--- _id: '14793' abstract: - lang: eng text: Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a sin(2y) CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: "We acknowledge Alexander Brinkmann, Alessandro Crippa, Francesco Giazotto, Andrew Higginbotham, Andrea Iorio, Giordano Scappucci, Christian Schonenberger, and Lukas Splitthoff for helpful discussions. We thank Marcel Verheijen for the support in the TEM analysis. This research and related results were made possible with the support of the NOMIS\r\nFoundation. It was supported by the Scientific Service Units of ISTA through resources provided by the MIBA Machine Shop and the nanofabrication facility, the European Union’s Horizon 2020 research andinnovation programme under Grant Agreement No 862046, the HORIZONRIA\r\n101069515 project, the European Innovation Council Pathfinder grant no. 101115315 (QuKiT), and the FWF Projects #P-32235, #P-36507 and #F-8606. For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission. R.S.S. acknowledges Spanish CM “Talento Program\"\r\nProject No. 2022-T1/IND-24070. J.J. acknowledges European Research Council TOCINA 834290." article_number: '169' article_processing_charge: Yes article_type: original author: - first_name: Marco full_name: Valentini, Marco id: C0BB2FAC-D767-11E9-B658-BC13E6697425 last_name: Valentini - first_name: Oliver full_name: Sagi, Oliver id: 71616374-A8E9-11E9-A7CA-09ECE5697425 last_name: Sagi - first_name: Levon full_name: Baghumyan, Levon id: 7aa1f788-b527-11ee-aa9e-e6111a79e0c7 last_name: Baghumyan - first_name: Thijs full_name: de Gijsel, Thijs id: a0ece13c-b527-11ee-929d-bad130106eee last_name: de Gijsel - first_name: Jason full_name: Jung, Jason id: 4C9ACE7A-F248-11E8-B48F-1D18A9856A87 last_name: Jung - first_name: Stefano full_name: Calcaterra, Stefano last_name: Calcaterra - first_name: Andrea full_name: Ballabio, Andrea last_name: Ballabio - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Kushagra full_name: Aggarwal, Kushagra id: b22ab905-3539-11eb-84c3-fc159dcd79cb last_name: Aggarwal orcid: 0000-0001-9985-9293 - first_name: Marian full_name: Janik, Marian id: 396A1950-F248-11E8-B48F-1D18A9856A87 last_name: Janik - first_name: Thomas full_name: Adletzberger, Thomas id: 38756BB2-F248-11E8-B48F-1D18A9856A87 last_name: Adletzberger - first_name: Rubén full_name: Seoane Souto, Rubén last_name: Seoane Souto - first_name: Martin full_name: Leijnse, Martin last_name: Leijnse - first_name: Jeroen full_name: Danon, Jeroen last_name: Danon - first_name: Constantin full_name: Schrade, Constantin last_name: Schrade - first_name: Erik full_name: Bakkers, Erik last_name: Bakkers - first_name: Daniel full_name: Chrastina, Daniel last_name: Chrastina - first_name: Giovanni full_name: Isella, Giovanni last_name: Isella - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X citation: ama: Valentini M, Sagi O, Baghumyan L, et al. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nature Communications. 2024;15. doi:10.1038/s41467-023-44114-0 apa: Valentini, M., Sagi, O., Baghumyan, L., de Gijsel, T., Jung, J., Calcaterra, S., … Katsaros, G. (2024). Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-44114-0 chicago: Valentini, Marco, Oliver Sagi, Levon Baghumyan, Thijs de Gijsel, Jason Jung, Stefano Calcaterra, Andrea Ballabio, et al. “Parity-Conserving Cooper-Pair Transport and Ideal Superconducting Diode in Planar Germanium.” Nature Communications. Springer Nature, 2024. https://doi.org/10.1038/s41467-023-44114-0. ieee: M. Valentini et al., “Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium,” Nature Communications, vol. 15. Springer Nature, 2024. ista: Valentini M, Sagi O, Baghumyan L, de Gijsel T, Jung J, Calcaterra S, Ballabio A, Aguilera Servin JL, Aggarwal K, Janik M, Adletzberger T, Seoane Souto R, Leijnse M, Danon J, Schrade C, Bakkers E, Chrastina D, Isella G, Katsaros G. 2024. Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium. Nature Communications. 