--- _id: '11507' abstract: - lang: eng text: 'Lyman-α (Lyα) is intrinsically the brightest line emitted from active galaxies. While it originates from many physical processes, for star-forming galaxies the intrinsic Lyα luminosity is a direct tracer of the Lyman-continuum (LyC) radiation produced by the most massive O- and early-type B-stars (M⋆ ≳ 10 M⊙) with lifetimes of a few Myrs. As such, Lyα luminosity should be an excellent instantaneous star formation rate (SFR) indicator. However, its resonant nature and susceptibility to dust as a rest-frame UV photon makes Lyα very hard to interpret due to the uncertain Lyα escape fraction, fesc, Lyα. Here we explore results from the CAlibrating LYMan-α with Hα (CALYMHA) survey at z = 2.2, follow-up of Lyα emitters (LAEs) at z = 2.2 − 2.6 and a z ∼ 0−0.3 compilation of LAEs to directly measure fesc, Lyα with Hα. We derive a simple empirical relation that robustly retrieves fesc, Lyα as a function of Lyα rest-frame EW (EW0): fesc,Lyα = 0.0048 EW0[Å] ± 0.05 and we show that it constrains a well-defined anti-correlation between ionisation efficiency (ξion) and dust extinction in LAEs. Observed Lyα luminosities and EW0 are easy measurable quantities at high redshift, thus making our relation a practical tool to estimate intrinsic Lyα and LyC luminosities under well controlled and simple assumptions. Our results allow observed Lyα luminosities to be used to compute SFRs for LAEs at z ∼ 0−2.6 within ±0.2 dex of the Hα dust corrected SFRs. We apply our empirical SFR(Lyα,EW0) calibration to several sources at z ≥ 2.6 to find that star-forming LAEs have SFRs typically ranging from 0.1 to 20 M⊙ yr−1 and that our calibration might be even applicable for the most luminous LAEs within the epoch of re-ionisation. Our results imply high ionisation efficiencies (log10[ξion/Hz erg−1] = 25.4−25.6) and low dust content in LAEs across cosmic time, and will be easily tested with future observations with JWST which can obtain Hα and Hβ measurements for high-redshift LAEs.' acknowledgement: We thank the anonymous referees for multiple comments and suggestions which have improved the manuscript. JM acknowledges the support of a Huygens PhD fellowship from Leiden University. We have benefited greatly from the publicly available programming language PYTHON, including the NUMPY & SCIPY (Van Der Walt et al. 2011; Jones et al. 2001), MATPLOTLIB (Hunter 2007) and ASTROPY (Astropy Collaboration 2013) packages, and the TOPCAT analysis program (Taylor 2013). The results and samples of LAEs used for this paper are publicly available (see e.g. Sobral et al. 2017, 2018a) and we also provide the toy model used as a PYTHON script. article_number: A157 article_processing_charge: No article_type: original author: - first_name: David full_name: Sobral, David last_name: Sobral - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X citation: ama: 'Sobral D, Matthee JJ. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 2019;623. doi:10.1051/0004-6361/201833075' apa: 'Sobral, D., & Matthee, J. J. (2019). Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201833075' chicago: 'Sobral, David, and Jorryt J Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201833075.' ieee: 'D. Sobral and J. J. Matthee, “Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator,” Astronomy & Astrophysics, vol. 623. EDP Sciences, 2019.' ista: 'Sobral D, Matthee JJ. 2019. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 623, A157.' mla: 'Sobral, David, and Jorryt J. Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics, vol. 623, A157, EDP Sciences, 2019, doi:10.1051/0004-6361/201833075.' short: D. Sobral, J.J. Matthee, Astronomy & Astrophysics 623 (2019). date_created: 2022-07-06T11:08:16Z date_published: 2019-03-26T00:00:00Z date_updated: 2022-07-19T09:37:20Z day: '26' doi: 10.1051/0004-6361/201833075 extern: '1' external_id: arxiv: - '1803.08923' intvolume: ' 623' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: high-redshift / galaxies: star formation / galaxies: statistics / galaxies: evolution / galaxies: formation / galaxies: ISM' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.08923 month: '03' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: 'Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 623 year: '2019' ... --- _id: '11514' abstract: - lang: eng text: We discuss the nature and physical properties of gas-mass