--- _id: '13164' abstract: - lang: eng text: Molecular compatibility between gametes is a prerequisite for successful fertilization. As long as a sperm and egg can recognize and bind each other via their surface proteins, gamete fusion may occur even between members of separate species, resulting in hybrids that can impact speciation. The egg membrane protein Bouncer confers species specificity to gamete interactions between medaka and zebrafish, preventing their cross-fertilization. Here, we leverage this specificity to uncover distinct amino acid residues and N-glycosylation patterns that differentially influence the function of medaka and zebrafish Bouncer and contribute to cross-species incompatibility. Curiously, in contrast to the specificity observed for medaka and zebrafish Bouncer, seahorse and fugu Bouncer are compatible with both zebrafish and medaka sperm, in line with the pervasive purifying selection that dominates Bouncer’s evolution. The Bouncer-sperm interaction is therefore the product of seemingly opposing evolutionary forces that, for some species, restrict fertilization to closely related fish, and for others, allow broad gamete compatibility that enables hybridization. acknowledgement: We thank Manfred Schartl for sharing RNA-seq data from medaka ovaries and testes prior to publication; Maria Novatchkova for help with RNA-seq analysis; Katharina Lust for advice on medaka techniques; Milan Malinsky for input on Lake Malawi cichlid Bouncer sequences; Felicia Spitzer, Mirjam Binner, and Anna Bandura for help with genotyping; Friedrich Puhl, Kerstin Rattner, Julia Koenig, and Dijana Sunjic for taking care of zebrafish and medaka; and the Pauli lab for helpful discussions about the project and feedback on the manuscript. K.R.B.G. was supported by a DOC Fellowship from the Austrian Academy of Sciences. Work in the Pauli lab was supported by the FWF START program (Y 1031-B28 to A.P.), the ERC CoG 101044495/GaMe, the HFSP Career Development Award (CDA00066/2015 to A.P.), a HFSP Young Investigator Award (RGY0079/2020 to A.P.) and the FWF SFB RNA-Deco (project number F80). The IMP receives institutional funding from Boehringer Ingelheim and the Austrian Research Promotion Agency (Headquarter grant FFG-852936). Work by J.S. and Y.M. in this project was supported by the Israel Science Foundation grant 636/21 to Y.M. Work by L.J. was supported by the Swedish Research Council grant 2020-04936 and the Knut and Alice Wallenberg Foundation grant 2018.0042. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission. article_number: '3506' article_processing_charge: No article_type: original author: - first_name: Krista R.B. full_name: Gert, Krista R.B. last_name: Gert - first_name: Karin full_name: Panser, Karin last_name: Panser - first_name: Joachim full_name: Surm, Joachim last_name: Surm - first_name: Benjamin S. full_name: Steinmetz, Benjamin S. last_name: Steinmetz - first_name: Alexander full_name: Schleiffer, Alexander last_name: Schleiffer - first_name: Luca full_name: Jovine, Luca last_name: Jovine - first_name: Yehu full_name: Moran, Yehu last_name: Moran - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Andrea full_name: Pauli, Andrea last_name: Pauli citation: ama: Gert KRB, Panser K, Surm J, et al. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. 2023;14. doi:10.1038/s41467-023-39317-4 apa: Gert, K. R. B., Panser, K., Surm, J., Steinmetz, B. S., Schleiffer, A., Jovine, L., … Pauli, A. (2023). Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-39317-4 chicago: Gert, Krista R.B., Karin Panser, Joachim Surm, Benjamin S. Steinmetz, Alexander Schleiffer, Luca Jovine, Yehu Moran, Fyodor Kondrashov, and Andrea Pauli. “Divergent Molecular Signatures in Fish Bouncer Proteins Define Cross-Fertilization Boundaries.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-39317-4. ieee: K. R. B. Gert et al., “Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Gert KRB, Panser K, Surm J, Steinmetz BS, Schleiffer A, Jovine L, Moran Y, Kondrashov F, Pauli A. 2023. Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries. Nature Communications. 