15, 169. mla: Valentini, Marco, et al. “Parity-Conserving Cooper-Pair Transport and Ideal Superconducting Diode in Planar Germanium.” Nature Communications, vol. 15, 169, Springer Nature, 2024, doi:10.1038/s41467-023-44114-0. short: M. Valentini, O. Sagi, L. Baghumyan, T. de Gijsel, J. Jung, S. Calcaterra, A. Ballabio, J.L. Aguilera Servin, K. Aggarwal, M. Janik, T. Adletzberger, R. Seoane Souto, M. Leijnse, J. Danon, C. Schrade, E. Bakkers, D. Chrastina, G. Isella, G. Katsaros, Nature Communications 15 (2024). date_created: 2024-01-14T23:00:56Z date_published: 2024-01-02T00:00:00Z date_updated: 2024-01-17T11:07:55Z day: '02' ddc: - '530' department: - _id: GeKa doi: 10.1038/s41467-023-44114-0 ec_funded: 1 external_id: pmid: - '38167818' file: - access_level: open_access checksum: ef79173b45eeaf984ffa61ef2f8a52ab content_type: application/pdf creator: dernst date_created: 2024-01-17T11:03:00Z date_updated: 2024-01-17T11:03:00Z file_id: '14825' file_name: 2024_NatureComm_Valentini.pdf file_size: 2336595 relation: main_file success: 1 file_date_updated: 2024-01-17T11:03:00Z has_accepted_license: '1' intvolume: ' 15' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 237E5020-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862046' name: TOPOLOGICALLY PROTECTED AND SCALABLE QUANTUM BITS - _id: 34c0acea-11ca-11ed-8bc3-8775e10fd452 grant_number: '101069515' name: Integrated GermaNIum quanTum tEchnology - _id: bdc2ca30-d553-11ed-ba76-cf164a5bb811 grant_number: '101115315' name: Quantum bits with Kitaev Transmons - _id: 237B3DA4-32DE-11EA-91FC-C7463DDC885E call_identifier: FWF grant_number: P32235 name: Towards scalable hut wire quantum devices - _id: bd8bd29e-d553-11ed-ba76-f0070d4b237a grant_number: P36507 name: Merging spin and superconducting qubits in planar Ge - _id: 34a66131-11ca-11ed-8bc3-a31681c6b03e grant_number: F8606 name: Conventional and unconventional topological superconductors publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2024' ... --- _id: '15018' abstract: - lang: eng text: The epitaxial growth of a strained Ge layer, which is a promising candidate for the channel material of a hole spin qubit, has been demonstrated on 300 mm Si wafers using commercially available Si0.3Ge0.7 strain relaxed buffer (SRB) layers. The assessment of the layer and the interface qualities for a buried strained Ge layer embedded in Si0.3Ge0.7 layers is reported. The XRD reciprocal space mapping confirmed that the reduction of the growth temperature enables the 2-dimensional growth of the Ge layer fully strained with respect to the Si0.3Ge0.7. Nevertheless, dislocations at the top and/or bottom interface of the Ge layer were observed by means of electron channeling contrast imaging, suggesting the importance of the careful dislocation assessment. The interface abruptness does not depend on the selection of the precursor gases, but it is strongly influenced by the growth temperature which affects the coverage of the surface H-passivation. The mobility of 2.7 × 105 cm2/Vs is promising, while the low percolation density of 3 × 1010 /cm2 measured with a Hall-bar device at 7 K illustrates the high quality of the heterostructure thanks to the high Si0.3Ge0.7 SRB quality. acknowledgement: The Ge project received funding from the European Union's Horizon Europe programme under the Grant Agreement 101069515 – IGNITE. Siltronic AG is acknowledged for providing the SRB wafers. This work was supported by Imec's Industrial Affiliation Program on Quantum Computing. article_number: '108231' article_processing_charge: No article_type: original author: - first_name: Yosuke full_name: Shimura, Yosuke last_name: Shimura - first_name: Clement full_name: Godfrin, Clement last_name: Godfrin - first_name: Andriy full_name: Hikavyy, Andriy last_name: Hikavyy - first_name: Roy full_name: Li, Roy last_name: Li - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Georgios full_name: Katsaros, Georgios id: 38DB5788-F248-11E8-B48F-1D18A9856A87 last_name: Katsaros orcid: 0000-0001-8342-202X - first_name: Paola full_name: Favia, Paola last_name: Favia - first_name: Han full_name: Han, Han last_name: Han - first_name: Danny full_name: Wan, Danny last_name: Wan - first_name: Kristiaan full_name: de Greve, Kristiaan last_name: de Greve - first_name: Roger full_name: Loo, Roger last_name: Loo citation: ama: Shimura Y, Godfrin C, Hikavyy A, et al. Compressively strained epitaxial Ge layers for quantum computing applications. Materials Science in Semiconductor Processing. 2024;174(5). doi:10.1016/j.mssp.2024.108231 apa: Shimura, Y., Godfrin, C., Hikavyy, A., Li, R., Aguilera Servin, J. L., Katsaros, G., … Loo, R. (2024). Compressively strained epitaxial Ge layers for quantum computing applications. Materials Science in Semiconductor Processing. Elsevier. https://doi.org/10.1016/j.mssp.2024.108231 chicago: Shimura, Yosuke, Clement Godfrin, Andriy Hikavyy, Roy Li, Juan L Aguilera Servin, Georgios Katsaros, Paola Favia, et al. “Compressively Strained Epitaxial Ge Layers for Quantum Computing Applications.” Materials Science in Semiconductor Processing. Elsevier, 2024. https://doi.org/10.1016/j.mssp.2024.108231. ieee: Y. Shimura et al., “Compressively strained epitaxial Ge layers for quantum computing applications,” Materials Science in Semiconductor Processing, vol. 174, no. 5. Elsevier, 2024. ista: Shimura Y, Godfrin C, Hikavyy A, Li R, Aguilera Servin JL, Katsaros G, Favia P, Han H, Wan D, de Greve K, Loo R. 2024. Compressively strained epitaxial Ge layers for quantum computing applications. Materials Science in Semiconductor Processing. 174(5), 108231. mla: Shimura, Yosuke, et al. “Compressively Strained Epitaxial Ge Layers for Quantum Computing Applications.” Materials Science in Semiconductor Processing, vol. 174, no. 5, 108231, Elsevier, 2024, doi:10.1016/j.mssp.2024.108231. short: Y. Shimura, C. Godfrin, A. Hikavyy, R. Li, J.L. Aguilera Servin, G. Katsaros, P. Favia, H. Han, D. Wan, K. de Greve, R. Loo, Materials Science in Semiconductor Processing 174 (2024). date_created: 2024-02-22T14:10:40Z date_published: 2024-02-20T00:00:00Z date_updated: 2024-02-26T10:36:35Z day: '20' ddc: - '530' department: - _id: GeKa - _id: NanoFab doi: 10.1016/j.mssp.2024.108231 has_accepted_license: '1' intvolume: ' 174' issue: '5' keyword: - Mechanical Engineering - Mechanics of Materials - Condensed Matter Physics - General Materials Science language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.mssp.2024.108231 month: '02' oa: 1 oa_version: Published Version project: - _id: 34c0acea-11ca-11ed-8bc3-8775e10fd452 grant_number: '101069515' name: Integrated GermaNIum quanTum tEchnology publication: Materials Science in Semiconductor Processing publication_identifier: issn: - 1369-8001 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' status: public title: Compressively strained epitaxial Ge layers for quantum computing applications tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 174 year: '2024' ... --- _id: '9887' abstract: - lang: eng text: Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: 'We gratefully thank Julie Neveu and Dr. Amanda Barranco of the Grégory Vert laboratory for help preparing plants in France, Dr. Zuzana Gelova for help and advice with protoplast generation, Dr. Stéphane Vassilopoulos and Dr. Florian Schur for advice regarding EM tomography, Alejandro Marquiegui Alvaro for help with material generation, and Dr. Lukasz Kowalski for generously gifting us the mWasabi protein. This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (IST Austria) through resources provided by the Electron Microscopy Facility, Lab Support Facility (particularly Dorota Jaworska), and the Bioimaging Facility. We acknowledge the Advanced Microscopy Facility of the Vienna BioCenter Core Facilities for use of the 3D SIM. For the mass spectrometry analysis of proteins, we acknowledge the