selected galaxies in the ALMA spectroscopic survey (ASPECS) of the Hubble Ultra Deep Field (HUDF). We capitalize on the deep optical integral-field spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) HUDF Survey and multiwavelength data to uniquely associate all 16 line emitters, detected in the ALMA data without preselection, with rotational transitions of carbon monoxide (CO). We identify 10 as CO(2–1) at 1 < z < 2, 5 as CO(3–2) at 2 < z < 3, and 1 as CO(4–3) at z = 3.6. Using the MUSE data as a prior, we identify two additional CO(2–1) emitters, increasing the total sample size to 18. We infer metallicities consistent with (super-)solar for the CO-detected galaxies at z ≤ 1.5, motivating our choice of a Galactic conversion factor between CO luminosity and molecular gas mass for these galaxies. Using deep Chandra imaging of the HUDF, we determine an X-ray AGN fraction of 20% and 60% among the CO emitters at z ∼ 1.4 and z ∼ 2.6, respectively. Being a CO-flux-limited survey, ASPECS-LP detects molecular gas in galaxies on, above, and below the main sequence (MS) at z ∼ 1.4. For stellar masses ≥1010 (1010.5) ${M}_{\odot }$, we detect about 40% (50%) of all galaxies in the HUDF at 1 < z < 2 (2 < z < 3). The combination of ALMA and MUSE integral-field spectroscopy thus enables an unprecedented view of MS galaxies during the peak of galaxy formation. acknowledgement: "We are grateful to the referee for providing a constructive report. L.A.B. wants to thank Madusha L.P. Gunawardhana for her help with platefit. Based on observations collected at the European Southern Observatory under ESO programme(s): 094.A-2089(B), 095.A-0010(A), 096.A-0045(A), and 096.A-0045(B). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00324.L. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.\r\n\r\n\"Este trabajo contó con el apoyo de CONICYT+Programa de Astronomía+ Fondo CHINA-CONICYT\" J.G-L. acknowledges partial support from ALMA-CONICYT project 31160033. F.E.B. acknowledges support from CONICYT grant Basal AFB-170002 (FEB), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (FEB). J.B. acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003., and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). T.D-S. acknowledges support from ALMA-CONYCIT project 31130005 and FONDECYT project 1151239. J.H. acknowledges support of the VIDI research programme with project number 639.042.611, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). D.R. acknowledges support from the National Science Foundation under grant No. AST-1614213. I.R.S. acknowledges support from the ERC Advanced Grant DUSTYGAL (321334) and STFC (ST/P000541/1)\r\n\r\nWork on Gnuastro has been funded by the Japanese MEXT scholarship and its Grant-in-Aid for Scientific Research (21244012, 24253003), the ERC advanced grant 339659-MUSICOS, European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL ITN, and from the Spanish MINECO under grant No. AYA2016-76219-P." article_number: '140' article_processing_charge: No article_type: original author: - first_name: Leindert A. full_name: Boogaard, Leindert A. last_name: Boogaard - first_name: Roberto full_name: Decarli, Roberto last_name: Decarli - first_name: Jorge full_name: González-López, Jorge last_name: González-López - first_name: Paul full_name: van der Werf, Paul last_name: van der Werf - first_name: Fabian full_name: Walter, Fabian last_name: Walter - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Manuel full_name: Aravena, Manuel last_name: Aravena - first_name: Chris full_name: Carilli, Chris last_name: Carilli - first_name: Franz Erik full_name: Bauer, Franz Erik last_name: Bauer - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Thierry full_name: Contini, Thierry last_name: Contini - first_name: Pierre full_name: Cox, Pierre last_name: Cox - first_name: Elisabete full_name: da Cunha, Elisabete last_name: da Cunha - first_name: Emanuele full_name: Daddi, Emanuele last_name: Daddi - first_name: Tanio full_name: Díaz-Santos, Tanio last_name: Díaz-Santos - first_name: Jacqueline full_name: Hodge, Jacqueline last_name: Hodge - first_name: Hanae full_name: Inami, Hanae last_name: Inami - first_name: Rob full_name: Ivison, Rob last_name: Ivison - first_name: Michael full_name: Maseda, Michael last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Pascal full_name: Oesch, Pascal last_name: Oesch - first_name: Gergö full_name: Popping, Gergö last_name: Popping - first_name: Dominik full_name: Riechers, Dominik last_name: Riechers - first_name: Joop full_name: Schaye, Joop last_name: Schaye - first_name: Sander full_name: Schouws, Sander last_name: Schouws - first_name: Ian full_name: Smail, Ian last_name: Smail - first_name: Axel full_name: Weiss, Axel last_name: Weiss - first_name: Lutz full_name: Wisotzki, Lutz last_name: Wisotzki - first_name: Roland full_name: Bacon, Roland last_name: Bacon - first_name: Paulo C. full_name: Cortes, Paulo C. last_name: Cortes - first_name: Hans-Walter full_name: Rix, Hans-Walter last_name: Rix - first_name: Rachel S. full_name: Somerville, Rachel S. last_name: Somerville - first_name: Mark full_name: Swinbank, Mark last_name: Swinbank - first_name: Jeff full_name: Wagg, Jeff last_name: Wagg citation: ama: 'Boogaard LA, Decarli R, González-López J, et al. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 2019;882(2). doi:10.3847/1538-4357/ab3102' apa: 'Boogaard, L. A., Decarli, R., González-López, J., van der Werf, P., Walter, F., Bouwens, R., … Wagg, J. (2019). The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab3102' chicago: 'Boogaard, Leindert A., Roberto Decarli, Jorge González-López, Paul van der Werf, Fabian Walter, Rychard Bouwens, Manuel Aravena, et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab3102.' ieee: 'L. A. Boogaard et al., “The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy,” The Astrophysical Journal, vol. 882, no. 2. IOP Publishing, 2019.' ista: 'Boogaard LA, Decarli R, González-López J, van der Werf P, Walter F, Bouwens R, Aravena M, Carilli C, Bauer FE, Brinchmann J, Contini T, Cox P, da Cunha E, Daddi E, Díaz-Santos T, Hodge J, Inami H, Ivison R, Maseda M, Matthee JJ, Oesch P, Popping G, Riechers D, Schaye J, Schouws S, Smail I, Weiss A, Wisotzki L, Bacon R, Cortes PC, Rix H-W, Somerville RS, Swinbank M, Wagg J. 2019. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 882(2), 140.' mla: 'Boogaard, Leindert A., et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal, vol. 882, no. 2, 140, IOP Publishing, 2019, doi:10.3847/1538-4357/ab3102.' short: L.A. Boogaard, R. Decarli, J. González-López, P. van der Werf, F. Walter, R. Bouwens, M. Aravena, C. Carilli, F.E. Bauer, J. Brinchmann, T. Contini, P. Cox, E. da Cunha, E. Daddi, T. Díaz-Santos, J. Hodge, H. Inami, R. Ivison, M. Maseda, J.J. Matthee, P. Oesch, G. Popping, D. Riechers, J. Schaye, S. Schouws, I. Smail, A. Weiss, L. Wisotzki, R. Bacon, P.C. Cortes, H.-W. Rix, R.S. Somerville, M. Swinbank, J. Wagg, The Astrophysical Journal 882 (2019). date_created: 2022-07-06T13:31:35Z date_published: 2019-09-11T00:00:00Z date_updated: 2022-07-19T09:50:55Z day: '11' doi: 10.3847/1538-4357/ab3102 extern: '1' external_id: arxiv: - '1903.09167' intvolume: ' 882' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.09167 month: '09' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 882 year: '2019' ... --- _id: '11516' abstract: - lang: eng text: The well-known quasar SDSS J095253.83+011421.9 (J0952+0114) at z = 3.02 has one of the most peculiar spectra discovered so far, showing the presence of narrow Lyα and broad metal emission lines. Although recent studies have suggested that a proximate damped Lyα absorption (PDLA) system causes this peculiar spectrum, the origin of the gas associated with the PDLA is unknown. Here we report the results of observations with the Multi Unit Spectroscopic Explorer (MUSE) that reveal a new giant (≈100 physical kpc) Lyα nebula. The detailed analysis of the Lyα velocity, velocity dispersion, and surface brightness profiles suggests that the J0952+0114 Lyα nebula shares similar properties with other QSO nebulae previously detected with MUSE, implying that the PDLA in J0952+0144 is covering only a small fraction of the solid angle of the QSO emission. We also detected bright and spectrally narrow C iv λ1550 and He ii λ1640 extended emission around J0952+0114 with velocity centroids similar to the peak of the extended and central narrow Lyα emission. The presence of a peculiarly bright, unresolved, and relatively broad He ii λ1640 emission in the central region at exactly the same PDLA redshift hints at the possibility that the PDLA originates in a clumpy outflow with a bulk velocity of about 500 km s−1. The smaller velocity dispersion of the large-scale Lyα emission suggests