TY - JOUR AB - In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term—a form of collective self-medication. AU - Csata, Eniko AU - Perez-Escudero, Alfonso AU - Laury, Emmanuel AU - Leitner, Hanna AU - Latil, Gerard AU - Heinze, Juerge AU - Simpson, Stephen AU - Cremer, Sylvia AU - Dussutour, Audrey ID - 14479 IS - 4 JF - Current Biology SN - 0960-9822 TI - Fungal infection alters collective nutritional intake of ant colonies VL - 34 ER - TY - JOUR AB - Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungusMetarhizium robertsiiduring experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome – but no other – was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment betweenM. robertsiiand another congeneric insect pathogen,M. guizhouense. Hence horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The transferred accessory chromosome contains genes that might be involved in its preferential horizontal transfer, encoding putative histones and histone-modifying enzymes, but also putative virulence factors that may support its establishment. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.Significance StatementThe enormous success of bacterial pathogens has been attributed to their ability to exchange genetic material between one another. Similarly, in eukaryotes, horizontal transfer of genetic material allowed the spread of virulence factors across species. The horizontal transfer of whole chromosomes could be an important pathway for such exchange of genetic material, but little is known about the origin of transferable chromosomes and how frequently they are exchanged. Here, we show that the transfer of accessory chromosomes - chromosomes that are non-essential but may provide fitness benefits - is common during fungal co-infections and is even possible between distant pathogenic species, highlighting the importance of horizontal gene transfer via chromosome transfer also for the evolution and function of eukaryotic pathogens. AU - Habig, Michael AU - Grasse, Anna V AU - Müller, Judith AU - Stukenbrock, Eva H. AU - Leitner, Hanna AU - Cremer, Sylvia ID - 14478 IS - 11 JF - Proceedings of the National Academy of Sciences of the United States of America SN - 0027-8424 TI - Frequent horizontal chromosome transfer between asexual fungal insect pathogens VL - 121 ER - TY - JOUR AB - Hosts can carry many viruses in their bodies, but not all of them cause disease. We studied ants as a social host to determine both their overall viral repertoire and the subset of actively infecting viruses across natural populations of three subfamilies: the Argentine ant (Linepithema humile, Dolichoderinae), the invasive garden ant (Lasius neglectus, Formicinae) and the red ant (Myrmica rubra, Myrmicinae). We used a dual sequencing strategy to reconstruct complete virus genomes by RNA-seq and to simultaneously determine the small interfering RNAs (siRNAs) by small RNA sequencing (sRNA-seq), which constitute the host antiviral RNAi immune response. This approach led to the discovery of 41 novel viruses in ants and revealed a host ant-specific RNAi response (21 vs. 22 nt siRNAs) in the different ant species. The efficiency of the RNAi response (sRNA/RNA read count ratio) depended on the virus and the respective ant species, but not its population. Overall, we found the highest virus abundance and diversity per population in Li. humile, followed by La. neglectus and M. rubra. Argentine ants also shared a high proportion of viruses between populations, whilst overlap was nearly absent in M. rubra. Only one of the 59 viruses was found to infect two of the ant species as hosts, revealing high host-specificity in active infections. In contrast, six viruses actively infected one ant species, but were found as contaminants only in the others. Disentangling spillover of disease-causing infection from non-infecting contamination across species is providing relevant information for disease ecology and ecosystem management. AU - Viljakainen, Lumi AU - Fürst, Matthias AU - Grasse, Anna V AU - Jurvansuu, Jaana AU - Oh, Jinook AU - Tolonen, Lassi AU - Eder, Thomas AU - Rattei, Thomas AU - Cremer, Sylvia ID - 12469 JF - Frontiers in Microbiology TI - Antiviral immune response reveals host-specific virus infections in natural ant populations VL - 14 ER - TY - JOUR AB - Cooperative disease defense emerges as group-level collective behavior, yet how group members make the underlying individual decisions is poorly understood. Using garden ants and fungal pathogens as an experimental model, we derive the rules governing individual ant grooming choices and show how they produce colony-level hygiene. Time-resolved behavioral analysis, pathogen quantification, and probabilistic modeling reveal that ants increase grooming and preferentially target highly-infectious individuals when perceiving high pathogen load, but transiently suppress grooming after having been groomed by nestmates. Ants thus react to both, the infectivity of others and the social feedback they receive on their own contagiousness. While inferred solely from momentary ant decisions, these behavioral rules quantitatively predict hour-long experimental dynamics, and synergistically combine into efficient colony-wide pathogen removal. Our analyses show that noisy