TY - JOUR
AB - We consider general self-adjoint polynomials in several independent random matrices whose entries are centered and have the same variance. We show that under certain conditions the local law holds up to the optimal scale, i.e., the eigenvalue density on scales just above the eigenvalue spacing follows the global density of states which is determined by free probability theory. We prove that these conditions hold for general homogeneous polynomials of degree two and for symmetrized products of independent matrices with i.i.d. entries, thus establishing the optimal bulk local law for these classes of ensembles. In particular, we generalize a similar result of Anderson for anticommutator. For more general polynomials our conditions are effectively checkable numerically.
AU - Erdös, László
AU - Krüger, Torben H
AU - Nemish, Yuriy
ID - 7512
JF - Journal of Functional Analysis
SN - 00221236
TI - Local laws for polynomials of Wigner matrices
ER -
TY - JOUR
AB - We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6184
IS - 2
JF - Annals of Probability
TI - Correlated random matrices: Band rigidity and edge universality
VL - 48
ER -
TY - JOUR
AB - For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6185
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Cusp universality for random matrices I: Local law and the complex hermitian case
ER -
TY - JOUR
AB - We consider real symmetric or complex hermitian random matrices with correlated entries. We prove local laws for the resolvent and universality of the local eigenvalue statistics in the bulk of the spectrum. The correlations have fast decay but are otherwise of general form. The key novelty is the detailed stability analysis of the corresponding matrix valued Dyson equation whose solution is the deterministic limit of the resolvent.
AU - Ajanki, Oskari H
AU - Erdös, László
AU - Krüger, Torben H
ID - 429
IS - 1-2
JF - Probability Theory and Related Fields
SN - 01788051
TI - Stability of the matrix Dyson equation and random matrices with correlations
VL - 173
ER -
TY - JOUR
AB - We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of Ajanki et al. [‘Stability of the matrix Dyson equation and random matrices with correlations’, Probab. Theory Related Fields 173(1–2) (2019), 293–373] to allow slow correlation decay and arbitrary expectation. The main novel tool is
a systematic diagrammatic control of a multivariate cumulant expansion.
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6182
JF - Forum of Mathematics, Sigma
TI - Random matrices with slow correlation decay
VL - 7
ER -
TY - JOUR
AB - We prove that the local eigenvalue statistics of real symmetric Wigner-type
matrices near the cusp points of the eigenvalue density are universal. Together
with the companion paper [arXiv:1809.03971], which proves the same result for
the complex Hermitian symmetry class, this completes the last remaining case of
the Wigner-Dyson-Mehta universality conjecture after bulk and edge
universalities have been established in the last years. We extend the recent
Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp
regime using the optimal local law from [arXiv:1809.03971] and the accurate
local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752].
We also present a PDE-based method to improve the estimate on eigenvalue
rigidity via the maximum principle of the heat flow related to the Dyson
Brownian motion.
AU - Cipolloni, Giorgio
AU - Erdös, László
AU - Krüger, Torben H
AU - Schröder, Dominik J
ID - 6186
IS - 4
JF - Pure and Applied Analysis
SN - 2578-5893
TI - Cusp universality for random matrices, II: The real symmetric case
VL - 1
ER -
TY - JOUR
AB - For a general class of large non-Hermitian random block matrices X we prove that there are no eigenvalues away from a deterministic set with very high probability. This set is obtained from the Dyson equation of the Hermitization of X as the self-consistent approximation of the pseudospectrum. We demonstrate that the analysis of the matrix Dyson equation from (Probab. Theory Related Fields (2018)) offers a unified treatment of many structured matrix ensembles.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
AU - Nemish, Yuriy
ID - 6240
IS - 2
JF - Annales de l'institut Henri Poincare
SN - 02460203
TI - Location of the spectrum of Kronecker random matrices
VL - 55
ER -
TY - JOUR
AB - We consider large random matrices X with centered, independent entries which have comparable but not necessarily identical variances. Girko's circular law asserts that the spectrum is supported in a disk and in case of identical variances, the limiting density is uniform. In this special case, the local circular law by Bourgade et. al. [11,12] shows that the empirical density converges even locally on scales slightly above the typical eigenvalue spacing. In the general case, the limiting density is typically inhomogeneous and it is obtained via solving a system of deterministic equations. Our main result is the local inhomogeneous circular law in the bulk spectrum on the optimal scale for a general variance profile of the entries of X.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
ID - 566
IS - 1
JF - Annals Applied Probability
TI - Local inhomogeneous circular law
VL - 28
ER -
TY - GEN
AB - We study the unique solution $m$ of the Dyson equation \[ -m(z)^{-1} = z - a
+ S[m(z)] \] on a von Neumann algebra $\mathcal{A}$ with the constraint
$\mathrm{Im}\,m\geq 0$. Here, $z$ lies in the complex upper half-plane, $a$ is
a self-adjoint element of $\mathcal{A}$ and $S$ is a positivity-preserving
linear operator on $\mathcal{A}$. We show that $m$ is the Stieltjes transform
of a compactly supported $\mathcal{A}$-valued measure on $\mathbb{R}$. Under
suitable assumptions, we establish that this measure has a uniformly
$1/3$-H\"{o}lder continuous density with respect to the Lebesgue measure, which
is supported on finitely many intervals, called bands. In fact, the density is
analytic inside the bands with a square-root growth at the edges and internal
cubic root cusps whenever the gap between two bands vanishes. The shape of
these singularities is universal and no other singularity may occur. We give a
precise asymptotic description of $m$ near the singular points. These
asymptotics generalize the analysis at the regular edges given in the companion
paper on the Tracy-Widom universality for the edge eigenvalue statistics for
correlated random matrices [arXiv:1804.07744] and they play a key role in the
proof of the Pearcey universality at the cusp for Wigner-type matrices
[arXiv:1809.03971,arXiv:1811.04055]. We also extend the finite dimensional band
mass formula from [arXiv:1804.07744] to the von Neumann algebra setting by
showing that the spectral mass of the bands is topologically rigid under
deformations and we conclude that these masses are quantized in some important
cases.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
ID - 6183
TI - The Dyson equation with linear self-energy: Spectral bands, edges and cusps
ER -
TY - JOUR
AB - We consider large random matrices X with centered, independent entries but possibly di erent variances. We compute the normalized trace of f(X)g(X∗) for f, g functions analytic on the spectrum of X. We use these results to compute the long time asymptotics for systems of coupled di erential equations with random coe cients. We show that when the coupling is critical, the norm squared of the solution decays like t−1/2.
