TY - JOUR AB - Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root—PINs and phosphatases acting upon them—are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux. AU - Roychoudhry, S AU - Sageman-Furnas, K AU - Wolverton, C AU - Grones, Peter AU - Tan, Shutang AU - Molnar, Gergely AU - De Angelis, M AU - Goodman, HL AU - Capstaff, N AU - JPB, Lloyd AU - Mullen, J AU - Hangarter, R AU - Friml, Jiří AU - Kepinski, S ID - 14339 JF - Nature Plants SN - 2055-0278 TI - Antigravitropic PIN polarization maintains non-vertical growth in lateral roots VL - 9 ER - TY - JOUR AB - Among the most fascinated properties of the plant hormone auxin is its ability to promote formation of its own directional transport routes. These gradually narrowing auxin channels form from the auxin source toward the sink and involve coordinated, collective polarization of individual cells. Once established, the channels provide positional information, along which new vascular strands form, for example, during organogenesis, regeneration, or leave venation. The main prerequisite of this still mysterious auxin canalization mechanism is a feedback between auxin signaling and its directional transport. This is manifested by auxin-induced re-arrangements of polar, subcellular localization of PIN-FORMED (PIN) auxin exporters. Immanent open questions relate to how position of auxin source and sink as well as tissue context are sensed and translated into tissue polarization and how cells communicate to polarize coordinately. Recently, identification of the first molecular players opens new avenues into molecular studies of this intriguing example of self-organizing plant development. AU - Hajny, Jakub AU - Tan, Shutang AU - Friml, Jiří ID - 10768 IS - 2 JF - Current Opinion in Plant Biology SN - 1369-5266 TI - Auxin canalization: From speculative models toward molecular players VL - 65 ER - TY - JOUR AB - Directionality in the intercellular transport of the plant hormone auxin is determined by polar plasma membrane localization of PIN-FORMED (PIN) auxin transport proteins. However, apart from PIN phosphorylation at conserved motifs, no further determinants explicitly controlling polar PIN sorting decisions have been identified. Here we present Arabidopsis WAVY GROWTH 3 (WAV3) and closely related RING-finger E3 ubiquitin ligases, whose loss-of-function mutants show a striking apical-to-basal polarity switch in PIN2 localization in root meristem cells. WAV3 E3 ligases function as essential determinants for PIN polarity, acting independently from PINOID/WAG-dependent PIN phosphorylation. They antagonize ectopic deposition of de novo synthesized PIN proteins already immediately following completion of cell division, presumably via preventing PIN sorting into basal, ARF GEF-mediated trafficking. Our findings reveal an involvement of E3 ligases in the selective targeting of apically localized PINs in higher plants. AU - Konstantinova, N AU - Hörmayer, Lukas AU - Glanc, Matous AU - Keshkeih, R AU - Tan, Shutang AU - Di Donato, M AU - Retzer, K AU - Moulinier-Anzola, J AU - Schwihla, M AU - Korbei, B AU - Geisler, M AU - Friml, Jiří AU - Luschnig, C ID - 12052 JF - Nature Communications SN - 2041-1723 TI - WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions VL - 13 ER - TY - JOUR AB - The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1,2,3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. AU - Friml, Jiří AU - Gallei, Michelle C AU - Gelová, Zuzana AU - Johnson, Alexander J AU - Mazur, Ewa AU - Monzer, Aline AU - Rodriguez Solovey, Lesia AU - Roosjen, Mark AU - Verstraeten, Inge AU - Živanović, Branka D. AU - Zou, Minxia AU - Fiedler, Lukas AU - Giannini, Caterina AU - Grones, Peter AU - Hrtyan, Mónika AU - Kaufmann, Walter AU - Kuhn, Andre AU - Narasimhan, Madhumitha AU - Randuch, Marek AU - Rýdza, Nikola AU - Takahashi, Koji AU - Tan, Shutang AU - Teplova, Anastasiia AU - Kinoshita, Toshinori AU - Weijers, Dolf AU - Rakusová, Hana ID - 12291 IS - 7927 JF - Nature SN - 0028-0836 TI - ABP1–TMK auxin perception for global phosphorylation and auxin canalization VL - 609 ER - TY - JOUR AB - Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems. AU - Li, Hongjiang AU - von Wangenheim, Daniel AU - Zhang, Xixi AU - Tan, Shutang AU - Darwish-Miranda, Nasser AU - Naramoto, Satoshi AU - Wabnik, Krzysztof T AU - de Rycke, Riet AU - Kaufmann, Walter AU - Gütl, Daniel J AU - Tejos, Ricardo AU - Grones, Peter AU - Ke, Meiyu AU - Chen, Xu AU - Dettmer, Jan AU - Friml, Jiří ID - 8582 IS - 1 JF - New Phytologist SN - 0028646X TI - Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana VL - 229 ER - TY - JOUR AB - The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network. AU - Tan, Shutang AU - Luschnig, Christian AU - Friml, Jiří ID - 8992 IS - 1 JF - Molecular Plant SN - 16742052 TI - Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling VL - 14 ER - TY - JOUR AB - The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-Phosphoinositide-Dependent Protein Kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbours a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homologue of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control. AU - Kong, W AU - Tan, Shutang AU - Zhao, Q AU - Lin, DL AU - Xu, ZH AU - Friml, Jiří AU - Xue, HW ID - 9368 IS - 4 JF - Plant Physiology SN - 0032-0889 TI - mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth VL - 186 ER - TY - JOUR AB - Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development. AU - Glanc, Matous AU - Van Gelderen, K AU - Hörmayer, Lukas AU - Tan, Shutang AU - Naramoto, S AU - Zhang, Xixi AU - Domjan, David AU - Vcelarova, L AU - Hauschild, Robert AU - Johnson, Alexander J AU - de Koning, E AU - van Dop, M AU - Rademacher, E AU - Janson, S AU - Wei, X AU - Molnar, Gergely AU - Fendrych, Matyas AU - De Rybel, B AU - Offringa, R AU - Friml, Jiří ID - 9290 IS - 9 JF - Current Biology SN - 0960-9822 TI - AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells VL - 31 ER - TY - JOUR AB - To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments. AU - Ke, M AU - Ma, Z AU - Wang, D AU - Sun, Y AU - Wen, C AU - Huang, D AU - Chen, Z AU - Yang, L AU - Tan, Shutang AU - Li, R AU - Friml, Jiří AU - Miao, Y AU - Chen, X ID - 8608 IS - 2 JF - New Phytologist SN - 0028-646x TI - Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana VL - 229 ER - TY - JOUR AB - Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments. AU - Ötvös, Krisztina AU - Marconi, Marco AU - Vega, Andrea AU - O’Brien, Jose AU - Johnson, Alexander J AU - Abualia, Rashed AU - Antonielli, Livio AU - Montesinos López, Juan C AU - Zhang, Yuzhou AU - Tan, Shutang AU - Cuesta, Candela AU - Artner, Christina AU - Bouguyon, Eleonore AU - Gojon, Alain AU - Friml, Jiří AU - Gutiérrez, Rodrigo A. AU - Wabnik, Krzysztof T AU - Benková, Eva ID - 9010 IS - 3 JF - EMBO Journal SN - 02614189 TI - Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport VL - 40 ER - TY - JOUR AB - The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural (IAA) and synthetic (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network (EE/TGN), rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using Total Internal Reflection Fluorescence (TIRF) microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments. AU - Narasimhan, Madhumitha AU - Gallei, Michelle C AU - Tan, Shutang AU - Johnson, Alexander J AU - Verstraeten, Inge AU - Li, Lanxin AU - Rodriguez Solovey, Lesia AU - Han, Huibin AU - Himschoot, E AU - Wang, R AU - Vanneste, S AU - Sánchez-Simarro, J AU - Aniento, F AU - Adamowski, Maciek AU - Friml, Jiří ID - 9287 IS - 2 JF - Plant Physiology SN - 0032-0889 TI - Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking VL - 186 ER - TY - GEN AB - Plasmodesmata (PD) are crucial structures for intercellular communication in multicellular plants with remorins being their crucial plant-specific structural and functional constituents. The PD biogenesis is an intriguing but poorly understood process. By expressing an Arabidopsis remorin protein in mammalian cells, we have reconstituted a PD-like filamentous structure, termed remorin filament (RF), connecting neighboring cells physically and physiologically. Notably, RFs are capable of transporting macromolecules intercellularly, in a way similar to plant PD. With further super-resolution microscopic analysis and biochemical characterization, we found that RFs are also composed of actin filaments, forming the core skeleton structure, aligned with the remorin protein. This unique heterologous filamentous structure might explain the molecular mechanism for remorin function as well as PD construction. Furthermore, remorin protein exhibits a specific distribution manner in the plasma membrane in mammalian cells, representing a lipid nanodomain, depending on its lipid modification status. Our studies not only provide crucial insights into the mechanism of PD biogenesis, but also uncovers unsuspected fundamental mechanistic and evolutionary links between intercellular communication systems of plants and animals. AU - Wei, Zhuang AU - Tan, Shutang AU - Liu, Tao AU - Wu, Yuan AU - Lei, Ji-Gang AU - Chen, ZhengJun AU - Friml, Jiří AU - Xue, Hong-Wei AU - Liao, Kan ID - 7601 T2 - bioRxiv TI - Plasmodesmata-like intercellular connections by plant remorin in animal cells ER - TY - JOUR AB - Plant root architecture dynamically adapts to various environmental conditions, such as salt‐containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor‐protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs‐protein phosphatase 2C (PP2C) mechanism is identified. The PYLs‐PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase‐mediated phosphorylation of PIN‐FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross‐talk between the stress hormone ABA and the versatile developmental regulator auxin. AU - Li, Yang AU - Wang, Yaping AU - Tan, Shutang AU - Li, Zhen AU - Yuan, Zhi AU - Glanc, Matous AU - Domjan, David AU - Wang, Kai AU - Xuan, Wei AU - Guo, Yan AU - Gong, Zhizhong AU - Friml, Jiří AU - Zhang, Jing ID - 7204 IS - 3 JF - Advanced Science TI - Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex VL - 7 ER - TY - JOUR AB - In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes. AU - Narasimhan, Madhumitha AU - Johnson, Alexander J AU - Prizak, Roshan AU - Kaufmann, Walter AU - Tan, Shutang AU - Casillas Perez, Barbara E AU - Friml, Jiří ID - 7490 JF - eLife TI - Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants VL - 9 ER - TY - JOUR AB - Directional intercellular transport of the phytohormone auxin mediated by PIN FORMED (PIN) efflux carriers plays essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. Multilevel regulations of PIN activity under internal and external cues are complicated; however, the underlying molecular mechanism remains elusive. Here we demonstrate that 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub integrating the upstream lipid signalling and the downstream substrate activity through phosphorylation. Genetic analysis uncovers that loss-of-function Arabidopsis mutant pdk1.1 pdk1.2 exhibits a plethora of abnormalities in organogenesis and growth, due to the defective PIN-dependent auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 Protein Kinase to facilitate its activity towards PIN proteins. Our studies establish a lipid-dependent phosphorylation cascade connecting membrane composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes. AU - Tan, Shutang AU - Zhang, Xixi AU - Kong, Wei AU - Yang, Xiao-Li