--- _id: '11615' abstract: - lang: eng text: The recently published Kepler mission Data Release 25 (DR25) reported on ∼197 000 targets observed during the mission. Despite this, no wide search for red giants showing solar-like oscillations have been made across all stars observed in Kepler’s long-cadence mode. In this work, we perform this task using custom apertures on the Kepler pixel files and detect oscillations in 21 914 stars, representing the largest sample of solar-like oscillating stars to date. We measure their frequency at maximum power, νmax, down to νmax≃4μHz and obtain log (g) estimates with a typical uncertainty below 0.05 dex, which is superior to typical measurements from spectroscopy. Additionally, the νmax distribution of our detections show good agreement with results from a simulated model of the Milky Way, with a ratio of observed to predicted stars of 0.992 for stars with 10<νmax<270μHz. Among our red giant detections, we find 909 to be dwarf/subgiant stars whose flux signal is polluted by a neighbouring giant as a result of using larger photometric apertures than those used by the NASA Kepler science processing pipeline. We further find that only 293 of the polluting giants are known Kepler targets. The remainder comprises over 600 newly identified oscillating red giants, with many expected to belong to the Galactic halo, serendipitously falling within the Kepler pixel files of targeted stars. acknowledgement: Funding for this Discovery mission is provided by NASA’s Science mission Directorate. We thank the entire Kepler team without whom this investigation would not be possible. DS is the recipient of an Australian Research Council Future Fellowship (project number FT1400147). RAG acknowledges the support from CNES. SM acknowledges support from NASA grant NNX15AF13G, NSF grant AST-1411685, and the Ramon y Cajal fellowship number RYC-2015-17697. ILC acknowledges scholarship support from the University of Sydney. We would like to thank Nicholas Barbara and Timothy Bedding for providing us with a list of variable stars that helped to validate a number of detections in this study. We also thank the group at the University of Sydney for fruitful discussions. Finally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. article_processing_charge: No article_type: original author: - first_name: Marc full_name: Hon, Marc last_name: Hon - first_name: Dennis full_name: Stello, Dennis last_name: Stello - first_name: Rafael A full_name: García, Rafael A last_name: García - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Sanjib full_name: Sharma, Sanjib last_name: Sharma - first_name: Isabel L full_name: Colman, Isabel L last_name: Colman - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 citation: ama: Hon M, Stello D, García RA, et al. A search for red giant solar-like oscillations in all Kepler data. Monthly Notices of the Royal Astronomical Society. 2019;485(4):5616-5630. doi:10.1093/mnras/stz622 apa: Hon, M., Stello, D., García, R. A., Mathur, S., Sharma, S., Colman, I. L., & Bugnet, L. A. (2019). A search for red giant solar-like oscillations in all Kepler data. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stz622 chicago: Hon, Marc, Dennis Stello, Rafael A García, Savita Mathur, Sanjib Sharma, Isabel L Colman, and Lisa Annabelle Bugnet. “A Search for Red Giant Solar-like Oscillations in All Kepler Data.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2019. https://doi.org/10.1093/mnras/stz622. ieee: M. Hon et al., “A search for red giant solar-like oscillations in all Kepler data,” Monthly Notices of the Royal Astronomical Society, vol. 485, no. 4. Oxford University Press, pp. 5616–5630, 2019. ista: Hon M, Stello D, García RA, Mathur S, Sharma S, Colman IL, Bugnet LA. 2019. A search for red giant solar-like oscillations in all Kepler data. Monthly Notices of the Royal Astronomical Society. 485(4), 5616–5630. mla: Hon, Marc, et al. “A Search for Red Giant Solar-like Oscillations in All Kepler Data.” Monthly Notices of the Royal Astronomical Society, vol. 485, no. 4, Oxford University Press, 2019, pp. 5616–30, doi:10.1093/mnras/stz622. short: M. Hon, D. Stello, R.A. García, S. Mathur, S. Sharma, I.L. Colman, L.A. Bugnet, Monthly Notices of the Royal Astronomical Society 485 (2019) 5616–5630. date_created: 2022-07-18T14:26:03Z date_published: 2019-06-01T00:00:00Z date_updated: 2022-08-22T07:35:19Z day: '01' doi: 10.1093/mnras/stz622 extern: '1' external_id: arxiv: - '1903.00115' intvolume: ' 485' issue: '4' keyword: - Space and Planetary Science - Astronomy and Astrophysics - asteroseismology - 'methods: data analysis' - 'techniques: image processing' - 'stars: oscillations' - 'stars: statistics' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.00115 month: '06' oa: 1 oa_version: Preprint page: 5616-5630 publication: Monthly Notices of the Royal Astronomical Society publication_identifier: eissn: - 1365-2966 issn: - 0035-8711 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: A search for red giant solar-like oscillations in all Kepler data type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 485 year: '2019' ... --- _id: '11614' abstract: - lang: eng text: The NASA Transiting Exoplanet Survey Satellite (TESS) is about to provide full-frame images of almost the entire sky. The amount of stellar data to be analysed represents hundreds of millions stars, which is several orders of magnitude more than the number of stars observed by the Convection, Rotation and planetary Transits satellite (CoRoT), and NASA Kepler and K2 missions. We aim at automatically classifying the newly observed stars with near real-time algorithms to better guide the subsequent detailed studies. In this paper, we present a classification algorithm built to recognise solar-like pulsators among classical pulsators. This algorithm relies on the global amount of power contained in the power spectral density (PSD), also known as the flicker in spectral power density (FliPer). Because each type of pulsating star has a characteristic background or pulsation pattern, the shape of the PSD at different frequencies can be used to characterise the type of pulsating star. The FliPer classifier (FliPerClass) uses different FliPer parameters along with the effective temperature as input parameters to feed a ML algorithm in order to automatically classify the pulsating stars observed by TESS. Using noisy TESS-simulated data from the TESS Asteroseismic Science Consortium (TASC), we classify pulsators with a 98% accuracy. Among them, solar-like pulsating stars are recognised with a 99% accuracy, which is of great interest for a further seismic analysis of these stars, which are like our Sun. Similar results are obtained when we trained our classifier and applied it to 27-day subsets of real Kepler data. FliPerClass is part of the large TASC classification pipeline developed by the TESS Data for Asteroseismology (T’DA) classification working group. acknowledgement: We thank the enitre T’DA team for useful comments and discussions, in particular Andrew Tkachenko. We also acknowledge Marc Hon, Keaton Bell, and James Kuszlewicz for useful comments on the manuscript. L.B. and R.A.G. acknowledge the support from PLATO and GOLF CNES grants. S.M. acknowledges support by the Ramon y Cajal fellowship number RYC-2015-17697. O.J.H. and B.M.R. acknowledge the support of the UK Science and Technology Facilities Council (STFC). M.N.L. acknowledges the support of the ESA PRODEX programme (PEA 4000119301). Funding for the Stellar Astrophysics Centre is provided by the Danish National Research Foundation (Grant DNRF106). article_number: A79 article_processing_charge: No article_type: original author: - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: R. A. full_name: García, R. A. last_name: García - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: G. R. full_name: Davies, G. R. last_name: Davies - first_name: O. J. full_name: Hall, O. J. last_name: Hall - first_name: M. N. full_name: Lund, M. N. last_name: Lund - first_name: B. M. full_name: Rendle, B. M. last_name: Rendle citation: ama: 'Bugnet LA, García RA, Mathur S, et al. FliPerClass: In search of solar-like pulsators among TESS targets. Astronomy & Astrophysics. 2019;624. doi:10.1051/0004-6361/201834780' apa: 'Bugnet, L. A., García, R. A., Mathur, S., Davies, G. R., Hall, O. J., Lund, M. N., & Rendle, B. M. (2019). FliPerClass: In search of solar-like pulsators among TESS targets. Astronomy & Astrophysics. EDP Science. https://doi.org/10.1051/0004-6361/201834780' chicago: 'Bugnet, Lisa Annabelle, R. A. García, S. Mathur, G. R. Davies, O. J. Hall, M. N. Lund, and B. M. Rendle. “FliPerClass: In Search of Solar-like Pulsators among TESS Targets.” Astronomy & Astrophysics. EDP Science, 2019. https://doi.org/10.1051/0004-6361/201834780.' ieee: 'L. A. Bugnet et al., “FliPerClass: In search of solar-like pulsators among TESS targets,” Astronomy & Astrophysics, vol. 624. EDP Science, 2019.' ista: 'Bugnet LA, García RA, Mathur S, Davies GR, Hall OJ, Lund MN, Rendle BM. 2019. FliPerClass: In search of solar-like pulsators among TESS targets. Astronomy & Astrophysics. 