14, 3506. mla: Gert, Krista R. B., et al. “Divergent Molecular Signatures in Fish Bouncer Proteins Define Cross-Fertilization Boundaries.” Nature Communications, vol. 14, 3506, Springer Nature, 2023, doi:10.1038/s41467-023-39317-4. short: K.R.B. Gert, K. Panser, J. Surm, B.S. Steinmetz, A. Schleiffer, L. Jovine, Y. Moran, F. Kondrashov, A. Pauli, Nature Communications 14 (2023). date_created: 2023-06-25T22:00:45Z date_published: 2023-06-14T00:00:00Z date_updated: 2023-12-13T11:26:34Z day: '14' ddc: - '570' department: - _id: FyKo doi: 10.1038/s41467-023-39317-4 external_id: isi: - '001048208600023' file: - access_level: open_access checksum: d6165f41c7f1c2c04b04256ec9f003fb content_type: application/pdf creator: dernst date_created: 2023-06-26T10:26:04Z date_updated: 2023-06-26T10:26:04Z file_id: '13172' file_name: 2023_NatureComm_Gert.pdf file_size: 1555006 relation: main_file success: 1 file_date_updated: 2023-06-26T10:26:04Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Divergent molecular signatures in fish Bouncer proteins define cross-fertilization boundaries tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '12313' abstract: - lang: eng text: Let P be a nontorsion point on an elliptic curve defined over a number field K and consider the sequence {Bn}n∈N of the denominators of x(nP). We prove that every term of the sequence of the Bn has a primitive divisor for n greater than an effectively computable constant that we will explicitly compute. This constant will depend only on the model defining the curve. acknowledgement: "This paper is part of the author’s PhD thesis at Università of Pisa. Moreover, this\r\nproject has received funding from the European Union’s Horizon 2020 research\r\nand innovation programme under the Marie Skłodowska-Curie Grant Agreement\r\nNo. 101034413. I thank the referee for many helpful comments." article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Matteo full_name: Verzobio, Matteo id: 7aa8f170-131e-11ed-88e1-a9efd01027cb last_name: Verzobio orcid: 0000-0002-0854-0306 citation: ama: Verzobio M. Some effectivity results for primitive divisors of elliptic divisibility  sequences. Pacific Journal of Mathematics. 2023;325(2):331-351. doi:10.2140/pjm.2023.325.331 apa: Verzobio, M. (2023). Some effectivity results for primitive divisors of elliptic divisibility  sequences. Pacific Journal of Mathematics. Mathematical Sciences Publishers. https://doi.org/10.2140/pjm.2023.325.331 chicago: Verzobio, Matteo. “Some Effectivity Results for Primitive Divisors of Elliptic Divisibility  Sequences.” Pacific Journal of Mathematics. Mathematical Sciences Publishers, 2023. https://doi.org/10.2140/pjm.2023.325.331. ieee: M. Verzobio, “Some effectivity results for primitive divisors of elliptic divisibility  sequences,” Pacific Journal of Mathematics, vol. 325, no. 2. Mathematical Sciences Publishers, pp. 331–351, 2023. ista: Verzobio M. 2023. Some effectivity results for primitive divisors of elliptic divisibility  sequences. Pacific Journal of Mathematics. 325(2), 331–351. mla: Verzobio, Matteo. “Some Effectivity Results for Primitive Divisors of Elliptic Divisibility  Sequences.” Pacific Journal of Mathematics, vol. 325, no. 2, Mathematical Sciences Publishers, 2023, pp. 331–51, doi:10.2140/pjm.2023.325.331. short: M. Verzobio, Pacific Journal of Mathematics 325 (2023) 331–351. date_created: 2023-01-16T11:46:19Z date_published: 2023-11-03T00:00:00Z date_updated: 2023-12-13T11:18:14Z day: '03' ddc: - '510' department: - _id: TiBr doi: 10.2140/pjm.2023.325.331 ec_funded: 1 external_id: arxiv: - '2001.02987' isi: - '001104766900001' file: - access_level: open_access checksum: b6218d16a72742d8bb38d6fc3c9bb8c6 content_type: application/pdf creator: dernst date_created: 2023-11-13T09:50:41Z date_updated: 2023-11-13T09:50:41Z file_id: '14525' file_name: 2023_PacificJourMaths_Verzobio.pdf file_size: 389897 relation: main_file success: 1 file_date_updated: 2023-11-13T09:50:41Z has_accepted_license: '1' intvolume: ' 325' isi: 1 issue: '2' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 