AU - Molnar, Gergely AU - Vondráková, Zuzana AU - Filepová, Roberta AU - Petrášek, Jan AU - Friml, Jiří AU - Xue, Hong-Wei ID - 7600 JF - Nature Plants TI - The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis VL - 6 ER - TY - JOUR AB - Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization. AU - Hajny, Jakub AU - Prat, Tomas AU - Rydza, N AU - Rodriguez Solovey, Lesia AU - Tan, Shutang AU - Verstraeten, Inge AU - Domjan, David AU - Mazur, E AU - Smakowska-Luzan, E AU - Smet, W AU - Mor, E AU - Nolf, J AU - Yang, B AU - Grunewald, W AU - Molnar, Gergely AU - Belkhadir, Y AU - De Rybel, B AU - Friml, Jiří ID - 8721 IS - 6516 JF - Science SN - 0036-8075 TI - Receptor kinase module targets PIN-dependent auxin transport during canalization VL - 370 ER - TY - JOUR AB - Cell polarity is a fundamental feature of all multicellular organisms. In plants, prominent cell polarity markers are PIN auxin transporters crucial for plant development. To identify novel components involved in cell polarity establishment and maintenance, we carried out a forward genetic screening with PIN2:PIN1-HA;pin2 Arabidopsis plants, which ectopically express predominantly basally localized PIN1 in the root epidermal cells leading to agravitropic root growth. From the screen, we identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused PIN1-HA polarity switch from basal to apical side of root epidermal cells. Complementation experiments established the repp12 causative mutation as an amino acid substitution in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase with predicted function in vesicle formation. ala3 T-DNA mutants show defects in many auxin-regulated processes, in asymmetric auxin distribution and in PIN trafficking. Analysis of quintuple and sextuple mutants confirmed a crucial role of ALA proteins in regulating plant development and in PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with GNOM and BIG3 ARF GEFs. Taken together, our results identified ALA3 flippase as an important interactor and regulator of ARF GEF functioning in PIN polarity, trafficking and auxin-mediated development. AU - Zhang, Xixi AU - Adamowski, Maciek AU - Marhavá, Petra AU - Tan, Shutang AU - Zhang, Yuzhou AU - Rodriguez Solovey, Lesia AU - Zwiewka, Marta AU - Pukyšová, Vendula AU - Sánchez, Adrià Sans AU - Raxwal, Vivek Kumar AU - Hardtke, Christian S. AU - Nodzynski, Tomasz AU - Friml, Jiří ID - 7619 IS - 5 JF - The Plant Cell SN - 1040-4651 TI - Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters VL - 32 ER - TY - JOUR AB - The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds. AU - Tan, Shutang AU - Di Donato, Martin AU - Glanc, Matous AU - Zhang, Xixi AU - Klíma, Petr AU - Liu, Jie AU - Bailly, Aurélien AU - Ferro, Noel AU - Petrášek, Jan AU - Geisler, Markus AU - Friml, Jiří ID - 8943 IS - 9 JF - Cell Reports TI - Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development VL - 33 ER - TY - JOUR AB - Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense. AU - Tan, Shutang AU - Abas, Melinda F AU - Verstraeten, Inge AU - Glanc, Matous AU - Molnar, Gergely AU - Hajny, Jakub AU - Lasák, Pavel AU - Petřík, Ivan AU - Russinova, Eugenia AU - Petrášek, Jan AU - Novák, Ondřej AU - Pospíšil, Jiří AU - Friml, Jiří ID - 7427 IS - 3 JF - Current Biology SN - 09609822 TI - Salicylic acid targets protein phosphatase 2A to attenuate growth in plants VL - 30 ER - TY - JOUR AB - Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment. AU - Zwiewka, Marta AU - Bielach, Agnieszka AU - Tamizhselvan, Prashanth AU - Madhavan, Sharmila AU - Ryad, Eman Elrefaay AU - Tan, Shutang AU - Hrtyan, Mónika AU - Dobrev, Petre AU - Vanková, Radomira AU - Friml, Jiří AU - Tognetti, Vanesa B. ID - 6104 IS - 2 JF - Plant and Cell Physiology SN - 0032-0781 TI - Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking VL - 60 ER -