AU - Erdös, László
AU - Krüger, Torben H
AU - Renfrew, David T
ID - 181
IS - 3
JF - SIAM Journal on Mathematical Analysis
TI - Power law decay for systems of randomly coupled differential equations
VL - 50
ER -
TY - JOUR
AB - Let S be a positivity-preserving symmetric linear operator acting on bounded functions. The nonlinear equation -1/m=z+Sm with a parameter z in the complex upper half-plane ℍ has a unique solution m with values in ℍ. We show that the z-dependence of this solution can be represented as the Stieltjes transforms of a family of probability measures v on ℝ. Under suitable conditions on S, we show that v has a real analytic density apart from finitely many algebraic singularities of degree at most 3. Our motivation comes from large random matrices. The solution m determines the density of eigenvalues of two prominent matrix ensembles: (i) matrices with centered independent entries whose variances are given by S and (ii) matrices with correlated entries with a translation-invariant correlation structure. Our analysis shows that the limiting eigenvalue density has only square root singularities or cubic root cusps; no other singularities occur.
AU - Ajanki, Oskari H
AU - Krüger, Torben H
AU - Erdös, László
ID - 721
IS - 9
JF - Communications on Pure and Applied Mathematics
SN - 00103640
TI - Singularities of solutions to quadratic vector equations on the complex upper half plane
VL - 70
ER -
TY - JOUR
AB - We consider the local eigenvalue distribution of large self-adjoint N×N random matrices H=H∗ with centered independent entries. In contrast to previous works the matrix of variances sij=\mathbbmE|hij|2 is not assumed to be stochastic. Hence the density of states is not the Wigner semicircle law. Its possible shapes are described in the companion paper (Ajanki et al. in Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We show that as N grows, the resolvent, G(z)=(H−z)−1, converges to a diagonal matrix, diag(m(z)), where m(z)=(m1(z),…,mN(z)) solves the vector equation −1/mi(z)=z+∑jsijmj(z) that has been analyzed in Ajanki et al. (Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We prove a local law down to the smallest spectral resolution scale, and bulk universality for both real symmetric and complex hermitian symmetry classes.
AU - Ajanki, Oskari H
AU - Erdös, László
AU - Krüger, Torben H
ID - 1337
IS - 3-4
JF - Probability Theory and Related Fields
SN - 01788051
TI - Universality for general Wigner-type matrices
VL - 169
ER -
TY - JOUR
AB - We prove a local law in the bulk of the spectrum for random Gram matrices XX∗, a generalization of sample covariance matrices, where X is a large matrix with independent, centered entries with arbitrary variances. The limiting eigenvalue density that generalizes the Marchenko-Pastur law is determined by solving a system of nonlinear equations. Our entrywise and averaged local laws are on the optimal scale with the optimal error bounds. They hold both in the square case (hard edge) and in the properly rectangular case (soft edge). In the latter case we also establish a macroscopic gap away from zero in the spectrum of XX∗.
AU - Alt, Johannes
AU - Erdös, László
AU - Krüger, Torben H
ID - 1010
JF - Electronic Journal of Probability
SN - 10836489
TI - Local law for random Gram matrices
VL - 22
ER -
TY - JOUR
AB - We prove optimal local law, bulk universality and non-trivial decay for the off-diagonal elements of the resolvent for a class of translation invariant Gaussian random matrix ensembles with correlated entries.
AU - Ajanki, Oskari H
AU - Erdös, László
AU - Krüger, Torben H
ID - 1489
IS - 2
JF - Journal of Statistical Physics
TI - Local spectral statistics of Gaussian matrices with correlated entries
VL - 163
ER -
TY - JOUR
AB - Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose-Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth-death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock-paper-scissors game of condensates.
AU - Knebel, Johannes
AU - Weber, Markus
AU - Krüger, Torben H
AU - Frey, Erwin
ID - 1824
JF - Nature Communications
TI - Evolutionary games of condensates in coupled birth-death processes
VL - 6
ER -
TY - JOUR
AB - We extend the proof of the local semicircle law for generalized Wigner matrices given in MR3068390 to the case when the matrix of variances has an eigenvalue -1. In particular, this result provides a short proof of the optimal local Marchenko-Pastur law at the hard edge (i.e. around zero) for sample covariance matrices X*X, where the variances of the entries of X may vary.
AU - Ajanki, Oskari H
AU - Erdös, László
AU - Krüger, Torben H
ID - 2179
JF - Electronic Communications in Probability
TI - Local semicircle law with imprimitive variance matrix
VL - 19
ER -