--- _id: '10619' abstract: - lang: eng text: The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. acknowledgement: The authors acknowledge discussions with A. Macdonald, Y. Saito, and M. Zaletel. article_processing_charge: No article_type: original author: - first_name: M. full_name: Serlin, M. last_name: Serlin - first_name: C. L. full_name: Tschirhart, C. L. last_name: Tschirhart - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Y. full_name: Zhang, Y. last_name: Zhang - first_name: J. full_name: Zhu, J. last_name: Zhu - first_name: K. full_name: Watanabe, K. last_name: Watanabe - first_name: T. full_name: Taniguchi, T. last_name: Taniguchi - first_name: L. full_name: Balents, L. last_name: Balents - first_name: A. F. full_name: Young, A. F. last_name: Young citation: ama: Serlin M, Tschirhart CL, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. 2019;367(6480):900-903. doi:10.1126/science.aay5533 apa: Serlin, M., Tschirhart, C. L., Polshyn, H., Zhang, Y., Zhu, J., Watanabe, K., … Young, A. F. (2019). Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aay5533 chicago: Serlin, M., C. L. Tschirhart, Hryhoriy Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young. “Intrinsic Quantized Anomalous Hall Effect in a Moiré Heterostructure.” Science. American Association for the Advancement of Science, 2019. https://doi.org/10.1126/science.aay5533. ieee: M. Serlin et al., “Intrinsic quantized anomalous Hall effect in a moiré heterostructure,” Science, vol. 367, no. 6480. American Association for the Advancement of Science, pp. 900–903, 2019. ista: Serlin M, Tschirhart CL, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young AF. 2019. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science. 367(6480), 900–903. mla: Serlin, M., et al. “Intrinsic Quantized Anomalous Hall Effect in a Moiré Heterostructure.” Science, vol. 367, no. 6480, American Association for the Advancement of Science, 2019, pp. 900–03, doi:10.1126/science.aay5533. short: M. Serlin, C.L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, A.F. Young, Science 367 (2019) 900–903. date_created: 2022-01-13T14:21:32Z date_published: 2019-12-19T00:00:00Z date_updated: 2023-02-21T16:00:09Z day: '19' doi: 10.1126/science.aay5533 extern: '1' external_id: arxiv: - '1907.00261' pmid: - '31857492' intvolume: ' 367' issue: '6480' keyword: - multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.00261 month: '12' oa: 1 oa_version: Preprint page: 900-903 pmid: 1 publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: record: - id: '10697' relation: other status: public - id: '10698' relation: other status: public - id: '10699' relation: other status: public scopus_import: '1' status: public title: Intrinsic quantized anomalous Hall effect in a moiré heterostructure type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 367 year: '2019' ... --- _id: '10724' abstract: - lang: eng text: Twisted bilayer graphene (tBLG) near the flat band condition is a versatile new platform for the study of correlated physics in 2D. Resistive states have been observed at several commensurate fillings of the flat miniband, along with superconducting states near half filling. To better understand the electronic structure of this system, we study electronic transport of graphite gated superconducting tBLG devices in the normal regime. At high magnetic fields, we observe full lifting of the spin and valley degeneracy. The transitions in the splitting of this four-fold degeneracy as a function of carrier density indicate Landau level (LL) crossings, which tilted field measurements show occur between LLs with different valley polarization. Similar LL structure measured in two devices, one with twist angle θ=1.08° at ambient pressure and one at θ=1.27° and 1.33GPa, suggests that the dimensionless combination of twist angle and interlayer coupling controls the relevant details of the band structure. In addition, we find that the temperature dependence of the resistance at B=0 shows linear growth at several hundred Ohm/K in a broad range of temperatures. We discuss the implications for modeling the scattering processes in this system. alternative_title: - Bulletin of the American Physical Society article_number: V14.00008 article_processing_charge: No author: - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Yuxuan full_name: Zhang, Yuxuan last_name: Zhang - first_name: Matthew full_name: Yankowitz, Matthew last_name: Yankowitz - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: David E. full_name: Graf, David E. last_name: Graf - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean - first_name: Andrea full_name: Young, Andrea last_name: Young citation: ama: 'Polshyn H, Zhang Y, Yankowitz M, et al. Normal state transport in superconducting twisted bilayer graphene. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Polshyn, H., Zhang, Y., Yankowitz, M., Chen, S., Taniguchi, T., Watanabe, K., … Young, A. (2019). Normal state transport in superconducting twisted bilayer graphene. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Polshyn, Hryhoriy, Yuxuan Zhang, Matthew Yankowitz, Shaowen Chen, Takashi Taniguchi, Kenji Watanabe, David E. Graf, Cory R. Dean, and Andrea Young. “Normal State Transport in Superconducting Twisted Bilayer Graphene.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: H. Polshyn et al., “Normal state transport in superconducting twisted bilayer graphene,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Polshyn H, Zhang Y, Yankowitz M, Chen S, Taniguchi T, Watanabe K, Graf DE, Dean CR, Young A. 2019. Normal state transport in superconducting twisted bilayer graphene. APS March Meeting 2019. APS: American Physical Society, Bulletin of the American Physical Society, vol. 64, V14.00008.' mla: Polshyn, Hryhoriy, et al. “Normal State Transport in Superconducting Twisted Bilayer Graphene.” APS March Meeting 2019, vol. 64, no. 2, V14.00008, American Physical Society, 2019. short: H. Polshyn, Y. Zhang, M. Yankowitz, S. Chen, T. Taniguchi, K. Watanabe, D.E. Graf, C.R. Dean, A. Young, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T12:25:04Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-08T10:23:13Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/V14.8 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Normal state transport in superconducting twisted bilayer graphene type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10722' abstract: - lang: eng text: Bilayer graphene, rotationally faulted to ~1.1 degree misalignment, has recently been shown to host superconducting and resistive states associated with the formation of a flat electronic band. While numerous theories exist for the origins of both states, direct validation of these theories remains an outstanding experimental problem. Here, we focus on the resistive states occurring at commensurate filling (1/2, 1/4, and 3/4) of the two lowest superlattice bands. We test theoretical proposals that these states arise due to broken spin—and/or valley—symmetry by performing direct magnetic imaging with nanoscale SQUID-on-tip microscopy. This technique provides single-spin resolved magnetometry on sub-100nm length scales. I will present imaging data from our 4.2K nSOT microscope on graphite-gated twisted bilayers near the flat band condition and discuss the implications for the physics of the commensurate resistive states. alternative_title: - Bulletin of the American Physical Society article_number: L14.00006 article_processing_charge: No author: - first_name: Marec full_name: Serlin, Marec last_name: Serlin - first_name: Charles full_name: Tschirhart, Charles last_name: Tschirhart - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Jiacheng full_name: Zhu, Jiacheng last_name: Zhu - first_name: Martin E. full_name: Huber, Martin E. last_name: Huber - first_name: Andrea full_name: Young, Andrea last_name: Young citation: ama: 'Serlin M, Tschirhart C, Polshyn H, Zhu J, Huber ME, Young A. Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Serlin, M., Tschirhart, C., Polshyn, H., Zhu, J., Huber, M. E., & Young, A. (2019). Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Serlin, Marec, Charles Tschirhart, Hryhoriy Polshyn, Jiacheng Zhu, Martin E. Huber, and Andrea Young. “Direct Imaging of Magnetic Structure in Twisted Bilayer Graphene with Scanning NanoSQUID-On-Tip Microscopy.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: M. Serlin, C. Tschirhart, H. Polshyn, J. Zhu, M. E. Huber, and A. Young, “Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Serlin M, Tschirhart C, Polshyn H, Zhu J, Huber ME, Young A. 2019. Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy. APS March Meeting 2019. APS: American Physical Society, Bulletin of the American Physical Society, vol. 64, L14.00006.' mla: Serlin, Marec, et al. “Direct Imaging of Magnetic Structure in Twisted Bilayer Graphene with Scanning NanoSQUID-On-Tip Microscopy.” APS March Meeting 2019, vol. 64, no. 2, L14.00006, American Physical Society, 2019. short: M. Serlin, C. Tschirhart, H. Polshyn, J. Zhu, M.E. Huber, A. Young, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T11:54:21Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-08T10:25:30Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/L14.6 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Direct Imaging of magnetic structure in twisted bilayer graphene with scanning nanoSQUID-On-Tip microscopy type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10725' abstract: - lang: eng text: Bilayer graphene with ~ 1.1 degrees twist mismatch between the layers hosts a low energy flat band in which the Coulomb interaction is large relative to the bandwidth, promoting correlated insulating states at half band filling, and superconducting (SC) phases with dome-like structure neighboring correlated insulating states. Here we show measurements of a dual-graphite-gated twisted bilayer graphene device, which minimizes charge inhomogeneity. We observe new correlated phases, including for the first time a SC pocket near half-filling of the