624, A79.' mla: 'Bugnet, Lisa Annabelle, et al. “FliPerClass: In Search of Solar-like Pulsators among TESS Targets.” Astronomy & Astrophysics, vol. 624, A79, EDP Science, 2019, doi:10.1051/0004-6361/201834780.' short: L.A. Bugnet, R.A. García, S. Mathur, G.R. Davies, O.J. Hall, M.N. Lund, B.M. Rendle, Astronomy & Astrophysics 624 (2019). date_created: 2022-07-18T14:13:34Z date_published: 2019-04-19T00:00:00Z date_updated: 2022-08-22T07:32:51Z day: '19' doi: 10.1051/0004-6361/201834780 extern: '1' external_id: arxiv: - '1902.09854' intvolume: ' 624' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.09854 month: '04' oa: 1 oa_version: Preprint publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Science quality_controlled: '1' scopus_import: '1' status: public title: 'FliPerClass: In search of solar-like pulsators among TESS targets' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 624 year: '2019' ... --- _id: '11623' abstract: - lang: eng text: Brightness variations due to dark spots on the stellar surface encode information about stellar surface rotation and magnetic activity. In this work, we analyze the Kepler long-cadence data of 26,521 main-sequence stars of spectral types M and K in order to measure their surface rotation and photometric activity level. Rotation-period estimates are obtained by the combination of a wavelet analysis and autocorrelation function of the light curves. Reliable rotation estimates are determined by comparing the results from the different rotation diagnostics and four data sets. We also measure the photometric activity proxy Sph using the amplitude of the flux variations on an appropriate timescale. We report rotation periods and photometric activity proxies for about 60% of the sample, including 4431 targets for which McQuillan et al. did not report a rotation period. For the common targets with rotation estimates in this study and in McQuillan et al., our rotation periods agree within 99%. In this work, we also identify potential polluters, such as misclassified red giants and classical pulsator candidates. Within the parameter range we study, there is a mild tendency for hotter stars to have shorter rotation periods. The photometric activity proxy spans a wider range of values with increasing effective temperature. The rotation period and photometric activity proxy are also related, with Sph being larger for fast rotators. Similar to McQuillan et al., we find a bimodal distribution of rotation periods. acknowledgement: "The authors thank Róbert Szabó Paul G. Beck, Katrien Kolenberg, and Isabel L. Colman for helping on the classification of stars. This paper includes data collected by the Kepler mission and obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the Kepler mission is provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. A.R.G.S. acknowledges the support from NASA under grant NNX17AF27G. R.A.G. and L.B. acknowledge the support from PLATO and GOLF CNES grants. S.M. acknowledges the support from the Ramon y Cajal fellowship number RYC-2015-17697. T.S.M. acknowledges support from a Visiting Fellowship at the Max Planck Institute for Solar System Research. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.\r\n\r\nSoftware: KADACS (García et al. 2011), NumPy (van der Walt et al. 2011), SciPy (Jones et al. 2001), Matplotlib (Hunter 2007).\r\n\r\nFacilities: MAST - , Kepler Eclipsing Binary Catalog - , Exoplanet Archive. -" article_number: '21' article_processing_charge: No article_type: original author: - first_name: A. R. G. full_name: Santos, A. R. G. last_name: Santos - first_name: R. A. full_name: García, R. A. last_name: García - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: J. L. full_name: van Saders, J. L. last_name: van Saders - first_name: T. S. full_name: Metcalfe, T. S. last_name: Metcalfe - first_name: G. V. A. full_name: Simonian, G. V. A. last_name: Simonian - first_name: M. H. full_name: Pinsonneault, M. H. last_name: Pinsonneault citation: ama: Santos ARG, García RA, Mathur S, et al. Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars. The Astrophysical Journal Supplement Series. 2019;244(1). doi:10.3847/1538-4365/ab3b56 apa: Santos, A. R. G., García, R. A., Mathur, S., Bugnet, L. A., van Saders, J. L., Metcalfe, T. S., … Pinsonneault, M. H. (2019). Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars. The Astrophysical Journal Supplement Series. IOP Publishing. https://doi.org/10.3847/1538-4365/ab3b56 chicago: Santos, A. R. G., R. A. García, S. Mathur, Lisa Annabelle Bugnet, J. L. van Saders, T. S. Metcalfe, G. V. A. Simonian, and M. H. Pinsonneault. “Surface Rotation and Photometric Activity for Kepler Targets. I. M and K Main-Sequence Stars.” The Astrophysical Journal Supplement Series. IOP Publishing, 2019. https://doi.org/10.3847/1538-4365/ab3b56. ieee: A. R. G. Santos et al., “Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars,” The Astrophysical Journal Supplement Series, vol. 244, no. 1. IOP Publishing, 2019. ista: Santos ARG, García RA, Mathur S, Bugnet LA, van Saders JL, Metcalfe TS, Simonian GVA, Pinsonneault MH. 2019. Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars. The Astrophysical Journal Supplement Series. 244(1), 21. mla: Santos, A. R. G., et al. “Surface Rotation and Photometric Activity for Kepler Targets. I. M and K Main-Sequence Stars.” The Astrophysical Journal Supplement Series, vol. 244, no. 1, 21, IOP Publishing, 2019, doi:10.3847/1538-4365/ab3b56. short: A.R.G. Santos, R.A. García, S. Mathur, L.A. Bugnet, J.L. van Saders, T.S. Metcalfe, G.V.A. Simonian, M.H. Pinsonneault, The Astrophysical Journal Supplement Series 244 (2019). date_created: 2022-07-19T09:21:58Z date_published: 2019-09-19T00:00:00Z date_updated: 2022-08-22T08:10:38Z day: '19' doi: 10.3847/1538-4365/ab3b56 extern: '1' external_id: arxiv: - '1908.05222' intvolume: ' 244' issue: '1' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'methods: data analysis' - 'stars: activity' - 'stars: low-mass' - 'stars: rotation' - starspots - 'techniques: photometric' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.05222 month: '09' oa: 1 oa_version: Preprint publication: The Astrophysical Journal Supplement Series publication_identifier: issn: - 0067-0049 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 244 year: '2019' ... --- _id: '11627' abstract: - lang: eng text: 'For a solar-like star, the surface rotation evolves with time, allowing in principle to estimate the age of a star from its surface rotation period. Here we are interested in measuring surface rotation periods of solar-like stars observed by the NASA mission Kepler. Different methods have been developed to track rotation signals in Kepler photometric light curves: time-frequency analysis based on wavelet techniques, autocorrelation and composite spectrum. We use the learning abilities of random forest classifiers to take decisions during two crucial steps of the analysis. First, given some input parameters, we discriminate the considered Kepler targets between rotating MS stars, non-rotating MS stars, red giants, binaries and pulsators. We then use a second classifier only on the MS rotating targets to decide the best data analysis treatment.' article_number: '1906.09609' article_processing_charge: No author: - first_name: S. N. full_name: Breton, S. N. last_name: Breton - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: A. R. G. full_name: Santos, A. R. G. last_name: Santos - first_name: A. Le full_name: Saux, A. Le last_name: Saux - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: P. L. full_name: Palle, P. L. last_name: Palle - first_name: R. A. full_name: Garcia, R. A. last_name: Garcia citation: ama: Breton SN, Bugnet LA, Santos ARG, et al. Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques. arXiv. doi:10.48550/arXiv.1906.09609 apa: Breton, S. N., Bugnet, L. A., Santos, A. R. G., Saux, A. L., Mathur, S., Palle, P. L., & Garcia, R. A. (n.d.). Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques. arXiv. https://doi.org/10.48550/arXiv.1906.09609 chicago: Breton, S. N., Lisa Annabelle Bugnet, A. R. G. Santos, A. Le Saux, S. Mathur, P. L. Palle, and R. A. Garcia. “Determining Surface Rotation Periods of Solar-like Stars Observed by the Kepler Mission Using Machine Learning Techniques.” ArXiv, n.d. https://doi.org/10.48550/arXiv.1906.09609. ieee: S. N. Breton et al., “Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques,” arXiv. . ista: Breton SN, Bugnet LA, Santos ARG, Saux AL, Mathur S, Palle PL, Garcia RA. Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques. arXiv, 1906.09609. mla: Breton, S. N., et al. “Determining Surface Rotation Periods of Solar-like Stars Observed by the Kepler Mission Using Machine Learning Techniques.” ArXiv, 1906.09609, doi:10.48550/arXiv.1906.09609. short: S.N. Breton, L.A. Bugnet, A.R.G. Santos, A.L. Saux, S. Mathur, P.L. Palle, R.A. Garcia, ArXiv (n.d.). date_created: 2022-07-20T11:18:53Z date_published: 2019-06-23T00:00:00Z date_updated: 2022-08-22T08:16:53Z day: '23' doi: 10.48550/arXiv.1906.09609 extern: '1' external_id: arxiv: - '1906.09609' keyword: - asteroseismology - rotation - solar-like stars - kepler - machine learning - random forest language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.09609 month: '06' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: Determining surface rotation periods of solar-like stars observed by the Kepler mission using machine learning techniques type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '11630' abstract: - lang: eng text: 'The second mission of NASA’s Kepler satellite, K2, has collected hundreds of thousands of lightcurves for stars close to the ecliptic plane. This new sample could increase the number of known pulsating stars and then improve our understanding of those stars. For the moment only a few stars have been properly classified and published. In this work, we present a method to automaticly classify K2 pulsating stars using a Machine Learning technique called Random Forest. The objective is to sort out the stars in four classes: red giant (RG), main-sequence Solar-like stars (SL), classical pulsators (PULS) and Other. To do this we use the effective temperatures and the luminosities of the stars as well as the FliPer features, that measures the amount of power contained in the power spectral density. The classifier now retrieves the right classification for more than 80% of the stars.' article_number: '1906.09611' article_processing_charge: No author: - first_name: A. Le full_name: Saux, A. Le last_name: Saux - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: S. N. full_name: Breton, S. N. last_name: Breton - first_name: R. A. full_name: Garcia, R. A. last_name: Garcia citation: ama: Saux AL, Bugnet LA, Mathur S, Breton SN, Garcia RA. Automatic classification of K2 pulsating stars using machine learning techniques. arXiv. doi:10.48550/arXiv.1906.09611 apa: Saux, A. L., Bugnet, L. A., Mathur, S., Breton, S. N., & Garcia, R. A. (n.d.). Automatic classification of K2 pulsating stars using machine learning techniques. arXiv. https://doi.org/10.48550/arXiv.1906.09611 chicago: Saux, A. Le, Lisa Annabelle Bugnet, S. Mathur, S. N. Breton, and R. A. Garcia. “Automatic Classification of K2 Pulsating Stars Using Machine Learning Techniques.” ArXiv, n.d. https://doi.org/10.48550/arXiv.1906.09611. ieee: A. L. Saux, L. A. Bugnet, S. Mathur, S. N. Breton, and R. A. Garcia, “Automatic classification of K2 pulsating stars using machine learning techniques,” arXiv. . ista: Saux AL, Bugnet LA, Mathur S, Breton SN, Garcia RA. Automatic classification of K2 pulsating stars using machine learning techniques. arXiv, 1906.09611. mla: Saux, A. Le, et al. “Automatic Classification of K2 Pulsating Stars Using Machine Learning Techniques.” ArXiv, 1906.09611, doi:10.48550/arXiv.1906.09611. short: A.L. Saux, L.A. Bugnet, S. Mathur, S.N. Breton, R.A. Garcia, ArXiv (n.d.). date_created: 2022-07-21T06:57:10Z date_published: 2019-06-23T00:00:00Z date_updated: 2022-08-22T08:20:29Z day: '23' doi: 10.48550/arXiv.1906.09611 extern: '1' external_id: arxiv: - '1906.09611' keyword: - asteroseismology - methods - data analysis - thecniques - machine learning - stars - oscillations language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.1906.09611 month: '06' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: Automatic classification of K2 pulsating stars using machine learning techniques type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '11826' abstract: - lang: eng text: "The diameter, radius and eccentricities are natural graph parameters. While these problems have been studied extensively, there are no known dynamic algorithms for them beyond the ones that follow from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths (APSP), which is very computationally intensive. This is the situation for dynamic approximation algorithms as well, and even if only edge insertions or edge deletions need to be supported.\r\nThis paper provides a comprehensive study of the dynamic approximation of Diameter, Radius and Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are optimal under popular hypotheses in fine-grained complexity. Some of the highlights include:\r\n- Under popular hardness hypotheses, there can be no significantly better fully dynamic approximation algorithms than recomputing the answer after each update, or maintaining full APSP.\r\n- Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via efficient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths. For instance, a nearly (3/2+epsilon)-approximation to Diameter in directed or undirected n-vertex, m-edge graphs can be maintained decrementally in total time m^{1+o(1)}sqrt{n}/epsilon^2. This nearly matches the static 3/2-approximation algorithm for the problem that is known to be conditionally optimal." alternative_title: - LIPIcs article_number: '13' article_processing_charge: No author: - first_name: Bertie full_name: Ancona, Bertie last_name: Ancona - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Liam full_name: Roditty, Liam last_name: Roditty - first_name: Virginia Vassilevska full_name: Williams, Virginia Vassilevska last_name: Williams - first_name: Nicole full_name: Wein, Nicole last_name: Wein citation: ama: 'Ancona B, Henzinger MH, Roditty L, Williams VV, Wein N. Algorithms and hardness for diameter in dynamic graphs. In: 46th International Colloquium on Automata, Languages, and Programming. Vol 132. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.ICALP.2019.13' apa: 'Ancona, B., Henzinger, M. H., Roditty, L., Williams, V. V., & Wein, N. (2019). Algorithms and hardness for diameter in dynamic graphs. In 46th International Colloquium on Automata, Languages, and Programming (Vol. 132). Patras, Greece: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ICALP.2019.13' chicago: Ancona, Bertie, Monika H Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole Wein. “Algorithms and Hardness for Diameter in Dynamic Graphs.” In 46th International Colloquium on Automata, Languages, and Programming, Vol. 132. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.ICALP.2019.13. ieee: B. Ancona, M. H. Henzinger, L. Roditty, V. V. Williams, and N. Wein, “Algorithms and hardness for diameter in dynamic graphs,” in 46th International Colloquium on Automata, Languages, and Programming, Patras, Greece, 2019, vol. 132. ista: 'Ancona B, Henzinger MH, Roditty L, Williams VV, Wein N. 2019. Algorithms and hardness for diameter in dynamic graphs. 46th International Colloquium on Automata, Languages, and Programming. ICALP: International Colloquium on Automata, Languages, and Programming, LIPIcs, vol. 132, 13.' mla: Ancona, Bertie, et al. “Algorithms and Hardness for Diameter in Dynamic Graphs.” 46th International Colloquium on Automata, Languages, and Programming, vol. 132, 13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.ICALP.2019.13. short: B. Ancona, M.H. Henzinger, L. Roditty, V.V. Williams, N. Wein, in:, 46th International Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-07-12 location: Patras, Greece name: 'ICALP: International Colloquium on Automata, Languages, and Programming' start_date: 2019-07-09 date_created: 2022-08-12T08:14:51Z date_published: 2019-07-04T00:00:00Z date_updated: 2023-02-16T10:48:24Z day: '04' doi: 10.4230/LIPICS.ICALP.2019.13 extern: '1' external_id: arxiv: - '811.12527' intvolume: ' 132' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.4230/LIPIcs.ICALP.2019.13 month: '07' oa: 1 oa_version: Published Version publication: 46th International Colloquium on Automata, Languages, and Programming publication_identifier: isbn: - 978-3-95977-109-2 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Algorithms and hardness for diameter in dynamic graphs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 132 year: '2019' ... --- _id: '11850' abstract: - lang: eng text: 'Modern networked systems are increasingly reconfigurable, enabling demand-aware infrastructures whose resources can be adjusted according to the workload they currently serve. Such dynamic adjustments can be exploited to improve network utilization and hence performance, by moving frequently interacting communication partners closer, e.g., collocating them in the same server or datacenter. However, dynamically changing the embedding of workloads is algorithmically challenging: communication patterns are often not known ahead of time, but must be learned. During the learning process, overheads related to unnecessary moves (i.e., re-embeddings) should be minimized. This paper studies a fundamental model which captures the tradeoff between the benefits and costs of dynamically collocating communication partners on l servers, in an online manner. Our main contribution is a distributed online algorithm which is asymptotically almost optimal, i.e., almost matches the lower bound (also derived in this paper) on the competitive ratio of any (distributed or centralized) online algorithm.' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Stefan full_name: Neumann, Stefan last_name: Neumann - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Henzinger MH, Neumann S, Schmid S. Efficient distributed workload (re-)embedding. In: SIGMETRICS’19: International Conference on Measurement and Modeling of Computer Systems. Association for Computing Machinery; 2019:43–44. doi:10.1145/3309697.3331503' apa: 'Henzinger, M. H., Neumann, S., & Schmid, S. (2019). Efficient distributed workload (re-)embedding. In SIGMETRICS’19: International Conference on Measurement and Modeling of Computer Systems (pp. 43–44). Phoenix, AZ, United States: Association for Computing Machinery. https://doi.org/10.1145/3309697.3331503' chicago: 'Henzinger, Monika H, Stefan Neumann, and Stefan Schmid. “Efficient Distributed Workload (Re-)Embedding.” In SIGMETRICS’19: International Conference on Measurement and Modeling of Computer Systems, 43–44. Association for Computing Machinery, 2019. https://doi.org/10.1145/3309697.3331503.' ieee: 'M. H. Henzinger, S. Neumann, and S. Schmid, “Efficient distributed workload (re-)embedding,” in SIGMETRICS’19: International Conference on Measurement and Modeling of Computer Systems, Phoenix, AZ, United States, 2019, pp. 43–44.' ista: 'Henzinger MH, Neumann S, Schmid S. 2019. Efficient distributed workload (re-)embedding. SIGMETRICS’19: International Conference on Measurement and Modeling of Computer Systems. SIGMETRICS: International Conference on Measurement and Modeling of Computer Systems, 43–44.' mla: 'Henzinger, Monika H., et al. “Efficient Distributed Workload (Re-)Embedding.” SIGMETRICS’19: International Conference on Measurement and Modeling of Computer Systems, Association for Computing Machinery, 2019, pp. 43–44, doi:10.1145/3309697.3331503.' short: 'M.H. Henzinger, S. Neumann, S. Schmid, in:, SIGMETRICS’19: International Conference on Measurement and Modeling of Computer Systems, Association for Computing Machinery, 2019, pp. 43–44.' conference: end_date: 2019-06-28 location: Phoenix, AZ, United States name: 'SIGMETRICS: International Conference on Measurement and Modeling of Computer Systems' start_date: 2019-06-24 date_created: 2022-08-16T07:14:57Z date_published: 2019-06-20T00:00:00Z date_updated: 2023-02-17T09:41:45Z day: '20' doi: 10.1145/3309697.3331503 extern: '1' external_id: arxiv: - '1904.05474' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1904.05474 month: '06' oa: 1 oa_version: Preprint page: 43–44 publication: 'SIGMETRICS''19: International Conference on Measurement and Modeling of Computer Systems' publication_identifier: isbn: - 978-1-4503-6678-6 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Efficient distributed workload (re-)embedding type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '11853' abstract: - lang: eng text: We present a deterministic dynamic algorithm for maintaining a (1+ε)f-approximate minimum cost set cover with O(f log(Cn)/ε^2) amortized update time, when the input set system is undergoing element insertions and deletions. Here, n denotes the number of elements, each element appears in at most f sets, and the cost of each set lies in the range [1/C, 1]. Our result, together with that of Gupta~et~al.~[STOC'17], implies that there is a deterministic algorithm for this problem with O(f log(Cn)) amortized update time and O(min(log n, f)) -approximation ratio, which nearly matches the polynomial-time hardness of approximation for minimum set cover in the static setting. Our update time is only O(log (Cn)) away from a trivial lower bound. Prior to our work, the previous best approximation ratio guaranteed by deterministic algorithms was O(f^2), which was due to Bhattacharya~et~al.~[ICALP`15]. In contrast, the only result that guaranteed O(f) -approximation was obtained very recently by Abboud~et~al.~[STOC`19], who designed a dynamic algorithm with (1+ε)f-approximation ratio and O(f^2 log n/ε) amortized update time. Besides the extra O(f) factor in the update time compared to our and Gupta~et~al.'s results, the Abboud~et~al.~algorithm is randomized, and works only when the adversary is oblivious and the sets are unweighted (each set has the same cost). We achieve our result via the primal-dual approach, by maintaining a fractional packing solution as a dual certificate. This approach was pursued previously by Bhattacharya~et~al.~and Gupta~et~al., but not in the recent paper by Abboud~et~al. Unlike previous primal-dual algorithms that try to satisfy some local constraints for individual sets at all time, our algorithm basically waits until the dual solution changes significantly globally, and fixes the solution only where the fix is needed. article_processing_charge: No author: - first_name: Sayan full_name: Bhattacharya, Sayan last_name: Bhattacharya - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Danupon full_name: Nanongkai, Danupon last_name: Nanongkai citation: ama: 'Bhattacharya S, Henzinger MH, Nanongkai D. A new deterministic algorithm for dynamic set cover. In: 60th Annual Symposium on Foundations of Computer Science. Institute of Electrical and Electronics Engineers; 2019:406-423. doi:10.1109/focs.2019.00033' apa: 'Bhattacharya, S., Henzinger, M. H., & Nanongkai, D. (2019). A new deterministic algorithm for dynamic set cover. In 60th Annual Symposium on Foundations of Computer Science (pp. 406–423). Baltimore, MD, United States: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/focs.2019.00033' chicago: Bhattacharya, Sayan, Monika H Henzinger, and Danupon Nanongkai. “A New Deterministic Algorithm for Dynamic Set Cover.” In 60th Annual Symposium on Foundations of Computer Science, 406–23. Institute of Electrical and Electronics Engineers, 2019. https://doi.org/10.1109/focs.2019.00033. ieee: S. Bhattacharya, M. H. Henzinger, and D. Nanongkai, “A new deterministic algorithm for dynamic set cover,” in 60th Annual Symposium on Foundations of Computer Science, Baltimore, MD, United States, 2019, pp. 406–423. ista: 'Bhattacharya S, Henzinger MH, Nanongkai D. 2019. A new deterministic algorithm for dynamic set cover. 60th Annual Symposium on Foundations of Computer Science. FOCS: Annual Symposium on Foundations of Computer Science, 406–423.' mla: Bhattacharya, Sayan, et al. “A New Deterministic Algorithm for Dynamic Set Cover.” 60th Annual Symposium on Foundations of Computer Science, Institute of Electrical and Electronics Engineers, 2019, pp. 406–23, doi:10.1109/focs.2019.00033. short: S. Bhattacharya, M.H. Henzinger, D. Nanongkai, in:, 60th Annual Symposium on Foundations of Computer Science, Institute of Electrical and Electronics Engineers, 2019, pp. 406–423. conference: end_date: 2019-11-12 location: Baltimore, MD, United States name: 'FOCS: Annual Symposium on Foundations of Computer Science' start_date: 2019-11-09 date_created: 2022-08-16T08:00:00Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-02-17T09:50:37Z day: '01' doi: 10.1109/focs.2019.00033 extern: '1' external_id: arxiv: - '1909.11600' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1909.11600 month: '11' oa: 1 oa_version: Preprint page: 406-423 publication: 60th Annual Symposium on Foundations of Computer Science publication_identifier: eisbn: - 978-1-7281-4952-3 isbn: - 978-1-7281-4953-0 issn: - 2575-8454 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' scopus_import: '1' status: public title: A new deterministic algorithm for dynamic set cover type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '11865' abstract: - lang: eng text: We present the first sublinear-time algorithm that can compute the edge connectivity λ of a network exactly on distributed message-passing networks (the CONGEST model), as long as the network contains no multi-edge. We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes Õ(n1−1/353D1/353+n1−1/706) time to compute λ and a cut of cardinality λ with high probability, where n and D are the number of nodes and the diameter of the network, respectively, and Õ hides polylogarithmic factors. This running time is sublinear in n (i.e. Õ(n1−є)) whenever D is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8−є) [Thurimella PODC’95; Pritchard, Thurimella, ACM Trans. Algorithms’11; Nanongkai, Su, DISC’14] or (ii) approximately [Ghaffari, Kuhn, DISC’13; Nanongkai, Su, DISC’14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a k-edge connectivity certificate for any k=O(n1−є) in time Õ(√nk+D). The previous sublinear-time algorithm can do so only when k=o(√n) [Thurimella PODC’95]. In fact, our algorithm can be turned into the first parallel algorithm with polylogarithmic depth and near-linear work. Previous near-linear work algorithms are essentially sequential and previous polylogarithmic-depth algorithms require Ω(mk) work in the worst case (e.g. [Karger, Motwani, STOC’93]). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA’19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC’15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the “trivial” ones). This leads to a simplification of the Kawarabayashi-Thorup framework (except that we are randomized while they are deterministic). This might make this framework more useful in other models of computation. Finally, by extending the tree packing technique from [Karger STOC’96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an Õ(n)-time algorithm for computing exact minimum cut for weighted graphs. article_processing_charge: No author: - first_name: Mohit full_name: Daga, Mohit last_name: Daga - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Danupon full_name: Nanongkai, Danupon last_name: Nanongkai - first_name: Thatchaphol full_name: Saranurak, Thatchaphol last_name: Saranurak citation: ama: 'Daga M, Henzinger MH, Nanongkai D, Saranurak T. Distributed edge connectivity in sublinear time. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. Association for Computing Machinery; 2019:343–354. doi:10.1145/3313276.3316346' apa: 'Daga, M., Henzinger, M. H., Nanongkai, D., & Saranurak, T. (2019). Distributed edge connectivity in sublinear time. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (pp. 343–354). Phoenix, AZ, United States: Association for Computing Machinery. https://doi.org/10.1145/3313276.3316346' chicago: Daga, Mohit, Monika H Henzinger, Danupon Nanongkai, and Thatchaphol Saranurak. “Distributed Edge Connectivity in Sublinear Time.” In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 343–354. Association for Computing Machinery, 2019. https://doi.org/10.1145/3313276.3316346. ieee: M. Daga, M. H. Henzinger, D. Nanongkai, and T. Saranurak, “Distributed edge connectivity in sublinear time,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, Phoenix, AZ, United States, 2019, pp. 343–354. ista: 'Daga M, Henzinger MH, Nanongkai D, Saranurak T. 2019. Distributed edge connectivity in sublinear time. