TY - GEN
AB - The purpose of this application note is to demonstrate a working example of a superconducting qubit measurement in a Bluefors cryostat using the Keysight quantum control hardware. Our motivation is twofold. First, we provide pre-qualification data that the Bluefors cryostat, including filtering and wiring, can support long-lived qubits. Second, we demonstrate that the Keysight system (controlled using Labber) provides a straightforward solution to perform these characterization measurements. This document is intended as a brief guide for starting an experimental platform for testing superconducting qubits. The setup described here is an immediate jumping off point for a suite of applications including testing quantum logical gates, quantum optics with microwaves, or even using the qubit itself as a sensitive probe of local electromagnetic fields. Qubit measurements rely on high performance of both the physical sample environment and the measurement electronics. An overview of the cryogenic system is shown in Figure 1, and an overview of the integration between the electronics and cryostat (including wiring details) is shown in Figure 2.
AU - Lake, Russell
AU - Simbierowicz, Slawomir
AU - Krantz, Philip
AU - Hassani, Farid
AU - Fink, Johannes M
ID - 10644
KW - Application note
TI - The Bluefors dilution refrigerator as an integrated quantum measurement system
ER -
TY - GEN
AB - Superconducting qubits have emerged as a highly versatile and useful platform for quantum technological applications [1]. Bluefors and Zurich Instruments have supported the growth of this field from the 2010s onwards by providing well-engineered and reliable measurement infrastructure [2]– [6]. Having a long and stable qubit lifetime is a critical system property. Therefore, considerable effort has already gone into measuring qubit energy-relaxation timescales and their fluctuations, see Refs. [7]–[10] among others. Accurately extracting the statistics of a quantum device requires users to perform time consuming measurements. One measurement challenge is that the detection of the state-dependent
response of a superconducting resonator due to a dispersively-coupled qubit requires an inherently low signal level. Consequently, measurements must be performed using a microwave probe that contains only a few microwave photons. Improving the signal-to-noise ratio (SNR) by using near-quantum limited parametric amplifiers as well as the use of optimized signal processing enabled by efficient room temperature instrumentation help to reduce measurement time. An empirical observation for fixed frequency transmons from recent literature is that as the energy-relaxation time 𝑇𝑇1 increases, so do its natural temporal fluctuations [7], [10]. This necessitates many repeated measurements to understand the statistics (see for example, Ref. [10]). In addition, as state-of-the-art qubits increase in lifetime, longer
measurement times are expected to obtain accurate statistics. As described below, the scaling of the widths of the qubit energy-relaxation distributions also reveal clues about the origin of the energy-relaxation.
AU - Simbierowicz, Slawomir
AU - Shi, Chunyan
AU - Collodo, Michele
AU - Kirste, Moritz
AU - Hassani, Farid
AU - Fink, Johannes M
AU - Bylander, Jonas
AU - Perez Lozano, Daniel
AU - Lake, Russell
ID - 10645
KW - Application note
TI - Qubit energy-relaxation statistics in the Bluefors quantum measurement system
ER -
TY - JOUR
AB - There are two elementary superconducting qubit types that derive directly from the quantum harmonic oscillator. In one, the inductor is replaced by a nonlinear Josephson junction to realize the widely used charge qubits with a compact phase variable and a discrete charge wave function. In the other, the junction is added in parallel, which gives rise to an extended phase variable, continuous wave functions, and a rich energy-level structure due to the loop topology. While the corresponding rf superconducting quantum interference device Hamiltonian was introduced as a quadratic quasi-one-dimensional potential approximation to describe the fluxonium qubit implemented with long Josephson-junction arrays, in this work we implement it directly using a linear superinductor formed by a single uninterrupted aluminum wire. We present a large variety of qubits, all stemming from the same circuit but with drastically different characteristic energy scales. This includes flux and fluxonium qubits but also the recently introduced quasicharge qubit with strongly enhanced zero-point phase fluctuations and a heavily suppressed flux dispersion. The use of a geometric inductor results in high reproducibility of the inductive energy as guaranteed by top-down lithography—a key ingredient for intrinsically protected superconducting qubits.
AU - Peruzzo, Matilda
AU - Hassani, Farid
AU - Szep, Gregory
AU - Trioni, Andrea
AU - Redchenko, Elena
AU - Zemlicka, Martin
AU - Fink, Johannes M
ID - 9928
IS - 4
JF - PRX Quantum
KW - quantum physics
KW - mesoscale and nanoscale physics
TI - Geometric superinductance qubits: Controlling phase delocalization across a single Josephson junction
VL - 2
ER -
TY - JOUR
AB - The superconducting circuit community has recently discovered the promising potential of superinductors. These circuit elements have a characteristic impedance exceeding the resistance quantum RQ ≈ 6.45 kΩ which leads to a suppression of ground state charge fluctuations. Applications include the realization of hardware protected qubits for fault tolerant quantum computing, improved coupling to small dipole moment objects and defining a new quantum metrology standard for the ampere. In this work we refute the widespread notion that superinductors can only be implemented based on kinetic inductance, i.e. using disordered superconductors or Josephson junction arrays. We present modeling, fabrication and characterization of 104 planar aluminum coil resonators with a characteristic impedance up to 30.9 kΩ at 5.6 GHz and a capacitance down to ≤ 1 fF, with lowloss and a power handling reaching 108 intra-cavity photons. Geometric superinductors are free of uncontrolled tunneling events and offer high reproducibility, linearity and the ability to couple magnetically - properties that significantly broaden the scope of future quantum circuits.
AU - Peruzzo, Matilda
AU - Trioni, Andrea
AU - Hassani, Farid
AU - Zemlicka, Martin
AU - Fink, Johannes M
ID - 8755
IS - 4
JF - Physical Review Applied
TI - Surpassing the resistance quantum with a geometric superinductor
VL - 14
ER -
TY - JOUR
AB - Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform.
AU - Arnold, Georg M
AU - Wulf, Matthias
AU - Barzanjeh, Shabir
AU - Redchenko, Elena
AU - Rueda Sanchez, Alfredo R
AU - Hease, William J
AU - Hassani, Farid
AU - Fink, Johannes M
ID - 8529
JF - Nature Communications
KW - General Biochemistry
KW - Genetics and Molecular Biology
KW - General Physics and Astronomy
KW - General Chemistry
SN - 2041-1723
TI - Converting microwave and telecom photons with a silicon photonic nanomechanical interface
VL - 11
ER -