individual decisions based on only local, incomplete, yet dynamically-updated information on pathogen threat and social feedback can lead to potent collective disease defense. AU - Casillas Perez, Barbara E AU - Bod'Ová, Katarína AU - Grasse, Anna V AU - Tkačik, Gašper AU - Cremer, Sylvia ID - 13127 JF - Nature Communications TI - Dynamic pathogen detection and social feedback shape collective hygiene in ants VL - 14 ER - TY - DATA AB - basic data for use in code for experimental data analysis for manuscript under revision: Dynamic pathogen detection and social feedback shape collective hygiene in ants Casillas-Pérez B, Boďová K, Grasse AV, Tkačik G, Cremer S AU - Cremer, Sylvia ID - 12945 KW - collective behavior KW - host-pathogen interactions KW - social immunity KW - epidemiology KW - social insects KW - probabilistic modeling TI - Data from: "Dynamic pathogen detection and social feedback shape collective hygiene in ants" ER - TY - JOUR AB - Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts. AU - Stock, Miriam AU - Milutinovic, Barbara AU - Hönigsberger, Michaela AU - Grasse, Anna V AU - Wiesenhofer, Florian AU - Kampleitner, Niklas AU - Narasimhan, Madhumitha AU - Schmitt, Thomas AU - Cremer, Sylvia ID - 12543 JF - Nature Ecology and Evolution TI - Pathogen evasion of social immunity VL - 7 ER - TY - JOUR AB - Animals exhibit a variety of behavioural defences against socially transmitted parasites. These defences evolved to increase host fitness by avoiding, resisting or tolerating infection. Because they can occur in both infected individuals and their uninfected social partners, these defences often have important consequences for the social group. Here, we discuss the evolution and ecology of anti-parasite behavioural defences across a taxonomically wide social spectrum, considering colonial groups, stable groups, transitional groups and solitary animals. We discuss avoidance, resistance and tolerance behaviours across these social group structures, identifying how social complexity, group composition and interdependent social relationships may contribute to the expression and evolution of behavioural strategies. Finally, we outline avenues for further investigation such as approaches to quantify group-level responses, and the connection of the physiological and behavioural response to parasites in different social contexts. AU - Stockmaier, Sebastian AU - Ulrich, Yuko AU - Albery, Gregory F. AU - Cremer, Sylvia AU - Lopes, Patricia C. ID - 12765 IS - 4 JF - Functional Ecology SN - 0269-8463 TI - Behavioural defences against parasites across host social structures VL - 37 ER - TY - JOUR AB - Background: Fighting disease while fighting rivals exposes males to constraints and tradeoffs during male-male competition. We here tested how both the stage and intensity of infection with the fungal pathogen Metarhizium robertsii interfered with fighting success in Cardiocondyla obscurior ant males. Males of this species have evolved long lifespans during which they can gain many matings with the young queens of the colony, if successful in male-male competition. Since male fights occur inside the colony, the outcome of male-male competition can further be biased by interference of the colony’s worker force. Results: We found that severe, but not yet mild, infection strongly impaired male fighting success. In late-stage infection, this could be attributed to worker aggression directed towards the infected rather than the healthy male and an already very high male morbidity even in the absence of fighting. Shortly after pathogen exposure, however, male mortality was particularly increased during combat. Since these males mounted a strong immune response, their reduced fighting success suggests a trade-off between immune investment and competitive ability already early in the infection. Even if the males themselves showed no difference in the number of attacks they raised against their healthy rivals across infection stages and levels, severely infected males were thus losing in male-male competition from an early stage of infection on. Conclusions: Males of the ant C. obscurior have evolved high immune investment, triggering an effective immune response very fast after fungal exposure. This allows them to cope with mild pathogen exposures without cost to their success in male-male competition, and hence to gain multiple mating opportunities with the emerging virgin queens of the colony. Under severe infection, however, they are weak fighters and rarely survive a combat already at early infection when raising an immune response, as well as at progressed infection, when they are morbid and preferentially targeted by worker aggression. Workers thereby remove males that pose a future disease threat by biasing male-male competition. Our study thus revealed a novel social immunity mechanism how social insect workers protect the colony against disease risk. AU - Metzler, Sina AU - Kirchner, Jessica AU - Grasse, Anna V AU - Cremer, Sylvia ID - 12696 JF - BMC Ecology and Evolution SN - 2730-7182 TI - Trade-offs between immunity and competitive ability in fighting ant males VL - 23 ER - TY - DATA AB - See Readme File for further information. AU - Cremer, Sylvia ID - 12693 TI - Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males ER - TY - JOUR AB - Social distancing is an effective way to prevent the spread of disease in societies, whereas infection elimination is a key element of organismal immunity. Here, we discuss how the study of social insects such as ants — which form a superorganism of unconditionally cooperative individuals and thus represent a level of organization that is intermediate between a classical society of individuals and an organism of cells — can help to determine common principles of disease defence across levels of organization. AU - Cremer, Sylvia AU - Sixt, Michael K ID - 12133 IS - 12 JF - Nature Reviews Immunology KW - Energy Engineering and Power Technology KW - Fuel Technology SN - 1474-1733 TI - Principles of disease defence in organisms, superorganisms and societies VL - 22 ER - TY - JOUR AB - Infections early in life can have enduring effects on an organism's development and immunity. In this study, we show that this equally applies to developing ‘superorganisms’––incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen's immune system to suppress pathogen proliferation. Early-life queen pathogen exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen's pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism. AU - Casillas Perez, Barbara E AU - Pull, Christopher AU - Naiser, Filip AU - Naderlinger, Elisabeth AU - Matas, Jiri AU - Cremer, Sylvia ID - 10284 IS - 1 JF - Ecology Letters SN - 1461-023X TI - Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies VL - 25 ER - TY - GEN AB - Infections early in life can have enduring effects on an organism’s development and immunity. In this study, we show that this equally applies to developing “superorganisms” – incipient social insect colonies. When we exposed newly mated Lasius niger ant queens to a low pathogen dose, their colonies grew more slowly than controls before winter, but reached similar sizes afterwards. Independent of exposure, queen hibernation survival improved when the ratio of pupae to workers was small. Queens that reared fewer pupae before worker emergence exhibited lower pathogen levels, indicating that high brood rearing efforts interfere with the ability of the queen’s immune system to suppress pathogen proliferation. Early-life queen pathogen-exposure also improved the immunocompetence of her worker offspring, as demonstrated by challenging the workers to the same pathogen a year later. Transgenerational transfer of the queen’s pathogen experience to her workforce can hence durably reduce the disease susceptibility of the whole superorganism. AU - Casillas Perez, Barbara E AU - Pull, Christopher AU - Naiser, Filip AU - Naderlinger, Elisabeth AU - Matas, Jiri AU - Cremer, Sylvia ID - 13061 TI - Early queen infection shapes developmental dynamics and induces long-term disease protection in incipient ant colonies ER - TY - CHAP AU - Schmid-Hempel, Paul AU - Cremer, Sylvia M ED - Starr, C ID - 9096 SN - 9783319903064 T2 - Encyclopedia of Social Insects TI - Parasites and Pathogens ER - TY - JOUR AB - Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level. AU - Milutinovic, Barbara AU - Stock, Miriam AU - Grasse, Anna V AU - Naderlinger, Elisabeth AU - Hilbe, Christian AU - Cremer, Sylvia ID - 7343 IS - 3 JF - Ecology Letters SN - 1461-023X TI - Social immunity modulates competition between coinfecting pathogens VL - 23 ER - TY - GEN AB - Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. Whilst multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defenses of ants – their social immunity ­– influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success, whilst simultaneously increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community-level. Mathematical modeling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host- and population-level. AU - Milutinovic, Barbara AU - Stock, Miriam AU - Grasse, Anna V AU - Naderlinger, Elisabeth AU - Hilbe, Christian AU - Cremer, Sylvia ID - 13060 TI - Social immunity modulates competition between coinfecting pathogens ER - TY - JOUR AB - Ant invasions are often harmful to native species communities. Their pathogens and host disease defense mechanisms may be one component of their devastating success. First, they can introduce harmful diseases to their competitors in the introduced range, to which they themselves are tolerant. Second, their supercolonial social structure of huge multi-queen nest networks means that they will harbor a broad pathogen spectrum and high pathogen load while remaining resilient, unlike the smaller, territorial colonies of the native species. Thus, it is likely that invasive ants act as a disease reservoir, promoting their competitive advantage and invasive success. AU - Cremer, Sylvia ID - 6415 JF - Current Opinion in Insect Science SN - 22145745 TI - Pathogens and disease defense of invasive ants VL - 33 ER - TY - JOUR AB - When animals become sick, infected cells and an armada of activated immune cells attempt to eliminate the pathogen from the body. Once infectious particles have breached the body's physical barriers of the skin or gut lining, an initially local response quickly escalates into a systemic response, attracting mobile immune cells to the site of infection. These cells complement the