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. STOC: Symposium on Theory of Computing, 343–354.' mla: Daga, Mohit, et al. “Distributed Edge Connectivity in Sublinear Time.” Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, Association for Computing Machinery, 2019, pp. 343–354, doi:10.1145/3313276.3316346. short: M. Daga, M.H. Henzinger, D. Nanongkai, T. Saranurak, in:, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, Association for Computing Machinery, 2019, pp. 343–354. conference: end_date: 2019-06-26 location: Phoenix, AZ, United States name: 'STOC: Symposium on Theory of Computing' start_date: 2019-06-23 date_created: 2022-08-16T09:11:17Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-02-17T10:26:25Z day: '01' doi: 10.1145/3313276.3316346 extern: '1' external_id: arxiv: - '1904.04341' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1904.04341 month: '06' oa: 1 oa_version: Preprint page: 343–354 publication: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing publication_identifier: isbn: - 978-1-4503-6705-9 issn: - 0737-8017 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Distributed edge connectivity in sublinear time type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '11871' abstract: - lang: eng text: "Many dynamic graph algorithms have an amortized update time, rather than a stronger worst-case guarantee. But amortized data structures are not suitable for real-time systems, where each individual operation has to be executed quickly. For this reason, there exist many recent randomized results that aim to provide a guarantee stronger than amortized expected. The strongest possible guarantee for a randomized algorithm is that it is always correct (Las Vegas), and has high-probability worst-case update time, which gives a bound on the time for each individual operation that holds with high probability.\r\n\r\nIn this paper we present the first polylogarithmic high-probability worst-case time bounds for the dynamic spanner and the dynamic maximal matching problem.\r\n\r\n1.\t\r\nFor dynamic spanner, the only known o(n) worst-case bounds were O(n3/4) high-probability worst-case update time for maintaining a 3-spanner, and O(n5/9) for maintaining a 5-spanner. We give a O(1)k log3(n) high-probability worst-case time bound for maintaining a (2k – 1)-spanner, which yields the first worst-case polylog update time for all constant k. (All the results above maintain the optimal tradeoff of stretch 2k – 1 and Õ(n1+1/k) edges.)\r\n\r\n2.\t\r\nFor dynamic maximal matching, or dynamic 2-approximate maximum matching, no algorithm with o(n) worst-case time bound was known and we present an algorithm with O(log5 (n)) high-probability worst-case time; similar worst-case bounds existed only for maintaining a matching that was (2 + ∊)-approximate, and hence not maximal.\r\n\r\nOur results are achieved using a new approach for converting amortized guarantees to worst-case ones for randomized data structures by going through a third type of guarantee, which is a middle ground between the two above: an algorithm is said to have worst-case expected update time α if for every update σ, the expected time to process σ is at most α. Although stronger than amortized expected, the worst-case expected guarantee does not resolve the fundamental problem of amortization: a worst-case expected update time of O(1) still allows for the possibility that every 1/f(n) updates requires Θ(f(n)) time to process, for arbitrarily high f(n). In this paper we present a black-box reduction that converts any data structure with worst-case expected update time into one with a high-probability worst-case update time: the query time remains the same, while the update time increases by a factor of O(log2(n)).\r\n\r\nThus we achieve our results in two steps: (1) First we show how to convert existing dynamic graph algorithms with amortized expected polylogarithmic running times into algorithms with worst-case expected polylogarithmic running times. (2) Then we use our black-box reduction to achieve the polylogarithmic high-probability worst-case time bound. All our algorithms are Las-Vegas-type algorithms." article_processing_charge: No author: - first_name: Aaron full_name: Bernstein, Aaron last_name: Bernstein - first_name: Sebastian full_name: Forster, Sebastian last_name: Forster - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 citation: ama: 'Bernstein A, Forster S, Henzinger MH. A deamortization approach for dynamic spanner and dynamic maximal matching. In: 30th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics; 2019:1899-1918. doi:10.1137/1.9781611975482.115' apa: 'Bernstein, A., Forster, S., & Henzinger, M. H. (2019). A deamortization approach for dynamic spanner and dynamic maximal matching. In 30th Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 1899–1918). San Diego, CA, United States: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611975482.115' chicago: Bernstein, Aaron, Sebastian Forster, and Monika H Henzinger. “A Deamortization Approach for Dynamic Spanner and Dynamic Maximal Matching.” In 30th Annual ACM-SIAM Symposium on Discrete Algorithms, 1899–1918. Society for Industrial and Applied Mathematics, 2019. https://doi.org/10.1137/1.9781611975482.115. ieee: A. Bernstein, S. Forster, and M. H. Henzinger, “A deamortization approach for dynamic spanner and dynamic maximal matching,” in 30th Annual ACM-SIAM Symposium on Discrete Algorithms, San Diego, CA, United States, 2019, pp. 1899–1918. ista: 'Bernstein A, Forster S, Henzinger MH. 2019. A deamortization approach for dynamic spanner and dynamic maximal matching. 30th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 1899–1918.' mla: Bernstein, Aaron, et al. “A Deamortization Approach for Dynamic Spanner and Dynamic Maximal Matching.” 30th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2019, pp. 1899–918, doi:10.1137/1.9781611975482.115. short: A. Bernstein, S. Forster, M.H. Henzinger, in:, 30th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2019, pp. 1899–1918. conference: end_date: 2019-01-09 location: San Diego, CA, United States name: 'SODA: Symposium on Discrete Algorithms' start_date: 2019-01-06 date_created: 2022-08-16T09:50:33Z date_published: 2019-01-01T00:00:00Z date_updated: 2023-02-21T16:31:21Z day: '01' doi: 10.1137/1.9781611975482.115 extern: '1' external_id: arxiv: - '1810.10932' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.10932 month: '01' oa: 1 oa_version: Preprint page: 1899-1918 publication: 30th Annual ACM-SIAM Symposium on Discrete Algorithms publication_identifier: eisbn: - 978-1-61197-548-2 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' related_material: record: - id: '11871' relation: earlier_version status: public scopus_import: '1' status: public title: A deamortization approach for dynamic spanner and dynamic maximal matching type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '11898' abstract: - lang: eng text: "We build upon the recent papers by Weinstein and Yu (FOCS'16), Larsen (FOCS'12), and Clifford et al. (FOCS'15) to present a general framework that gives amortized lower bounds on the update and query times of dynamic data structures. Using our framework, we present two concrete results.\r\n(1) For the dynamic polynomial evaluation problem, where the polynomial is defined over a finite field of size n1+Ω(1) and has degree n, any dynamic data structure must either have an amortized update time of Ω((lgn/lglgn)2) or an amortized query time of Ω((lgn/lglgn)2).\r\n(2) For the dynamic online matrix vector multiplication problem, where we get an n×n matrix whose entires are drawn from a finite field of size nΘ(1), any dynamic data structure must either have an amortized update time of Ω((lgn/lglgn)2) or an amortized query time of Ω(n⋅(lgn/lglgn)2).\r\nFor these two problems, the previous works by Larsen (FOCS'12) and Clifford et al. (FOCS'15) gave the same lower bounds, but only for worst case update and query times. Our bounds match the highest unconditional lower bounds known till date for any dynamic problem in the cell-probe model." article_processing_charge: No article_type: original author: - first_name: Sayan full_name: Bhattacharya, Sayan last_name: Bhattacharya - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Stefan full_name: Neumann, Stefan last_name: Neumann citation: ama: Bhattacharya S, Henzinger MH, Neumann S. New amortized cell-probe lower bounds for dynamic problems. Theoretical Computer Science. 2019;779:72-87. doi:10.1016/j.tcs.2019.01.043 apa: Bhattacharya, S., Henzinger, M. H., & Neumann, S. (2019). New amortized cell-probe lower bounds for dynamic problems. Theoretical Computer Science. Elsevier. https://doi.org/10.1016/j.tcs.2019.01.043 chicago: Bhattacharya, Sayan, Monika H Henzinger, and Stefan Neumann. “New Amortized Cell-Probe Lower Bounds for Dynamic Problems.” Theoretical Computer Science. Elsevier, 2019. https://doi.org/10.1016/j.tcs.2019.01.043. ieee: S. Bhattacharya, M. H. Henzinger, and S. Neumann, “New amortized cell-probe lower bounds for dynamic problems,” Theoretical Computer Science, vol. 779. Elsevier, pp. 72–87, 2019. ista: Bhattacharya S, Henzinger MH, Neumann S. 2019. New amortized cell-probe lower bounds for dynamic problems. Theoretical Computer Science. 