that the high-speed outflow is confined to the central region. Lastly, the derived spatially resolved He ii/Lyα and C iv/Lyα maps show a positive gradient with the distance to the QSO, hinting at a non-homogeneous distribution of the ionization parameter. acknowledgement: We thank Lutz Wisotzki for stimulating discussions. This work is based on observations taken at ESO/VLT in Paranal and we would like to thank the ESO staff for their assistance and support during the MUSE GTO campaigns. This work was supported by the Swiss National Science Foundation. This research made use of Astropy, a community-developed core PYTHON package for astronomy (Astropy Collaboration et al. 2013), NumPy and SciPy (Oliphant 2007), Matplotlib (Hunter 2007), IPython (Perez & Granger 2007), and of the NASA Astrophysics Data System Bibliographic Services. S.C. and G.P. gratefully acknowledge support from Swiss National Science Foundation grant PP00P2−163824. A.F. acknowledges support from the ERC via Advanced Grant under grants agreement no. 339659-MUSICOS. J.B. acknowledges support by FCT/MCTES through national funds by grant UID/FIS/04434/2019 and through Investigador FCT Contract No. IF/01654/2014/CP1215/CT0003. S.D.J. is supported by a NASA Hubble Fellowship (HST-HF2-51375.001-A). T.N. acknowledges the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) top grant TOP1.16.057. article_number: '47' article_processing_charge: No article_type: original author: - first_name: Raffaella Anna full_name: Marino, Raffaella Anna last_name: Marino - first_name: Sebastiano full_name: Cantalupo, Sebastiano last_name: Cantalupo - first_name: Gabriele full_name: Pezzulli, Gabriele last_name: Pezzulli - first_name: Simon J. full_name: Lilly, Simon J. last_name: Lilly - first_name: Sofia full_name: Gallego, Sofia last_name: Gallego - first_name: Ruari full_name: Mackenzie, Ruari last_name: Mackenzie - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Nicolas full_name: Bouché, Nicolas last_name: Bouché - first_name: Anna full_name: Feltre, Anna last_name: Feltre - first_name: Sowgat full_name: Muzahid, Sowgat last_name: Muzahid - first_name: Ilane full_name: Schroetter, Ilane last_name: Schroetter - first_name: Sean D. full_name: Johnson, Sean D. last_name: Johnson - first_name: Themiya full_name: Nanayakkara, Themiya last_name: Nanayakkara citation: ama: Marino RA, Cantalupo S, Pezzulli G, et al. A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE. The Astrophysical Journal. 2019;880(1). doi:10.3847/1538-4357/ab2881 apa: Marino, R. A., Cantalupo, S., Pezzulli, G., Lilly, S. J., Gallego, S., Mackenzie, R., … Nanayakkara, T. (2019). A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab2881 chicago: Marino, Raffaella Anna, Sebastiano Cantalupo, Gabriele Pezzulli, Simon J. Lilly, Sofia Gallego, Ruari Mackenzie, Jorryt J Matthee, et al. “A Giant Lyα Nebula and a Small-Scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab2881. ieee: R. A. Marino et al., “A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE,” The Astrophysical Journal, vol. 880, no. 1. IOP Publishing, 2019. ista: Marino RA, Cantalupo S, Pezzulli G, Lilly SJ, Gallego S, Mackenzie R, Matthee JJ, Brinchmann J, Bouché N, Feltre A, Muzahid S, Schroetter I, Johnson SD, Nanayakkara T. 2019. A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE. The Astrophysical Journal. 880(1), 47. mla: Marino, Raffaella Anna, et al. “A Giant Lyα Nebula and a Small-Scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE.” The Astrophysical Journal, vol. 880, no. 1, 47, IOP Publishing, 2019, doi:10.3847/1538-4357/ab2881. short: R.A. Marino, S. Cantalupo, G. Pezzulli, S.J. Lilly, S. Gallego, R. Mackenzie, J.J. Matthee, J. Brinchmann, N. Bouché, A. Feltre, S. Muzahid, I. Schroetter, S.D. Johnson, T. Nanayakkara, The Astrophysical Journal 880 (2019). date_created: 2022-07-06T13:50:33Z date_published: 2019-07-24T00:00:00Z date_updated: 2022-08-18T10:20:18Z day: '24' doi: 10.3847/1538-4357/ab2881 extern: '1' external_id: arxiv: - '1906.06347' intvolume: ' 880' issue: '1' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.06347 month: '07' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 880 year: '2019' ... --- _id: '11515' abstract: - lang: eng text: We present new deep ALMA and Hubble Space Telescope (HST)/WFC3 observations of MASOSA and VR7, two luminous Lyα emitters (LAEs) at z = 6.5, for which the UV