021-00700-2. ieee: Q. Yang et al., “Cell fate coordinates mechano-osmotic forces in intestinal crypt formation,” Nature Cell Biology, vol. 23. Springer Nature, pp. 733–744, 2021. ista: Yang Q, Xue S, Chan CJ, Rempfler M, Vischi D, Maurer-Gutierrez F, Hiiragi T, Hannezo EB, Liberali P. 2021. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nature Cell Biology. 23, 733–744. mla: Yang, Qiutan, et al. “Cell Fate Coordinates Mechano-Osmotic Forces in Intestinal Crypt Formation.” Nature Cell Biology, vol. 23, Springer Nature, 2021, pp. 733–744, doi:10.1038/s41556-021-00700-2. short: Q. Yang, S. Xue, C.J. Chan, M. Rempfler, D. Vischi, F. Maurer-Gutierrez, T. Hiiragi, E.B. Hannezo, P. Liberali, Nature Cell Biology 23 (2021) 733–744. date_created: 2021-07-04T22:01:25Z date_published: 2021-06-21T00:00:00Z date_updated: 2023-08-10T13:57:36Z day: '21' department: - _id: EdHa doi: 10.1038/s41556-021-00700-2 ec_funded: 1 external_id: isi: - '000664016300003' pmid: - '34155381' intvolume: ' 23' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2020.05.13.094359 month: '06' oa: 1 oa_version: Preprint page: 733–744 pmid: 1 project: - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Nature Cell Biology publication_identifier: eissn: - 1476-4679 issn: - 1465-7392 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cell fate coordinates mechano-osmotic forces in intestinal crypt formation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2021' ... --- _id: '10365' abstract: - lang: eng text: The early development of many organisms involves the folding of cell monolayers, but this behaviour is difficult to reproduce in vitro; therefore, both mechanistic causes and effects of local curvature remain unclear. Here we study epithelial cell monolayers on corrugated hydrogels engineered into wavy patterns, examining how concave and convex curvatures affect cellular and nuclear shape. We find that substrate curvature affects monolayer thickness, which is larger in valleys than crests. We show that this feature generically arises in a vertex model, leading to the hypothesis that cells may sense curvature by modifying the thickness of the tissue. We find that local curvature also affects nuclear morphology and positioning, which we explain by extending the vertex model to take into account membrane–nucleus interactions, encoding thickness modulation in changes to nuclear deformation and position. We propose that curvature governs the spatial distribution of yes-associated proteins via nuclear shape and density changes. We show that curvature also induces significant variations in lamins, chromatin condensation and cell proliferation rate in folded epithelial tissues. Together, this work identifies active cell mechanics and nuclear mechanoadaptation as the key players of the mechanistic regulation of epithelia to substrate curvature. acknowledgement: S.G. acknowledges funding from FEDER Prostem Research Project no. 1510614 (Wallonia DG06), F.R.S.-FNRS Epiforce Research Project no. T.0092.21 and Interreg MAT(T)ISSE project, which is financially supported by Interreg France-Wallonie-Vlaanderen (Fonds Européen de Développement Régional, FEDER-ERDF). This project was supported by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme grant agreement 851288 (to E.H.), and by the Austrian Science Fund (FWF) (P 31639; to E.H.). L.R.M. acknowledges funding from the Agence National de la Recherche (ANR), as part of the ‘Investments d’Avenir’ Programme (I-SITE ULNE/ANR-16-IDEX-0004 ULNE). This work benefited from ANR-10-EQPX-04-01 and FEDER 12001407 grants to F.L. W.D.V. is supported by the Research Foundation Flanders (FWO 1516619N, FWO GOO5819N, FWO I003420N, FWO IRI I000321N) and is member of the Research Excellence Consortium µNEURO at the University of Antwerp. M.L. is financially supported by FRIA (F.R.S.-FNRS). M.S. is a Senior Research Associate of the Fund for Scientific Research (F.R.S.