331-351 project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Pacific Journal of Mathematics publication_identifier: eissn: - 0030-8730 publication_status: published publisher: Mathematical Sciences Publishers quality_controlled: '1' scopus_import: '1' status: public title: Some effectivity results for primitive divisors of elliptic divisibility sequences tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 325 year: '2023' ... --- _id: '13145' abstract: - lang: eng text: We prove a characterization of the Dirichlet–Ferguson measure over an arbitrary finite diffuse measure space. We provide an interpretation of this characterization in analogy with the Mecke identity for Poisson point processes. acknowledgement: Research supported by the Sfb 1060 The Mathematics of Emergent Effects (University of Bonn). L.D.S. gratefully acknowledges funding of his current position by the Austrian Science Fund (FWF) through project ESPRIT 208. article_processing_charge: No article_type: original author: - first_name: Lorenzo full_name: Dello Schiavo, Lorenzo id: ECEBF480-9E4F-11EA-B557-B0823DDC885E last_name: Dello Schiavo orcid: 0000-0002-9881-6870 - first_name: Eugene full_name: Lytvynov, Eugene last_name: Lytvynov citation: ama: Dello Schiavo L, Lytvynov E. A Mecke-type characterization of the Dirichlet–Ferguson measure. Electronic Communications in Probability. 2023;28:1-12. doi:10.1214/23-ECP528 apa: Dello Schiavo, L., & Lytvynov, E. (2023). A Mecke-type characterization of the Dirichlet–Ferguson measure. Electronic Communications in Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/23-ECP528 chicago: Dello Schiavo, Lorenzo, and Eugene Lytvynov. “A Mecke-Type Characterization of the Dirichlet–Ferguson Measure.” Electronic Communications in Probability. Institute of Mathematical Statistics, 2023. https://doi.org/10.1214/23-ECP528. ieee: L. Dello Schiavo and E. Lytvynov, “A Mecke-type characterization of the Dirichlet–Ferguson measure,” Electronic Communications in Probability, vol. 28. Institute of Mathematical Statistics, pp. 1–12, 2023. ista: Dello Schiavo L, Lytvynov E. 2023. A Mecke-type characterization of the Dirichlet–Ferguson measure. Electronic Communications in Probability. 28, 1–12. mla: Dello Schiavo, Lorenzo, and Eugene Lytvynov. “A Mecke-Type Characterization of the Dirichlet–Ferguson Measure.” Electronic Communications in Probability, vol. 28, Institute of Mathematical Statistics, 2023, pp. 1–12, doi:10.1214/23-ECP528. short: L. Dello Schiavo, E. Lytvynov, Electronic Communications in Probability 28 (2023) 1–12. date_created: 2023-06-18T22:00:48Z date_published: 2023-05-05T00:00:00Z date_updated: 2023-12-13T11:24:57Z day: '05' ddc: - '510' department: - _id: JaMa doi: 10.1214/23-ECP528 external_id: isi: - '001042025400001' file: - access_level: open_access checksum: 4a543fe4b3f9e747cc52167c17bfb524 content_type: application/pdf creator: dernst date_created: 2023-06-19T09:37:40Z date_updated: 2023-06-19T09:37:40Z file_id: '13152' file_name: 2023_ElectronCommProbability_Schiavo.pdf file_size: 271434 relation: main_file success: 1 file_date_updated: 2023-06-19T09:37:40Z has_accepted_license: '1' intvolume: ' 28' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1-12 project: - _id: 34dbf174-11ca-11ed-8bc3-afe9d43d4b9c grant_number: E208 name: Configuration Spaces over Non-Smooth Spaces publication: Electronic Communications in Probability publication_identifier: eissn: - 1083-589X publication_status: published publisher: Institute of Mathematical Statistics quality_controlled: '1' scopus_import: '1' status: public title: A Mecke-type characterization of the Dirichlet–Ferguson measure tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2023' ... --- _id: '12838' abstract: - lang: eng text: We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let N > 0 and L ∈ Z ≽2 . A multiple packing is a set C of points in R n such that any point in R n lies in the intersection of at most L – 1 balls of radius √ nN around points in C . Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower bounds on the optimal density of list-decodable infinite constellations for constant L under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory. acknowledgement: "YZ thanks Jiajin Li for making the observation given by Equation (23). He also would like to thank Nir Ailon and Ely Porat for several helpful conversations throughout this project, and Alexander Barg for insightful comments on the manuscript.\r\nYZ has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682203-ERC-[Inf-Speed-Tradeoff]. The work of SV was supported by a seed grant from IIT Hyderabad and the start-up research grant from the Science and Engineering Research Board, India (SRG/2020/000910)." article_processing_charge: No article_type: original author: - first_name: Yihan full_name: Zhang, Yihan id: 2ce5da42-b2ea-11eb-bba5-9f264e9d002c last_name: Zhang orcid: 0000-0002-6465-6258 - first_name: Shashank full_name: Vatedka, Shashank last_name: Vatedka citation: ama: 'Zhang Y, Vatedka S. Multiple packing: Lower bounds via infinite constellations. IEEE Transactions on Information Theory. 2023;69(7):4513-4527. doi:10.1109/TIT.2023.3260950' apa: 'Zhang, Y., & Vatedka, S. (2023). Multiple packing: Lower bounds via infinite constellations. IEEE Transactions on Information Theory. IEEE. https://doi.org/10.1109/TIT.2023.3260950' chicago: 'Zhang, Yihan, and Shashank Vatedka. “Multiple Packing: Lower Bounds via Infinite Constellations.” IEEE Transactions on Information Theory. IEEE, 2023. https://doi.org/10.1109/TIT.2023.3260950.' ieee: 'Y. Zhang and S. Vatedka, “Multiple packing: Lower bounds via infinite constellations,” IEEE Transactions on Information Theory, vol. 69, no. 7. IEEE, pp. 4513–4527, 2023.' ista: 'Zhang Y, Vatedka S. 2023. Multiple packing: Lower bounds via infinite constellations. IEEE Transactions on Information Theory. 69(7), 4513–4527.' mla: 'Zhang, Yihan, and Shashank Vatedka. “Multiple Packing: Lower Bounds via Infinite Constellations.” IEEE Transactions on Information Theory, vol. 69, no. 7, IEEE, 2023, pp. 4513–27, doi:10.1109/TIT.2023.3260950.' short: Y. Zhang, S. Vatedka, IEEE Transactions on Information Theory 69 (2023) 4513–4527. date_created: 2023-04-16T22:01:09Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-12-13T11:16:46Z day: '01' department: - _id: MaMo doi: 10.1109/TIT.2023.3260950 external_id: arxiv: - '2211.04407' isi: - '001017307000023' intvolume: ' 69' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2211.04407 month: '07' oa: 1 oa_version: Preprint page: 4513-4527 publication: IEEE Transactions on Information Theory publication_identifier: eissn: - 1557-9654 issn: - 0018-9448 publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'Multiple packing: Lower bounds via infinite constellations' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 69 year: '2023' ... --- _id: '13228' abstract: - lang: eng text: A machine-learned system that is fair in static decision-making tasks may have biased societal impacts in the long-run. This may happen when the system interacts with humans and feedback patterns emerge, reinforcing old biases in the system and creating new biases. While existing works try to identify and mitigate long-run biases through smart system design, we introduce techniques for monitoring fairness in real time. Our goal is to build and deploy a monitor that will continuously observe a long sequence of events generated by the system in the wild, and will output, with each event, a verdict on how fair the system is at the current point in time. The advantages of monitoring are two-fold. Firstly, fairness is evaluated at run-time, which is important because unfair behaviors may not be eliminated a priori, at design-time, due to partial knowledge about the system and the environment, as well as uncertainties and dynamic changes in the system and the environment, such as the unpredictability of human behavior. Secondly, monitors are by design oblivious to how the monitored system is constructed, which makes them suitable to be used as trusted third-party fairness watchdogs. They function as computationally lightweight statistical