779, 72–87. mla: Bhattacharya, Sayan, et al. “New Amortized Cell-Probe Lower Bounds for Dynamic Problems.” Theoretical Computer Science, vol. 779, Elsevier, 2019, pp. 72–87, doi:10.1016/j.tcs.2019.01.043. short: S. Bhattacharya, M.H. Henzinger, S. Neumann, Theoretical Computer Science 779 (2019) 72–87. date_created: 2022-08-17T09:02:15Z date_published: 2019-08-02T00:00:00Z date_updated: 2022-09-09T11:29:04Z day: '02' doi: 10.1016/j.tcs.2019.01.043 extern: '1' external_id: arxiv: - '1902.02304' intvolume: ' 779' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.02304 month: '08' oa: 1 oa_version: Preprint page: 72-87 publication: Theoretical Computer Science publication_identifier: issn: - 0304-3975 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: New amortized cell-probe lower bounds for dynamic problems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 779 year: '2019' ... --- _id: '11984' abstract: - lang: eng text: Differentially protected galactosamine building blocks are key components for the synthesis of human and bacterial oligosaccharides. The azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal provides straightforward access to the corresponding 2-nitrogenated glycoside. Poor reproducibility and the use of azides that lead to the formation of potentially explosive and toxic species limit the scalability of this reaction and render it a bottleneck for carbohydrate synthesis. Here, we present a method for the safe, efficient, and reliable azidophenylselenylation of 3,4,6-tri-O-acetyl-d-galactal at room temperature, using continuous flow chemistry. Careful analysis of the transformation resulted in reaction conditions that produce minimal side products while the reaction time was reduced drastically when compared to batch reactions. The flow setup is readily scalable to process 5 mmol of galactal in 3 h, producing 1.2 mmol/h of product. article_processing_charge: No article_type: letter_note author: - first_name: Mónica full_name: Guberman, Mónica last_name: Guberman - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X - first_name: Peter H. full_name: Seeberger, Peter H. last_name: Seeberger citation: ama: Guberman M, Pieber B, Seeberger PH. Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks. Organic Process Research and Development. 2019;23(12):2764-2770. doi:10.1021/acs.oprd.9b00456 apa: Guberman, M., Pieber, B., & Seeberger, P. H. (2019). Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks. Organic Process Research and Development. American Chemical Society. https://doi.org/10.1021/acs.oprd.9b00456 chicago: Guberman, Mónica, Bartholomäus Pieber, and Peter H. Seeberger. “Safe and Scalable Continuous Flow Azidophenylselenylation of Galactal to Prepare Galactosamine Building Blocks.” Organic Process Research and Development. American Chemical Society, 2019. https://doi.org/10.1021/acs.oprd.9b00456. ieee: M. Guberman, B. Pieber, and P. H. Seeberger, “Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks,” Organic Process Research and Development, vol. 23, no. 12. American Chemical Society, pp. 2764–2770, 2019. ista: Guberman M, Pieber B, Seeberger PH. 2019. Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks. Organic Process Research and Development. 23(12), 2764–2770. mla: Guberman, Mónica, et al. “Safe and Scalable Continuous Flow Azidophenylselenylation of Galactal to Prepare Galactosamine Building Blocks.” Organic Process Research and Development, vol. 23, no. 12, American Chemical Society, 2019, pp. 2764–70, doi:10.1021/acs.oprd.9b00456. short: M. Guberman, B. Pieber, P.H. Seeberger, Organic Process Research and Development 23 (2019) 2764–2770. date_created: 2022-08-25T11:30:33Z date_published: 2019-12-20T00:00:00Z date_updated: 2023-02-21T10:10:23Z day: '20' doi: 10.1021/acs.oprd.9b00456 extern: '1' intvolume: ' 23' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acs.oprd.9b00456 month: '12' oa: 1 oa_version: Published Version page: 2764-2770 publication: Organic Process Research and Development publication_identifier: eissn: - 1520-586X issn: - 1083-6160 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Safe and scalable continuous flow azidophenylselenylation of galactal to prepare galactosamine building blocks type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2019' ... --- _id: '11982' abstract: - lang: eng text: A carbon nitride material can be combined with homogeneous nickel catalysts for light-mediated cross-couplings of aryl bromides with alcohols under mild conditions. The metal-free heterogeneous semiconductor is fully recyclable and couples a broad range of electron-poor aryl bromides with primary and secondary alcohols as well as water. The application for intramolecular reactions and the synthesis of active pharmaceutical ingredients was demonstrated. The catalytic protocol is applicable for the coupling of aryl iodides with thiols as well. article_processing_charge: No article_type: letter_note author: - first_name: Cristian full_name: Cavedon, Cristian last_name: Cavedon - first_name: Amiera full_name: Madani, Amiera last_name: Madani - first_name: Peter H. full_name: Seeberger, Peter H. last_name: Seeberger - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X citation: ama: Cavedon C, Madani A, Seeberger PH, Pieber B. Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides. Organic Letters. 2019;21(13):5331-5334. doi:10.1021/acs.orglett.9b01957 apa: Cavedon, C., Madani, A., Seeberger, P. H., & Pieber, B. (2019). Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides. Organic Letters. American Chemical Society. https://doi.org/10.1021/acs.orglett.9b01957 chicago: Cavedon, Cristian, Amiera Madani, Peter H. Seeberger, and Bartholomäus Pieber. “Semiheterogeneous Dual Nickel/Photocatalytic (Thio)Etherification Using Carbon Nitrides.” Organic Letters. American Chemical Society, 2019. https://doi.org/10.1021/acs.orglett.9b01957. ieee: C. Cavedon, A. Madani, P. H. Seeberger, and B. Pieber, “Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides,” Organic Letters, vol. 21, no. 13. American Chemical Society, pp. 5331–5334, 2019. ista: Cavedon C, Madani A, Seeberger PH, Pieber B. 2019. Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides. Organic Letters. 21(13), 5331–5334. mla: Cavedon, Cristian, et al. “Semiheterogeneous Dual Nickel/Photocatalytic (Thio)Etherification Using Carbon Nitrides.” Organic Letters, vol. 21, no. 13, American Chemical Society, 2019, pp. 5331–34, doi:10.1021/acs.orglett.9b01957. short: C. Cavedon, A. Madani, P.H. Seeberger, B. Pieber, Organic Letters 21 (2019) 5331–5334. date_created: 2022-08-25T11:18:00Z date_published: 2019-07-05T00:00:00Z date_updated: 2023-02-21T10:10:19Z day: '05' doi: 10.1021/acs.orglett.9b01957 extern: '1' external_id: pmid: - '31247752' intvolume: ' 21' issue: '13' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acs.orglett.9b01957 month: '07' oa: 1 oa_version: Published Version page: 5331-5334 pmid: 1 publication: Organic Letters publication_identifier: eissn: - 1523-7052 issn: - 1523-7060 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Semiheterogeneous dual nickel/photocatalytic (thio)etherification using carbon nitrides type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 21 year: '2019' ... --- _id: '170' abstract: - lang: eng text: Upper and lower bounds, of the expected order of magnitude, are obtained for the number of rational points of bounded height on any quartic del Pezzo surface over ℚ that contains a conic defined over ℚ . author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Efthymios full_name: Sofos, Efthymios last_name: Sofos citation: ama: Browning TD, Sofos E. Counting rational points on quartic del Pezzo surfaces with a rational conic. Mathematische Annalen. 2019;373(3-4):977-1016. doi:10.1007/s00208-018-1716-6 apa: Browning, T. D., & Sofos, E. (2019). Counting rational points on quartic del Pezzo surfaces with a rational conic. Mathematische Annalen. Springer Nature. https://doi.org/10.1007/s00208-018-1716-6 chicago: Browning, Timothy D, and Efthymios Sofos. “Counting Rational Points on Quartic Del Pezzo Surfaces with a Rational Conic.” Mathematische Annalen. Springer Nature, 2019. https://doi.org/10.1007/s00208-018-1716-6. ieee: T. D. Browning and E. Sofos, “Counting rational points on quartic del Pezzo surfaces with a rational conic,” Mathematische Annalen, vol. 373, no. 3–4. Springer Nature, pp. 977–1016, 2019. ista: Browning TD, Sofos E. 2019. Counting rational points on quartic del Pezzo surfaces with a rational conic. Mathematische Annalen. 373(3–4), 977–1016. mla: Browning, Timothy D., and Efthymios Sofos. “Counting Rational Points on Quartic Del Pezzo Surfaces with a Rational Conic.” Mathematische Annalen, vol. 373, no. 3–4, Springer Nature, 2019, pp. 977–1016, doi:10.1007/s00208-018-1716-6. short: T.D. Browning, E. Sofos, Mathematische Annalen 373 (2019) 977–1016. date_created: 2018-12-11T11:44:59Z date_published: 2019-04-01T00:00:00Z date_updated: 2021-01-12T06:52:37Z day: '01' ddc: - '510' doi: 10.1007/s00208-018-1716-6 extern: '1' external_id: arxiv: - '1609.09057' file: - access_level: open_access checksum: 4061dc2fe99bee25d9adf2d2018cf608 content_type: application/pdf creator: dernst date_created: 2019-05-23T07:53:27Z date_updated: 2020-07-14T12:45:12Z file_id: '6479' file_name: 2019_MathAnnalen_Browning.pdf file_size: 712847 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 373' issue: 3-4 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '04' oa: 1 oa_version: Published Version page: 977-1016 publication: Mathematische Annalen publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Counting rational points on quartic del Pezzo surfaces with a rational conic tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 373 year: '2019' ... --- _id: '441' article_processing_charge: No article_type: original author: - first_name: Nikita full_name: Kalinin, Nikita last_name: Kalinin - first_name: Mikhail full_name: Shkolnikov, Mikhail id: 35084A62-F248-11E8-B48F-1D18A9856A87 last_name: Shkolnikov orcid: 0000-0002-4310-178X citation: ama: Kalinin N, Shkolnikov M. Tropical formulae for summation over a part of SL(2,Z). European Journal of Mathematics. 