initial, unspecific defense with a more specialized, targeted response. This can also provide long-term immune memory and protection against future infection. The cell-autonomous defenses of the infected cells are thus aided by the actions of recruited immune cells. These specialized cells are the most mobile cells in the body, constantly patrolling through the otherwise static tissue to detect incoming pathogens. Such constant immune surveillance means infections are noticed immediately and can be rapidly cleared from the body. Some immune cells also remove infected cells that have succumbed to infection. All this prevents pathogen replication and spread to healthy tissues. Although this may involve the sacrifice of some somatic tissue, this is typically replaced quickly. Particular care is, however, given to the reproductive organs, which should always remain disease free (immune privilege). AU - Cremer, Sylvia ID - 6552 IS - 11 JF - Current Biology SN - 09609822 TI - Social immunity in insects VL - 29 ER - TY - CHAP AB - Social insects (i.e., ants, termites and the social bees and wasps) protect their colonies from disease using a combination of individual immunity and collectively performed defenses, termed social immunity. The first line of social immune defense is sanitary care, which is performed by colony members to protect their pathogen-exposed nestmates from developing an infection. If sanitary care fails and an infection becomes established, a second line of social immune defense is deployed to stop disease transmission within the colony and to protect the valuable queens, which together with the males are the reproductive individuals of the colony. Insect colonies are separated into these reproductive individuals and the sterile worker force, forming a superorganismal reproductive unit reminiscent of the differentiated germline and soma in a multicellular organism. Ultimately, the social immune response preserves the germline of the superorganism insect colony and increases overall fitness of the colony in case of disease. AU - Cremer, Sylvia AU - Kutzer, Megan ED - Choe, Jae ID - 7513 SN - 9780128132517 T2 - Encyclopedia of Animal Behavior TI - Social immunity ER - TY - JOUR AB - Being cared for when sick is a benefit of sociality that can reduce disease and improve survival of group members. However, individuals providing care risk contracting infectious diseases themselves. If they contract a low pathogen dose, they may develop low-level infections that do not cause disease but still affect host immunity by either decreasing or increasing the host’s vulnerability to subsequent infections. Caring for contagious individuals can thus significantly alter the future disease susceptibility of caregivers. Using ants and their fungal pathogens as a model system, we tested if the altered disease susceptibility of experienced caregivers, in turn, affects their expression of sanitary care behavior. We found that low-level infections contracted during sanitary care had protective or neutral effects on secondary exposure to the same (homologous) pathogen but consistently caused high mortality on superinfection with a different (heterologous) pathogen. In response to this risk, the ants selectively adjusted the expression of their sanitary care. Specifically, the ants performed less grooming and more antimicrobial disinfection when caring for nestmates contaminated with heterologous pathogens compared with homologous ones. By modulating the components of sanitary care in this way the ants acquired less infectious particles of the heterologous pathogens, resulting in reduced superinfection. The performance of risk-adjusted sanitary care reveals the remarkable capacity of ants to react to changes in their disease susceptibility, according to their own infection history and to flexibly adjust collective care to individual risk. AU - Konrad, Matthias AU - Pull, Christopher AU - Metzler, Sina AU - Seif, Katharina AU - Naderlinger, Elisabeth AU - Grasse, Anna V AU - Cremer, Sylvia ID - 413 IS - 11 JF - PNAS TI - Ants avoid superinfections by performing risk-adjusted sanitary care VL - 115 ER - TY - JOUR AB - Social insects protect their colonies from infectious disease through collective defences that result in social immunity. In ants, workers first try to prevent infection of colony members. Here, we show that if this fails and a pathogen establishes an infection, ants employ an efficient multicomponent behaviour − "destructive disinfection" − to prevent further spread of disease through the colony. Ants specifically target infected pupae during the pathogen's non-contagious incubation period, relying on chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a body that specifically targets and eliminates infected cells, this social immunity measure sacrifices infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, the same principles of disease defence apply at different levels of biological organisation. AU - Pull, Christopher AU - Ugelvig, Line V AU - Wiesenhofer, Florian AU - Grasse, Anna V AU - Tragust, Simon AU - Schmitt, Thomas AU - Brown, Mark AU - Cremer, Sylvia ID - 616 JF - eLife TI - Destructive disinfection of infected brood prevents systemic disease spread in ant colonies VL - 7 ER -