University of Natural Resources and Life Sciences (BOKU) Core Facility Mass Spectrometry. This work was supported by the following funds: A.J. is supported by funding from the Austrian Science Fund I3630B25 to J.F. P.M. and E.B. are supported by Agence Nationale de la Recherche ANR-11-EQPX-0029 Morphoscope2 and ANR-10-INBS-04 France BioImaging. S.Y.B. is supported by the NSF No. 1121998 and 1614915. J.W. and D.V.D. are supported by the European Research Council Grant 682436 (to D.V.D.), a China Scholarship Council Grant 201508440249 (to J.W.), and by a Ghent University Special Research Co-funding Grant ST01511051 (to J.W.).' article_number: e2113046118 article_processing_charge: No article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Dana A full_name: Dahhan, Dana A last_name: Dahhan - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Pierre full_name: Mahou, Pierre last_name: Mahou - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Jie full_name: Wang, Jie last_name: Wang - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Daniël full_name: van Damme, Daniël last_name: van Damme - first_name: Emmanuel full_name: Beaurepaire, Emmanuel last_name: Beaurepaire - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Sebastian Y full_name: Bednarek, Sebastian Y last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Dahhan DA, Gnyliukh N, et al. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 2021;118(51). doi:10.1073/pnas.2113046118 apa: Johnson, A. J., Dahhan, D. A., Gnyliukh, N., Kaufmann, W., Zheden, V., Costanzo, T., … Friml, J. (2021). The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.2113046118 chicago: Johnson, Alexander J, Dana A Dahhan, Nataliia Gnyliukh, Walter Kaufmann, Vanessa Zheden, Tommaso Costanzo, Pierre Mahou, et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2113046118. ieee: A. J. Johnson et al., “The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis,” Proceedings of the National Academy of Sciences, vol. 118, no. 51. National Academy of Sciences, 2021. ista: Johnson AJ, Dahhan DA, Gnyliukh N, Kaufmann W, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera Servin JL, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. 2021. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 118(51), e2113046118. mla: Johnson, Alexander J., et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences, vol. 118, no. 51, e2113046118, National Academy of Sciences, 2021, doi:10.1073/pnas.2113046118. short: A.J. Johnson, D.A. Dahhan, N. Gnyliukh, W. Kaufmann, V. Zheden, T. Costanzo, P. Mahou, M. Hrtyan, J. Wang, J.L. Aguilera Servin, D. van Damme, E. Beaurepaire, M. Loose, S.Y. Bednarek, J. Friml, Proceedings of the National Academy of Sciences 118 (2021). date_created: 2021-08-11T14:11:43Z date_published: 2021-12-14T00:00:00Z date_updated: 2024-02-19T11:06:09Z day: '14' ddc: - '580' department: - _id: JiFr - _id: MaLo - _id: EvBe - _id: EM-Fac - _id: NanoFab doi: 10.1073/pnas.2113046118 external_id: isi: - '000736417600043' pmid: - '34907016' file: - access_level: open_access checksum: 8d01e72e22c4fb1584e72d8601947069 content_type: application/pdf creator: cchlebak date_created: 2021-12-15T08:59:40Z date_updated: 2021-12-15T08:59:40Z file_id: '10546' file_name: 2021_PNAS_Johnson.pdf file_size: 2757340 relation: main_file success: 1 file_date_updated: 2021-12-15T08:59:40Z has_accepted_license: '1' intvolume: ' 118' isi: 1 issue: '51' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.1101/2021.04.26.441441 record: - id: '14510' relation: dissertation_contains status: public - id: '14988' relation: research_data status: public status: public title: The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '7885' abstract: - lang: eng text: Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour. acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: M-Shop acknowledgement: We thank A. Leithner and J. Renkawitz for discussion and critical reading of the manuscript; J. Schwarz and M. Mehling for establishing the microfluidic setups; the Bioimaging Facility of IST Austria for excellent support, as well as the Life Science Facility and the Miba Machine Shop of IST Austria; and F. N. Arslan, L. E. Burnett and L. Li for their work during their rotation in the IST PhD programme. This work was supported by the European Research Council (ERC StG 281556 and CoG 724373) to M.S. and grants from the Austrian Science Fund (FWF P29911) and the WWTF to M.S. M.H. was supported by the European Regional Development Fund Project (CZ.02.1.01/0.0/0.0/15_003/0000476). F.G. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 747687. article_processing_charge: No article_type: original author: - first_name: Anne full_name: Reversat, Anne id: 35B76592-F248-11E8-B48F-1D18A9856A87 last_name: Reversat orcid: 0000-0003-0666-8928 - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Julian A full_name: Stopp, Julian A id: 489E3F00-F248-11E8-B48F-1D18A9856A87 last_name: Stopp - first_name: Saren full_name: Tasciyan, Saren id: 4323B49C-F248-11E8-B48F-1D18A9856A87 last_name: Tasciyan orcid: 0000-0003-1671-393X - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Ingrid full_name: De Vries, Ingrid id: 4C7D837E-F248-11E8-B48F-1D18A9856A87 last_name: De Vries - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Miroslav full_name: Hons, Miroslav id: 4167FE56-F248-11E8-B48F-1D18A9856A87 last_name: Hons orcid: 0000-0002-6625-3348 - first_name: Matthieu full_name: Piel, Matthieu last_name: Piel - first_name: Andrew full_name: Callan-Jones, Andrew last_name: Callan-Jones - first_name: Raphael full_name: Voituriez, Raphael last_name: Voituriez - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Reversat A, Gärtner FR, Merrin J, et al. Cellular locomotion using environmental topography. Nature. 2020;582:582–585. doi:10.1038/s41586-020-2283-z apa: Reversat, A., Gärtner, F. R., Merrin, J., Stopp, J. A., Tasciyan, S., Aguilera Servin, J. L., … Sixt, M. K. (2020). Cellular locomotion using environmental topography. Nature. Springer Nature. https://doi.org/10.1038/s41586-020-2283-z chicago: Reversat, Anne, Florian R Gärtner, Jack Merrin, Julian A Stopp, Saren Tasciyan, Juan L Aguilera Servin, Ingrid de Vries, et al. “Cellular Locomotion Using Environmental Topography.” Nature. Springer Nature, 2020. https://doi.org/10.1038/s41586-020-2283-z. ieee: A. Reversat et al., “Cellular locomotion using environmental topography,” Nature, vol. 582. Springer Nature, pp. 582–585, 2020. ista: Reversat A, Gärtner FR, Merrin J, Stopp JA, Tasciyan S, Aguilera Servin JL, de Vries I, Hauschild R, Hons M, Piel M, Callan-Jones A, Voituriez R, Sixt MK. 2020. Cellular locomotion using environmental topography. Nature. 582, 582–585. mla: Reversat, Anne, et al. “Cellular Locomotion Using Environmental Topography.” Nature, vol. 582, Springer Nature, 2020, pp. 582–585, doi:10.1038/s41586-020-2283-z. short: A. Reversat, F.R. Gärtner, J. Merrin, J.A. Stopp, S. Tasciyan, J.L. Aguilera Servin, I. de Vries, R. Hauschild, M. Hons, M. Piel, A. Callan-Jones, R. Voituriez, M.K. Sixt, Nature 582 (2020) 582–585. date_created: 2020-05-24T22:01:01Z date_published: 2020-06-25T00:00:00Z date_updated: 2024-03-27T23:30:23Z day: '25' department: - _id: NanoFab - _id: Bio - _id: MiSi doi: 10.1038/s41586-020-2283-z ec_funded: 1 external_id: isi: - '000532688300008' intvolume: ' 582' isi: 1 language: - iso: eng month: '06' oa_version: None page: 582–585 project: - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients - _id: 26018E70-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29911 name: Mechanical adaptation of lamellipodial actin - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Nature publication_identifier: eissn: - '14764687' issn: - '00280836' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/off-road-mode-enables-mobile-cells-to-move-freely/ record: - id: '14697' relation: dissertation_contains