continuum levels differ by a factor of four. No IR dust continuum emission is detected in either, indicating little amounts of obscured star formation and/or high dust temperatures. MASOSA, with a UV luminosity M1500 = −20.9, compact size, and very high Lyα ${\mathrm{EW}}_{0}\approx 145\,\mathring{\rm A} $, is undetected in [C ii] to a limit of L[C ii] < 2.2 × 107 L⊙, implying a metallicity Z ≲ 0.07 Z⊙. Intriguingly, our HST data indicate a red UV slope β = −1.1 ± 0.7, at odds with the low dust content. VR7, which is a bright (M1500 = −22.4) galaxy with moderate color (β = −1.4 ± 0.3) and Lyα EW0 = 34 Å, is clearly detected in [C ii] emission (S/N = 15). VR7's rest-frame UV morphology can be described by two components separated by ≈1.5 kpc and is globally more compact than the [C ii] emission. The global [C ii]/UV ratio indicates Z ≈ 0.2 Z⊙, but there are large variations in the UV/[C ii] ratio on kiloparsec scales. We also identify diffuse, possibly outflowing, [C ii]-emitting gas at ≈100 km s−1 with respect to the peak. VR7 appears to be assembling its components at a slightly more evolved stage than other luminous LAEs, with outflows already shaping its direct environment at z ∼ 7. Our results further indicate that the global [C ii]−UV relation steepens at SFR < 30 M⊙ yr−1, naturally explaining why the [C ii]/UV ratio is anticorrelated with Lyα EW in many, but not all, observed LAEs. acknowledgement: 'We thank the anonymous referee for constructive comments and suggestions. We thank Max Gronke for comments on an earlier version of this paper. L.V. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 746119. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2017.1.01451.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. Based on observations obtained with the Very Large Telescope, programs 294.A-5018, 097.A-0943, and 99.A-0462. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained (from the Data Archive) at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 14699.' article_number: '124' article_processing_charge: No article_type: original author: - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: D. full_name: Sobral, D. last_name: Sobral - first_name: L. A. full_name: Boogaard, L. A. last_name: Boogaard - first_name: H. full_name: Röttgering, H. last_name: Röttgering - first_name: L. full_name: Vallini, L. last_name: Vallini - first_name: A. full_name: Ferrara, A. last_name: Ferrara - first_name: A. full_name: Paulino-Afonso, A. last_name: Paulino-Afonso - first_name: F. full_name: Boone, F. last_name: Boone - first_name: D. full_name: Schaerer, D. last_name: Schaerer - first_name: B. full_name: Mobasher, B. last_name: Mobasher citation: ama: Matthee JJ, Sobral D, Boogaard LA, et al. Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization. The Astrophysical Journal. 2019;881(2). doi:10.3847/1538-4357/ab2f81 apa: Matthee, J. J., Sobral, D., Boogaard, L. A., Röttgering, H., Vallini, L., Ferrara, A., … Mobasher, B. (2019). Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab2f81 chicago: Matthee, Jorryt J, D. Sobral, L. A. Boogaard, H. Röttgering, L. Vallini, A. Ferrara, A. Paulino-Afonso, F. Boone, D. Schaerer, and B. Mobasher. “Resolved UV and [C Ii] Structures of Luminous Galaxies within the Epoch of Reionization.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab2f81. ieee: J. J. Matthee et al., “Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization,” The Astrophysical Journal, vol. 881, no. 2. IOP Publishing, 2019. ista: Matthee JJ, Sobral D, Boogaard LA, Röttgering H, Vallini L, Ferrara A, Paulino-Afonso A, Boone F, Schaerer D, Mobasher B. 2019. Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization. The Astrophysical Journal. 881(2), 124. mla: Matthee, Jorryt J., et al. “Resolved UV and [C Ii] Structures of Luminous Galaxies within the Epoch of Reionization.” The Astrophysical Journal, vol. 881, no. 2, 124, IOP Publishing, 2019, doi:10.3847/1538-4357/ab2f81. short: J.J. Matthee, D. Sobral, L.A. Boogaard, H. Röttgering, L. Vallini, A. Ferrara, A. Paulino-Afonso, F. Boone, D. Schaerer, B. Mobasher, The Astrophysical Journal 881 (2019). date_created: 2022-07-06T13:38:15Z date_published: 2019-08-21T00:00:00Z date_updated: 2022-08-18T10:19:48Z day: '21' doi: 10.3847/1538-4357/ab2f81 extern: '1' external_id: arxiv: - '1903.08171' intvolume: ' 881' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.08171 