electron-doped band and resistive states at quarter-filling of both bands that emerge in a magnetic field. Changing the layer polarization with vertical electric field reveals an unexpected competition between SC and correlated insulator phases, which we interpret to result from differences in disorder of each graphene layer and underscores the spatial inhomogeneity like twist angle as a significant source of disorder in these devices [1]. alternative_title: - Bulletin of the American Physical Society article_number: R14.00004 article_processing_charge: No author: - first_name: Shaowen full_name: Chen, Shaowen last_name: Chen - first_name: Matthew full_name: Yankowitz, Matthew last_name: Yankowitz - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: Takashi full_name: Taniguchi, Takashi last_name: Taniguchi - first_name: David E. full_name: Graf, David E. last_name: Graf - first_name: Andrea full_name: Young, Andrea last_name: Young - first_name: Cory R. full_name: Dean, Cory R. last_name: Dean citation: ama: 'Chen S, Yankowitz M, Polshyn H, et al. Correlated insulating and superconducting phases in twisted bilayer graphene. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Chen, S., Yankowitz, M., Polshyn, H., Watanabe, K., Taniguchi, T., Graf, D. E., … Dean, C. R. (2019). Correlated insulating and superconducting phases in twisted bilayer graphene. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Chen, Shaowen, Matthew Yankowitz, Hryhoriy Polshyn, Kenji Watanabe, Takashi Taniguchi, David E. Graf, Andrea Young, and Cory R. Dean. “Correlated Insulating and Superconducting Phases in Twisted Bilayer Graphene.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: S. Chen et al., “Correlated insulating and superconducting phases in twisted bilayer graphene,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Chen S, Yankowitz M, Polshyn H, Watanabe K, Taniguchi T, Graf DE, Young A, Dean CR. 2019. Correlated insulating and superconducting phases in twisted bilayer graphene. APS March Meeting 2019. APS: American Physical Society, Bulletin of the American Physical Society, vol. 64, R14.00004.' mla: Chen, Shaowen, et al. “Correlated Insulating and Superconducting Phases in Twisted Bilayer Graphene.” APS March Meeting 2019, vol. 64, no. 2, R14.00004, American Physical Society, 2019. short: S. Chen, M. Yankowitz, H. Polshyn, K. Watanabe, T. Taniguchi, D.E. Graf, A. Young, C.R. Dean, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T13:48:04Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-08T10:24:13Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/R14.4 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - relation: used_in_publication url: https://arxiv.org/abs/1808.07865 status: public title: Correlated insulating and superconducting phases in twisted bilayer graphene type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10723' abstract: - lang: eng text: In monolayer graphene, the interplay of electronic correlations with the internal spin- and valley- degrees of freedom leads to a complex phase diagram of isospin symmetry breaking at high magnetic fields. Recently, Wei et al. (Science (2018)) demonstrated that spin waves can be electrically generated and detected in graphene heterojunctions, allowing direct experiment access to the spin degree of freedom. Here, we apply this technique to high quality graphite-gated graphene devices showing robust fractional quantum Hall phases and isospin phase transitions. We use an edgeless Corbino geometry to eliminate the contributions of edge states to the spin-wave mediated nonlocal voltage, allowing unambiguous identification of spin wave transport signatures. Our data reveal two phases within the ν = 1 plateau. For exactly ν=1, charge is localized but spin waves propagate freely while small carrier doping completely quenches the low-energy spin-wave transport, even as those charges remain localized. We identify this new phase as a spin textured electron solid. We also find that spin-wave transport is modulated by phase transitions in the valley order that preserve spin polarization, suggesting that this technique is sensitive to both spin and valley order. article_number: P01.00004 article_processing_charge: No author: - first_name: Haoxin full_name: Zhou, Haoxin last_name: Zhou - first_name: Hryhoriy full_name: Polshyn, Hryhoriy id: edfc7cb1-526e-11ec-b05a-e6ecc27e4e48 last_name: Polshyn orcid: 0000-0001-8223-8896 - first_name: Takashi full_name: Tanaguchi, Takashi last_name: Tanaguchi - first_name: Kenji full_name: Watanabe, Kenji last_name: Watanabe - first_name: Andrea full_name: Young, Andrea last_name: Young citation: ama: 'Zhou H, Polshyn H, Tanaguchi T, Watanabe K, Young A. Spin wave transport through electron solids and fractional quantum Hall liquids in graphene. In: APS March Meeting 2019. Vol 64. American Physical Society; 2019.' apa: 'Zhou, H., Polshyn, H., Tanaguchi, T., Watanabe, K., & Young, A. (2019). Spin wave transport through electron solids and fractional quantum Hall liquids in