status: public - id: '12401' relation: dissertation_contains status: public scopus_import: '1' status: public title: Cellular locomotion using environmental topography type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 582 year: '2020' ... --- _id: '988' abstract: - lang: eng text: The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultraclean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in antiphase with Fabry-Pérot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations that include realistic graphene-superconductor interfaces and find a good qualitative agreement. article_processing_charge: No author: - first_name: Gaurav full_name: Nanda, Gaurav last_name: Nanda - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Péter full_name: Rakyta, Péter last_name: Rakyta - first_name: Andor full_name: Kormányos, Andor last_name: Kormányos - first_name: Reinhold full_name: Kleiner, Reinhold last_name: Kleiner - first_name: Dieter full_name: Koelle, Dieter last_name: Koelle - first_name: Kazuo full_name: Watanabe, Kazuo last_name: Watanabe - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: Lieven full_name: Vandersypen, Lieven last_name: Vandersypen - first_name: Srijit full_name: Goswami, Srijit last_name: Goswami citation: ama: Nanda G, Aguilera Servin JL, Rakyta P, et al. Current-phase relation of ballistic graphene Josephson junctions. Nano Letters. 2017;17(6):3396-3401. doi:10.1021/acs.nanolett.7b00097 apa: Nanda, G., Aguilera Servin, J. L., Rakyta, P., Kormányos, A., Kleiner, R., Koelle, D., … Goswami, S. (2017). Current-phase relation of ballistic graphene Josephson junctions. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.7b00097 chicago: Nanda, Gaurav, Juan L Aguilera Servin, Péter Rakyta, Andor Kormányos, Reinhold Kleiner, Dieter Koelle, Kazuo Watanabe, Takashi Taniguchi, Lieven Vandersypen, and Srijit Goswami. “Current-Phase Relation of Ballistic Graphene Josephson Junctions.” Nano Letters. American Chemical Society, 2017. https://doi.org/10.1021/acs.nanolett.7b00097. ieee: G. Nanda et al., “Current-phase relation of ballistic graphene Josephson junctions,” Nano Letters, vol. 17, no. 6. American Chemical Society, pp. 3396–3401, 2017. ista: Nanda G, Aguilera Servin JL, Rakyta P, Kormányos A, Kleiner R, Koelle D, Watanabe K, Taniguchi T, Vandersypen L, Goswami S. 2017. Current-phase relation of ballistic graphene Josephson junctions. Nano Letters. 17(6), 3396–3401. mla: Nanda, Gaurav, et al. “Current-Phase Relation of Ballistic Graphene Josephson Junctions.” Nano Letters, vol. 17, no. 6, American Chemical Society, 2017, pp. 3396–401, doi:10.1021/acs.nanolett.7b00097. short: G. Nanda, J.L. Aguilera Servin, P. Rakyta, A. Kormányos, R. Kleiner, D. Koelle, K. Watanabe, T. Taniguchi, L. Vandersypen, S. Goswami, Nano Letters 17 (2017) 3396–3401. date_created: 2018-12-11T11:49:33Z date_published: 2017-05-05T00:00:00Z date_updated: 2023-09-22T09:56:21Z day: '05' ddc: - '621' department: - _id: NanoFab doi: 10.1021/acs.nanolett.7b00097 external_id: isi: - '000403631600011' file: - access_level: open_access checksum: 22021daa90cf13b01becd776838acb7b content_type: application/pdf creator: system date_created: 2018-12-12T10:13:50Z date_updated: 2020-07-14T12:48:18Z file_id: '5037' file_name: IST-2017-826-v1+1_2017_Aguilera-Servin_Current.pdf file_size: 508638 relation: main_file file_date_updated: 2020-07-14T12:48:18Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '6' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '05' oa: 1 oa_version: Published Version page: 3396 - 3401 publication: Nano Letters publication_identifier: issn: - '15306984' publication_status: published publisher: American Chemical Society publist_id: '6412' pubrep_id: '826' quality_controlled: '1' scopus_import: '1' status: public title: Current-phase relation of ballistic graphene Josephson junctions tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 17 year: '2017' ...