2019;5(3):909–928. doi:10.1007/s40879-018-0218-0 apa: Kalinin, N., & Shkolnikov, M. (2019). Tropical formulae for summation over a part of SL(2,Z). European Journal of Mathematics. Springer Nature. https://doi.org/10.1007/s40879-018-0218-0 chicago: Kalinin, Nikita, and Mikhail Shkolnikov. “Tropical Formulae for Summation over a Part of SL(2,Z).” European Journal of Mathematics. Springer Nature, 2019. https://doi.org/10.1007/s40879-018-0218-0. ieee: N. Kalinin and M. Shkolnikov, “Tropical formulae for summation over a part of SL(2,Z),” European Journal of Mathematics, vol. 5, no. 3. Springer Nature, pp. 909–928, 2019. ista: Kalinin N, Shkolnikov M. 2019. Tropical formulae for summation over a part of SL(2,Z). European Journal of Mathematics. 5(3), 909–928. mla: Kalinin, Nikita, and Mikhail Shkolnikov. “Tropical Formulae for Summation over a Part of SL(2,Z).” European Journal of Mathematics, vol. 5, no. 3, Springer Nature, 2019, pp. 909–928, doi:10.1007/s40879-018-0218-0. short: N. Kalinin, M. Shkolnikov, European Journal of Mathematics 5 (2019) 909–928. date_created: 2018-12-11T11:46:29Z date_published: 2019-09-15T00:00:00Z date_updated: 2021-01-12T07:56:46Z day: '15' department: - _id: TaHa doi: 10.1007/s40879-018-0218-0 ec_funded: 1 external_id: arxiv: - '1711.02089' intvolume: ' 5' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1711.02089 month: '09' oa: 1 oa_version: Preprint page: 909–928 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: European Journal of Mathematics publication_identifier: eissn: - 2199-6768 issn: - 2199-675X publication_status: published publisher: Springer Nature publist_id: '7382' quality_controlled: '1' scopus_import: 1 status: public title: Tropical formulae for summation over a part of SL(2,Z) type: journal_article user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 5 year: '2019' ... --- _id: '5887' abstract: - lang: eng text: 'Cryptographic security is usually defined as a guarantee that holds except when a bad event with negligible probability occurs, and nothing is guaranteed in that bad case. However, in settings where such failure can happen with substantial probability, one needs to provide guarantees even for the bad case. A typical example is where a (possibly weak) password is used instead of a secure cryptographic key to protect a session, the bad event being that the adversary correctly guesses the password. In a situation with multiple such sessions, a per-session guarantee is desired: any session for which the password has not been guessed remains secure, independently of whether other sessions have been compromised. A new formalism for stating such gracefully degrading security guarantees is introduced and applied to analyze the examples of password-based message authentication and password-based encryption. While a natural per-message guarantee is achieved for authentication, the situation of password-based encryption is more delicate: a per-session confidentiality guarantee only holds against attackers for which the distribution of password-guessing effort over the sessions is known in advance. In contrast, for more general attackers without such a restriction, a strong, composable notion of security cannot be achieved.' article_processing_charge: No article_type: original author: - first_name: Gregory full_name: Demay, Gregory last_name: Demay - first_name: Peter full_name: Gazi, Peter id: 3E0BFE38-F248-11E8-B48F-1D18A9856A87 last_name: Gazi - first_name: Ueli full_name: Maurer, Ueli last_name: Maurer - first_name: Bjorn full_name: Tackmann, Bjorn last_name: Tackmann citation: ama: 'Demay G, Gazi P, Maurer U, Tackmann B. Per-session security: Password-based cryptography revisited. Journal of Computer Security. 2019;27(1):75-111. doi:10.3233/JCS-181131' apa: 'Demay, G., Gazi, P., Maurer, U., & Tackmann, B. (2019). Per-session security: Password-based cryptography revisited. Journal of Computer Security. IOS Press. https://doi.org/10.3233/JCS-181131' chicago: 'Demay, Gregory, Peter Gazi, Ueli Maurer, and Bjorn Tackmann. “Per-Session Security: Password-Based Cryptography Revisited.” Journal of Computer Security. IOS Press, 2019. https://doi.org/10.3233/JCS-181131.' ieee: 'G. Demay, P. Gazi, U. Maurer, and B. Tackmann, “Per-session security: Password-based cryptography revisited,” Journal of Computer Security, vol. 27, no. 1. IOS Press, pp. 75–111, 2019.' ista: 'Demay G, Gazi P, Maurer U, Tackmann B. 2019. Per-session security: Password-based cryptography revisited. Journal of Computer Security. 27(1), 75–111.' mla: 'Demay, Gregory, et al. “Per-Session Security: Password-Based Cryptography Revisited.” Journal of Computer Security, vol. 27, no. 1, IOS Press, 2019, pp. 75–111, doi:10.3233/JCS-181131.' short: G. Demay, P. Gazi, U. Maurer, B. Tackmann, Journal of Computer Security 27 (2019) 75–111. date_created: 2019-01-27T22:59:10Z date_published: 2019-01-01T00:00:00Z date_updated: 2021-01-12T08:05:08Z day: '1' department: - _id: KrPi doi: 10.3233/JCS-181131 ec_funded: 1 intvolume: ' 27' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2016/166 month: '01' oa: 1 oa_version: Preprint page: 75-111 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Journal of Computer Security publication_identifier: issn: - 0926227X publication_status: published publisher: IOS Press quality_controlled: '1' scopus_import: '1' status: public title: 'Per-session security: Password-based cryptography revisited' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2019' ... --- _id: '6515' abstract: - lang: eng text: We give non-degeneracy criteria for Riemannian simplices based on simplices in spaces of constant sectional curvature. It extends previous work on Riemannian simplices, where we developed Riemannian simplices with respect to Euclidean reference simplices. The criteria we give in this article are in terms of quality measures for spaces of constant curvature that we develop here. We see that simplices in spaces that have nearly constant curvature, are already non-degenerate under very weak quality demands. This is of importance because it allows for sampling of Riemannian manifolds based on anisotropy of the manifold and not (absolute) curvature. author: - first_name: Ramsay full_name: Dyer, Ramsay last_name: Dyer - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Dyer R, Vegter G, Wintraecken M. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 2019;10(1):223–256. doi:10.20382/jocg.v10i1a9 apa: Dyer, R., Vegter, G., & Wintraecken, M. (2019). Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . Carleton University. https://doi.org/10.20382/jocg.v10i1a9 chicago: Dyer, Ramsay, Gert Vegter, and Mathijs Wintraecken. “Simplices Modelled on Spaces of Constant Curvature.” Journal of Computational Geometry . Carleton University, 2019. https://doi.org/10.20382/jocg.v10i1a9. ieee: R. Dyer, G. Vegter, and M. Wintraecken, “Simplices modelled on spaces of constant curvature,” Journal of Computational Geometry , vol. 10, no. 1. Carleton University, pp. 223–256, 2019. ista: Dyer R, Vegter G, Wintraecken M. 2019. Simplices modelled on spaces of constant curvature. Journal of Computational Geometry . 10(1), 223–256. mla: Dyer, Ramsay, et al. “Simplices Modelled on Spaces of Constant Curvature.” Journal of Computational Geometry , vol. 10, no. 1, Carleton University, 2019, pp. 223–256, doi:10.20382/jocg.v10i1a9. short: R. Dyer, G. Vegter, M. Wintraecken, Journal of Computational Geometry 10 (2019) 223–256. date_created: 2019-06-03T09:35:33Z date_published: 2019-07-01T00:00:00Z date_updated: 2021-01-12T08:07:50Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.20382/jocg.v10i1a9 ec_funded: 1 file: - access_level: open_access checksum: 57b4df2f16a74eb499734ec8ee240178 content_type: application/pdf creator: mwintrae date_created: 2019-06-03T09:30:01Z date_updated: 2020-07-14T12:47:32Z file_id: '6516' file_name: mainJournalFinal.pdf file_size: 2170882 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' intvolume: ' 10' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 223–256 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 'Journal of Computational Geometry ' publication_identifier: issn: - 1920-180X publication_status: published publisher: Carleton University quality_controlled: '1' scopus_import: 1 status: public title: Simplices modelled on spaces of constant curvature tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2019' ... --- _id: '6528' abstract: - lang: eng text: We construct a verifiable delay function (VDF) by showing how the Rivest-Shamir-Wagner time-lock puzzle can be made publicly verifiable. Concretely, we give a statistically sound public-coin protocol to prove that a tuple (N,x,T,y) satisfies y=x2T (mod N) where the prover doesn’t know the factorization of N and its running time is dominated by solving the puzzle, that is, compute x2T, which is conjectured to require T sequential squarings. To get a VDF we make this protocol non-interactive using the Fiat-Shamir heuristic.The motivation for this work comes from the Chia blockchain design, which uses a VDF as akey ingredient. For typical parameters (T≤2 40, N= 2048), our proofs are of size around 10K B, verification cost around three RSA exponentiations and computing the proof is 8000 times faster than solving the puzzle even without any parallelism. alternative_title: - LIPIcs article_number: '60' article_processing_charge: No author: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Pietrzak KZ. Simple verifiable delay functions. In: 10th Innovations in Theoretical Computer Science Conference. Vol 124. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.ITCS.2019.60' apa: 'Pietrzak, K. Z. (2019). Simple verifiable delay functions. In 10th Innovations in Theoretical Computer Science Conference (Vol. 124). San Diego, CA, United States: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ITCS.2019.60' chicago: Pietrzak, Krzysztof Z. “Simple Verifiable Delay Functions.” In 10th Innovations in Theoretical Computer Science Conference, Vol. 124. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.ITCS.2019.60. ieee: K. Z. Pietrzak, “Simple verifiable delay functions,” in 10th Innovations in Theoretical Computer Science Conference, San Diego, CA, United States, 2019, vol. 124. ista: 'Pietrzak KZ. 2019. Simple verifiable delay functions. 10th Innovations in Theoretical Computer Science Conference. ITCS 2019: Innovations in Theoretical Computer Science, LIPIcs, vol. 124, 60.' mla: Pietrzak, Krzysztof Z. “Simple Verifiable Delay Functions.” 10th Innovations in Theoretical Computer Science Conference, vol. 124, 60, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.ITCS.2019.60. short: K.Z. Pietrzak, in:, 10th Innovations in Theoretical Computer Science Conference, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. conference: end_date: 2019-01-12 location: San Diego, CA, United States name: 'ITCS 2019: Innovations in Theoretical Computer Science' start_date: 2019-01-10 date_created: 2019-06-06T14:12:36Z date_published: 2019-01-10T00:00:00Z date_updated: 2021-01-12T08:07:53Z day: '10' ddc: - '000' department: - _id: KrPi doi: 10.4230/LIPICS.ITCS.2019.60 ec_funded: 1 file: - access_level: open_access checksum: f0ae1bb161431d9db3dea5ace082bfb5 content_type: application/pdf creator: dernst date_created: 2019-06-06T14:22:04Z date_updated: 2020-07-14T12:47:33Z file_id: '6529' file_name: 2019_LIPIcs_Pietrzak.pdf file_size: 558770 relation: main_file file_date_updated: 2020-07-14T12:47:33Z has_accepted_license: '1' intvolume: ' 124' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2018/627 month: '01' oa: 1 oa_version: Published Version project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 10th Innovations in Theoretical Computer Science Conference publication_identifier: isbn: - 978-3-95977-095-8 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Simple verifiable delay functions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 124 year: '2019' ... --- _id: '6565' abstract: - lang: eng text: In this paper, we address the problem of synthesizing periodic switching controllers for stabilizing a family of linear systems. Our broad approach consists of constructing a finite game graph based on the family of linear systems such that every winning strategy on the game graph corresponds to a stabilizing switching controller for the family of linear systems. The construction of a (finite) game graph, the synthesis of a winning strategy and the extraction of a stabilizing controller are all computationally feasible. We illustrate our method on an example. article_number: '8715598' article_processing_charge: No author: - first_name: Atreyee full_name: Kundu, Atreyee last_name: Kundu - first_name: Miriam full_name: Garcia Soto, Miriam id: 4B3207F6-F248-11E8-B48F-1D18A9856A87 last_name: Garcia Soto orcid: 0000−0003−2936−5719 - first_name: Pavithra full_name: Prabhakar, Pavithra last_name: Prabhakar citation: ama: 'Kundu A, Garcia Soto M, Prabhakar P. Formal synthesis of stabilizing controllers for periodically controlled linear switched systems. In: 5th Indian Control Conference Proceedings. IEEE; 2019. doi:10.1109/INDIANCC.2019.8715598' apa: 'Kundu, A., Garcia Soto, M., & Prabhakar, P. (2019). Formal synthesis of stabilizing controllers for periodically controlled linear switched systems. In 5th Indian Control Conference Proceedings. Delhi, India: IEEE. https://doi.org/10.1109/INDIANCC.2019.8715598' chicago: Kundu, Atreyee, Miriam Garcia Soto, and Pavithra Prabhakar. “Formal Synthesis of Stabilizing Controllers for Periodically Controlled Linear Switched Systems.” In 5th Indian Control Conference Proceedings. IEEE, 2019. https://doi.org/10.1109/INDIANCC.2019.8715598. ieee: A. Kundu, M. Garcia Soto, and P. Prabhakar, “Formal synthesis of stabilizing controllers for periodically controlled linear switched systems,” in 5th Indian Control Conference Proceedings, Delhi, India, 2019. ista: Kundu A, Garcia Soto M, Prabhakar P. 2019. Formal synthesis of stabilizing controllers for periodically controlled linear switched systems. 5th Indian Control Conference Proceedings. ICC 2019 - Indian Control Conference, 8715598. mla: Kundu, Atreyee, et al. “Formal Synthesis of Stabilizing Controllers for Periodically Controlled Linear Switched Systems.” 5th Indian Control Conference Proceedings, 8715598, IEEE, 2019, doi:10.1109/INDIANCC.2019.8715598. short: A. Kundu, M. Garcia Soto, P. Prabhakar, in:, 5th Indian Control Conference Proceedings, IEEE, 2019. conference: end_date: 2019-01-11 location: Delhi, India name: ICC 2019 - Indian Control Conference start_date: 2019-01-09 date_created: 2019-06-17T06:57:33Z date_published: 2019-05-16T00:00:00Z date_updated: 2021-01-12T08:08:01Z day: '16' ddc: - '000' department: - _id: ToHe doi: 10.1109/INDIANCC.2019.8715598 file: - access_level: open_access checksum: d622a91af1e427f6b1e0ba8e18a2b767 content_type: application/pdf creator: dernst date_created: 2020-10-21T13:13:49Z date_updated: 2020-10-21T13:13:49Z file_id: '8687' file_name: 2019_ICC_Kundu.pdf file_size: 396031 relation: main_file success: 1 file_date_updated: 2020-10-21T13:13:49Z has_accepted_license: '1' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 5th Indian Control Conference Proceedings publication_identifier: isbn: - 978-153866246-5 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Formal synthesis of stabilizing controllers for periodically controlled linear switched systems type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '6628' abstract: - lang: eng text: Fejes Tóth [5] and Schneider [9] studied approximations of smooth convex hypersurfaces in Euclidean space by piecewise flat triangular meshes with a given number of vertices on the hypersurface that are optimal with respect to Hausdorff distance. They proved that this Hausdorff distance decreases inversely proportional with m 2/(d−1), where m is the number of vertices and d is the dimension of Euclidean space. Moreover the pro-portionality constant can be expressed in terms of the Gaussian curvature, an intrinsic quantity. In this short note, we prove the extrinsic nature of this constant for manifolds of sufficiently high codimension. We do so by constructing an family of isometric embeddings of the flat torus in Euclidean space. author: - first_name: Gert full_name: Vegter, Gert last_name: Vegter - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: 'Vegter G, Wintraecken M. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In: The 31st Canadian Conference in Computational Geometry. ; 2019:275-279.' apa: Vegter, G., & Wintraecken, M. (2019). The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. In The 31st Canadian Conference in Computational Geometry (pp. 275–279). Edmonton, Canada. chicago: Vegter, Gert, and Mathijs Wintraecken. “The Extrinsic Nature of the Hausdorff Distance of Optimal Triangulations of Manifolds.” In The 31st Canadian Conference in Computational Geometry, 275–79, 2019. ieee: G. Vegter and M. Wintraecken, “The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds,” in The 31st Canadian Conference in Computational Geometry, Edmonton, Canada, 2019, pp. 275–279. ista: 'Vegter G, Wintraecken M. 2019. The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds. The 31st Canadian Conference in Computational Geometry. CCCG: Canadian Conference in Computational Geometry, 275–279.' mla: Vegter, Gert, and Mathijs Wintraecken. “The Extrinsic Nature of the Hausdorff Distance of Optimal Triangulations of Manifolds.” The 31st Canadian Conference in Computational Geometry, 2019, pp. 275–79. short: G. Vegter, M. Wintraecken, in:, The 31st Canadian Conference in Computational Geometry, 2019, pp. 275–279. conference: end_date: 2019-08-10 location: Edmonton, Canada name: 'CCCG: Canadian Conference in Computational Geometry' start_date: 2019-08-08 date_created: 2019-07-12T08:34:57Z date_published: 2019-08-01T00:00:00Z date_updated: 2021-01-12T08:08:16Z day: '01' ddc: - '004' department: - _id: HeEd ec_funded: 1 file: - access_level: open_access checksum: ceabd152cfa55170d57763f9c6c60a53 content_type: application/pdf creator: mwintrae date_created: 2019-07-12T08:32:46Z date_updated: 2020-07-14T12:47:34Z file_id: '6629' file_name: IntrinsicExtrinsicCCCG2019.pdf file_size: 321176 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version page: 275-279 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: The 31st Canadian Conference in Computational Geometry publication_status: published quality_controlled: '1' scopus_import: 1 status: public title: The extrinsic nature of the Hausdorff distance of optimal triangulations of manifolds type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2019' ...