-FNRS) and acknowledges EOS grant no. 30650939 (PRECISION). Sketches in Figs. 1a and 5e and Extended Data Fig. 9 were drawn by C. Levicek. article_processing_charge: No article_type: original author: - first_name: Marine full_name: Luciano, Marine last_name: Luciano - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Winnok H. full_name: De Vos, Winnok H. last_name: De Vos - first_name: Lorena full_name: Redondo-Morata, Lorena last_name: Redondo-Morata - first_name: Mathieu full_name: Surin, Mathieu last_name: Surin - first_name: Frank full_name: Lafont, Frank last_name: Lafont - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Sylvain full_name: Gabriele, Sylvain last_name: Gabriele citation: ama: Luciano M, Xue S, De Vos WH, et al. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics. 2021;17(12):1382–1390. doi:10.1038/s41567-021-01374-1 apa: Luciano, M., Xue, S., De Vos, W. H., Redondo-Morata, L., Surin, M., Lafont, F., … Gabriele, S. (2021). Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-021-01374-1 chicago: Luciano, Marine, Shi-lei Xue, Winnok H. De Vos, Lorena Redondo-Morata, Mathieu Surin, Frank Lafont, Edouard B Hannezo, and Sylvain Gabriele. “Cell Monolayers Sense Curvature by Exploiting Active Mechanics and Nuclear Mechanoadaptation.” Nature Physics. Springer Nature, 2021. https://doi.org/10.1038/s41567-021-01374-1. ieee: M. Luciano et al., “Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation,” Nature Physics, vol. 17, no. 12. Springer Nature, pp. 1382–1390, 2021. ista: Luciano M, Xue S, De Vos WH, Redondo-Morata L, Surin M, Lafont F, Hannezo EB, Gabriele S. 2021. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nature Physics. 17(12), 1382–1390. mla: Luciano, Marine, et al. “Cell Monolayers Sense Curvature by Exploiting Active Mechanics and Nuclear Mechanoadaptation.” Nature Physics, vol. 17, no. 12, Springer Nature, 2021, pp. 1382–1390, doi:10.1038/s41567-021-01374-1. short: M. Luciano, S. Xue, W.H. De Vos, L. Redondo-Morata, M. Surin, F. Lafont, E.B. Hannezo, S. Gabriele, Nature Physics 17 (2021) 1382–1390. date_created: 2021-11-28T23:01:29Z date_published: 2021-11-18T00:00:00Z date_updated: 2023-10-16T06:31:54Z day: '18' ddc: - '530' department: - _id: EdHa doi: 10.1038/s41567-021-01374-1 ec_funded: 1 external_id: isi: - '000720204300004' file: - access_level: open_access checksum: 5d6d76750a71d7cb632bb15417c38ef7 content_type: application/pdf creator: channezo date_created: 2023-10-11T09:31:43Z date_updated: 2023-10-11T09:31:43Z file_id: '14420' file_name: 50145_4_merged_1630498627.pdf file_size: 40285498 relation: main_file success: 1 file_date_updated: 2023-10-11T09:31:43Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '12' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 1382–1390 project: - _id: 05943252-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '851288' name: Design Principles of Branching Morphogenesis - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Webpage relation: press_release url: https://ist.ac.at/en/news/how-cells-feel-curvature/ scopus_import: '1' status: public title: Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2021' ... --- _id: '6508' abstract: - lang: eng text: Segregation of maternal determinants within the oocyte constitutes the first step in embryo patterning. In zebrafish oocytes, extensive ooplasmic streaming leads to the segregation of ooplasm from yolk granules along the animal-vegetal axis of the oocyte. Here, we show that this process does not rely on cortical actin reorganization, as previously thought, but instead on a cell-cycle-dependent bulk actin polymerization wave traveling from the animal to the vegetal pole of the oocyte. This wave functions in segregation by both pulling ooplasm animally and pushing yolk granules vegetally. Using biophysical experimentation and theory, we show that ooplasm pulling is mediated by bulk actin network flows exerting friction forces on the ooplasm, while yolk granule pushing is achieved by a mechanism closely resembling actin comet formation on yolk granules. Our study defines a novel role of cell-cycle-controlled bulk actin polymerization waves in oocyte polarization via ooplasmic segregation. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We would like to thank Pierre Recho, Guillaume Salbreux, and Silvia Grigolon for advice on the theory, Lila Solnica-Krezel for kindly providing us with zebrafish dachsous mutants, members of the Heisenberg and Hannezo groups for fruitful discussions, and the Bioimaging and zebrafish facilities at IST Austria for their continuous support. This project has received funding from the European Union (European Research Council Advanced Grant 742573 to C.P.H.) and from the Austrian Science Fund (FWF) (P 31639 to E.H.). article_processing_charge: No article_type: original author: - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Roland full_name: Kardos, Roland id: 4039350E-F248-11E8-B48F-1D18A9856A87 last_name: Kardos - first_name: Shi-lei full_name: Xue, Shi-lei id: 31D2C804-F248-11E8-B48F-1D18A9856A87 last_name: Xue - first_name: Björn full_name: Hof, Björn id: 3A374330-F248-11E8-B48F-1D18A9856A87 last_name: Hof orcid: 0000-0003-2057-2754 - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 2019;177(6):1463-1479.e18. doi:10.1016/j.cell.2019.04.030 apa: Shamipour, S., Kardos, R., Xue, S., Hof, B., Hannezo, E. B., & Heisenberg, C.-P. J. (2019). Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.04.030 chicago: Shamipour, Shayan, Roland Kardos, Shi-lei Xue, Björn Hof, Edouard B Hannezo, and Carl-Philipp J Heisenberg. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.04.030. ieee: S. Shamipour, R. Kardos, S. Xue, B. Hof, E. B. Hannezo, and C.-P. J. Heisenberg, “Bulk actin dynamics drive phase segregation in zebrafish oocytes,” Cell, vol. 177, no. 6. Elsevier, p. 1463–1479.e18, 2019. ista: Shamipour S, Kardos R, Xue S, Hof B, Hannezo EB, Heisenberg C-PJ. 2019. Bulk actin dynamics drive phase segregation in zebrafish oocytes. Cell. 177(6), 1463–1479.e18. mla: Shamipour, Shayan, et al. “Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes.” Cell, vol. 177, no. 6, Elsevier, 2019, p. 1463–1479.e18, doi:10.1016/j.cell.2019.04.030. short: S. Shamipour, R. Kardos, S. Xue, B. Hof, E.B. Hannezo, C.-P.J. Heisenberg, Cell 177 (2019) 1463–1479.e18. date_created: 2019-06-02T21:59:12Z date_published: 2019-05-30T00:00:00Z date_updated: 2024-03-28T23:30:39Z day: '30' ddc: - '570' department: - _id: CaHe - _id: EdHa - _id: BjHo doi: 10.1016/j.cell.2019.04.030 ec_funded: 1 external_id: isi: - '000469415100013' pmid: - '31080065' file: - access_level: open_access checksum: aea43726d80e35ce3885073a5f05c3e3 content_type: application/pdf creator: dernst date_created: 2020-10-21T07:22:34Z date_updated: 2020-10-21T07:22:34Z file_id: '8686' file_name: 2019_Cell_Shamipour_accepted.pdf file_size: 3356292 relation: main_file success: 1 file_date_updated: 2020-10-21T07:22:34Z has_accepted_license: '1' intvolume: ' 177' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cell.2019.04.030 month: '05' oa: 1 oa_version: Published Version page: 1463-1479.e18 pmid: 1 project: - _id: 260F1432-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742573' name: Interaction and feedback between cell mechanics and fate specification in vertebrate gastrulation - _id: 268294B6-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31639 name: Active mechano-chemical description of the cell cytoskeleton publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-the-cytoplasm-separates-from-the-yolk/ record: - id: '8350' relation: dissertation_contains status: public scopus_import: '1' status: public title: Bulk actin dynamics drive phase segregation in zebrafish oocytes type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 177 year: '2019' ...