estimators, and their correctness proofs rely on the rigorous analysis of the stochastic process that models the assumptions about the underlying dynamics of the system. We show, both in theory and experiments, how monitors can warn us (1) if a bank’s credit policy over time has created an unfair distribution of credit scores among the population, and (2) if a resource allocator’s allocation policy over time has made unfair allocations. Our experiments demonstrate that the monitors introduce very low overhead. We believe that runtime monitoring is an important and mathematically rigorous new addition to the fairness toolbox. acknowledgement: 'The authors would like to thank the anonymous reviewers for their valuable comments and helpful suggestions. This work is supported by the European Research Council under Grant No.: ERC-2020-AdG 101020093.' article_processing_charge: No author: - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Mahyar full_name: Karimi, Mahyar last_name: Karimi - first_name: Konstantin full_name: Kueffner, Konstantin id: 8121a2d0-dc85-11ea-9058-af578f3b4515 last_name: Kueffner orcid: 0000-0001-8974-2542 - first_name: Kaushik full_name: Mallik, Kaushik id: 0834ff3c-6d72-11ec-94e0-b5b0a4fb8598 last_name: Mallik orcid: 0000-0001-9864-7475 citation: ama: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. Runtime monitoring of dynamic fairness properties. In: FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. Association for Computing Machinery; 2023:604-614. doi:10.1145/3593013.3594028' apa: 'Henzinger, T. A., Karimi, M., Kueffner, K., & Mallik, K. (2023). Runtime monitoring of dynamic fairness properties. In FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 604–614). Chicago, IL, United States: Association for Computing Machinery. https://doi.org/10.1145/3593013.3594028' chicago: 'Henzinger, Thomas A, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik. “Runtime Monitoring of Dynamic Fairness Properties.” In FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 604–14. Association for Computing Machinery, 2023. https://doi.org/10.1145/3593013.3594028.' ieee: 'T. A. Henzinger, M. Karimi, K. Kueffner, and K. Mallik, “Runtime monitoring of dynamic fairness properties,” in FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Chicago, IL, United States, 2023, pp. 604–614.' ista: 'Henzinger TA, Karimi M, Kueffner K, Mallik K. 2023. Runtime monitoring of dynamic fairness properties. FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. FAccT: Conference on Fairness, Accountability and Transparency, 604–614.' mla: 'Henzinger, Thomas A., et al. “Runtime Monitoring of Dynamic Fairness Properties.” FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, 2023, pp. 604–14, doi:10.1145/3593013.3594028.' short: 'T.A. Henzinger, M. Karimi, K. Kueffner, K. Mallik, in:, FAccT ’23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, 2023, pp. 604–614.' conference: end_date: 2023-06-15 location: Chicago, IL, United States name: 'FAccT: Conference on Fairness, Accountability and Transparency' start_date: 2023-06-12 date_created: 2023-07-16T22:01:09Z date_published: 2023-06-12T00:00:00Z date_updated: 2023-12-13T11:30:31Z day: '12' ddc: - '000' department: - _id: ToHe doi: 10.1145/3593013.3594028 ec_funded: 1 external_id: arxiv: - '2305.04699' isi: - '001062819300057' file: - access_level: open_access checksum: 96c759db9cdf94b81e37871a66a6ff48 content_type: application/pdf creator: dernst date_created: 2023-07-18T07:43:10Z date_updated: 2023-07-18T07:43:10Z file_id: '13245' file_name: 2023_ACM_HenzingerT.pdf file_size: 4100596 relation: main_file success: 1 file_date_updated: 2023-07-18T07:43:10Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 604-614 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software publication: 'FAccT ''23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency' publication_identifier: isbn: - '9781450372527' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Runtime monitoring of dynamic fairness properties tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ...