@article{9010, abstract = {Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.}, author = {Ötvös, Krisztina and Marconi, Marco and Vega, Andrea and O’Brien, Jose and Johnson, Alexander J and Abualia, Rashed and Antonielli, Livio and Montesinos López, Juan C and Zhang, Yuzhou and Tan, Shutang and Cuesta, Candela and Artner, Christina and Bouguyon, Eleonore and Gojon, Alain and Friml, Jiří and Gutiérrez, Rodrigo A. and Wabnik, Krzysztof T and Benková, Eva}, issn = {14602075}, journal = {EMBO Journal}, number = {3}, publisher = {Embo Press}, title = {{Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport}}, doi = {10.15252/embj.2020106862}, volume = {40}, year = {2021}, } @article{7805, abstract = {Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.}, author = {Hurny, Andrej and Cuesta, Candela and Cavallari, Nicola and Ötvös, Krisztina and Duclercq, Jerome and Dokládal, Ladislav and Montesinos López, Juan C and Gallemi, Marçal and Semeradova, Hana and Rauter, Thomas and Stenzel, Irene and Persiau, Geert and Benade, Freia and Bhalearo, Rishikesh and Sýkorová, Eva and Gorzsás, András and Sechet, Julien and Mouille, Gregory and Heilmann, Ingo and De Jaeger, Geert and Ludwig-Müller, Jutta and Benková, Eva}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Synergistic on Auxin and Cytokinin 1 positively regulates growth and attenuates soil pathogen resistance}}, doi = {10.1038/s41467-020-15895-5}, volume = {11}, year = {2020}, } @article{8336, abstract = {Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs), which via a two-component phosphorelay cascade activate transcriptional responses in the nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER) membrane as a principal cytokinin perception site, while study of cytokinin transport pointed to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring of subcellular localizations of the fluorescently labelled natural cytokinin probe and the receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells. Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accumulation in BFA compartments. We provide a revised view on cytokinin signalling and the possibility of multiple sites of perception at PM and ER.}, author = {Kubiasova, Karolina and Montesinos López, Juan C and Šamajová, Olga and Nisler, Jaroslav and Mik, Václav and Semeradova, Hana and Plíhalová, Lucie and Novák, Ondřej and Marhavý, Peter and Cavallari, Nicola and Zalabák, David and Berka, Karel and Doležal, Karel and Galuszka, Petr and Šamaj, Jozef and Strnad, Miroslav and Benková, Eva and Plíhal, Ondřej and Spíchal, Lukáš}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Cytokinin fluoroprobe reveals multiple sites of cytokinin perception at plasma membrane and endoplasmic reticulum}}, doi = {10.1038/s41467-020-17949-0}, volume = {11}, year = {2020}, } @article{8142, abstract = {Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells.}, author = {Montesinos López, Juan C and Abuzeineh, A and Kopf, Aglaja and Juanes Garcia, Alba and Ötvös, Krisztina and Petrášek, J and Sixt, Michael K and Benková, Eva}, issn = {1460-2075}, journal = {The Embo Journal}, number = {17}, publisher = {Embo Press}, title = {{Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage}}, doi = {10.15252/embj.2019104238}, volume = {39}, year = {2020}, } @article{8002, abstract = {Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.}, author = {Hörmayer, Lukas and Montesinos López, Juan C and Marhavá, Petra and Benková, Eva and Yoshida, Saiko and Friml, Jiří}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {26}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots}}, doi = {10.1073/pnas.2003346117}, volume = {117}, year = {2020}, } @article{9160, abstract = {Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.}, author = {Semeradova, Hana and Montesinos López, Juan C and Benková, Eva}, issn = {2590-3462}, journal = {Plant Communications}, number = {3}, publisher = {Elsevier}, title = {{All roads lead to auxin: Post-translational regulation of auxin transport by multiple hormonal pathways}}, doi = {10.1016/j.xplc.2020.100048}, volume = {1}, year = {2020}, } @article{1492, abstract = {To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved prolif eration capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endo dermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.}, author = {Marhavy, Peter and Montesinos López, Juan C and Abuzeineh, Anas and Van Damme, Daniël and Vermeer, Joop and Duclercq, Jérôme and Rakusova, Hana and Marhavá, Petra and Friml, Jirí and Geldner, Niko and Benková, Eva}, journal = {Genes and Development}, number = {4}, pages = {471 -- 483}, publisher = {Cold Spring Harbor Laboratory Press}, title = {{Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation}}, doi = {10.1101/gad.276964.115}, volume = {30}, year = {2016}, }