month: '08' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 881 year: '2019' ... --- _id: '11517' abstract: - lang: eng text: To understand star formation in galaxies, we investigate the star formation rate (SFR) surface density (ΣSFR) profiles for galaxies, based on a well-defined sample of 976 star-forming MaNGA galaxies. We find that the typical ΣSFR profiles within 1.5Re of normal SF galaxies can be well described by an exponential function for different stellar mass intervals, while the sSFR profile shows positive gradients, especially for more massive SF galaxies. This is due to the more pronounced central cores or bulges rather than the onset of a `quenching' process. While galaxies that lie significantly above (or below) the star formation main sequence (SFMS) show overall an elevation (or suppression) of ΣSFR at all radii, this central elevation (or suppression) is more pronounced in more massive galaxies. The degree of central enhancement and suppression is quite symmetric, suggesting that both the elevation and suppression of star formation are following the same physical processes. Furthermore, we find that the dispersion in ΣSFR within and across the population is found to be tightly correlated with the inferred gas depletion time, whether based on the stellar surface mass density or the orbital dynamical time. This suggests that we are seeing the response of a simple gas-regulator system to variations in the accretion rate. This is explored using a heuristic model that can quantitatively explain the dependence of σ(ΣSFR) on gas depletion timescale. Variations in accretion rate are progressively more damped out in regions of low star-formation efficiency leading to a reduced amplitude of variations in star-formation. acknowledgement: "We are grateful to the anonymous referee for their thoughtful and constructive review of the paper and their several suggestions (including the analysis of Section 3.4), which have improved the paper. This research has been supported by the Swiss National Science Foundation.\r\n\r\nFunding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org.\r\n\r\nSDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, the Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, the Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University" article_number: '132' article_processing_charge: No article_type: original author: - first_name: Enci full_name: Wang, Enci last_name: Wang - first_name: Simon J. full_name: Lilly, Simon J. last_name: Lilly - first_name: Gabriele full_name: Pezzulli, Gabriele last_name: Pezzulli - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X citation: ama: Wang E, Lilly SJ, Pezzulli G, Matthee JJ. On the elevation and suppression of star formation within galaxies. The Astrophysical Journal. 2019;877(2). doi:10.3847/1538-4357/ab1c5b apa: Wang, E., Lilly, S. J., Pezzulli, G., & Matthee, J. J. (2019). On the elevation and suppression of star formation within galaxies. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab1c5b chicago: Wang, Enci, Simon J. Lilly, Gabriele Pezzulli, and Jorryt J Matthee. “On the Elevation and Suppression of Star Formation within Galaxies.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab1c5b. ieee: E. Wang, S. J. Lilly, G. Pezzulli, and J. J. Matthee, “On the elevation and suppression of star formation within galaxies,” The Astrophysical Journal, vol. 877, no. 2. IOP Publishing, 2019. ista: Wang E, Lilly SJ, Pezzulli G, Matthee JJ. 2019. On the elevation and suppression of star formation within galaxies. The Astrophysical Journal. 877(2), 132. mla: Wang, Enci, et al. “On the Elevation and Suppression of Star Formation within Galaxies.” The Astrophysical Journal, vol. 877, no. 2, 132, IOP Publishing, 2019, doi:10.3847/1538-4357/ab1c5b. short: E. Wang, S.J. Lilly, G. Pezzulli, J.J. Matthee, The Astrophysical Journal 877 (2019). date_created: 2022-07-07T08:38:24Z date_published: 2019-06-04T00:00:00Z date_updated: 2022-08-18T10:19:08Z day: '04' doi: 10.3847/1538-4357/ab1c5b extern: '1' external_id: arxiv: - '1901.10276' intvolume: ' 877' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1901.10276 month: '06' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: On the elevation and suppression of star formation within galaxies type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 877 year: '2019' ...