graphene. In APS March Meeting 2019 (Vol. 64). Boston, MA, United States: American Physical Society.' chicago: Zhou, Haoxin, Hryhoriy Polshyn, Takashi Tanaguchi, Kenji Watanabe, and Andrea Young. “Spin Wave Transport through Electron Solids and Fractional Quantum Hall Liquids in Graphene.” In APS March Meeting 2019, Vol. 64. American Physical Society, 2019. ieee: H. Zhou, H. Polshyn, T. Tanaguchi, K. Watanabe, and A. Young, “Spin wave transport through electron solids and fractional quantum Hall liquids in graphene,” in APS March Meeting 2019, Boston, MA, United States, 2019, vol. 64, no. 2. ista: 'Zhou H, Polshyn H, Tanaguchi T, Watanabe K, Young A. 2019. Spin wave transport through electron solids and fractional quantum Hall liquids in graphene. APS March Meeting 2019. APS: American Physical Society vol. 64, P01.00004.' mla: Zhou, Haoxin, et al. “Spin Wave Transport through Electron Solids and Fractional Quantum Hall Liquids in Graphene.” APS March Meeting 2019, vol. 64, no. 2, P01.00004, American Physical Society, 2019. short: H. Zhou, H. Polshyn, T. Tanaguchi, K. Watanabe, A. Young, in:, APS March Meeting 2019, American Physical Society, 2019. conference: end_date: 2019-03-08 location: Boston, MA, United States name: 'APS: American Physical Society' start_date: 2019-03-04 date_created: 2022-02-04T12:14:02Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-02-04T13:59:47Z day: '01' extern: '1' intvolume: ' 64' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://meetings.aps.org/Meeting/MAR19/Session/P01.4 month: '03' oa: 1 oa_version: Published Version publication: APS March Meeting 2019 publication_identifier: issn: - 0003-0503 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Spin wave transport through electron solids and fractional quantum Hall liquids in graphene type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 64 year: '2019' ... --- _id: '10877' abstract: - lang: eng text: 'This report presents the results of a friendly competition for formal verification of continuous and hybrid systems with piecewise constant dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2019. In this third edition, six tools have been applied to solve five different benchmark problems in the category for piecewise constant dynamics: BACH, Lyse, Hy- COMP, PHAVer/SX, PHAVerLite, and VeriSiMPL. Compared to last year, a new tool has participated (HyCOMP) and PHAVerLite has replaced PHAVer-lite. The result is a snap- shot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results probably provide the most complete assessment of tools for the safety verification of continuous and hybrid systems with piecewise constant dynamics up to this date.' acknowledgement: "The authors gratefully acknowledge \fnancial support by the European Commission project\r\nUnCoVerCPS under grant number 643921. Lei Bu is supported by the National Natural Science\r\nFoundation of China (No.61572249)." alternative_title: - EPiC Series in Computing article_processing_charge: No author: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Alessandro full_name: Abate, Alessandro last_name: Abate - first_name: Dieky full_name: Adzkiya, Dieky last_name: Adzkiya - first_name: Anna full_name: Becchi, Anna last_name: Becchi - first_name: Lei full_name: Bu, Lei last_name: Bu - first_name: Alessandro full_name: Cimatti, Alessandro last_name: Cimatti - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Alberto full_name: Griggio, Alberto last_name: Griggio - first_name: Sergio full_name: Mover, Sergio last_name: Mover - first_name: Muhammad Syifa'ul full_name: Mufid, Muhammad Syifa'ul last_name: Mufid - first_name: Idriss full_name: Riouak, Idriss last_name: Riouak - first_name: Stefano full_name: Tonetta, Stefano last_name: Tonetta - first_name: Enea full_name: Zaffanella, Enea last_name: Zaffanella citation: ama: 'Frehse G, Abate A, Adzkiya D, et al. ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. In: Frehse G, Althoff M, eds. ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. Vol 61. EasyChair; 2019:1-13. doi:10.29007/rjwn' apa: 'Frehse, G., Abate, A., Adzkiya, D., Becchi, A., Bu, L., Cimatti, A., … Zaffanella, E. (2019). ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. In G. Frehse & M. Althoff (Eds.), ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems (Vol. 61, pp. 1–13). Montreal, Canada: EasyChair. https://doi.org/10.29007/rjwn' chicago: 'Frehse, Goran, Alessandro Abate, Dieky Adzkiya, Anna Becchi, Lei Bu, Alessandro Cimatti, Mirco Giacobbe, et al. “ARCH-COMP19 Category Report: Hybrid Systems with Piecewise Constant Dynamics.” In ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, edited by Goran Frehse and Matthias Althoff, 61:1–13. EasyChair, 2019. https://doi.org/10.29007/rjwn.' ieee: 'G. Frehse et al., “ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics,” in ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, Montreal, Canada, 2019, vol. 61, pp. 1–13.' ista: 'Frehse G, Abate A, Adzkiya D, Becchi A, Bu L, Cimatti A, Giacobbe M, Griggio A, Mover S, Mufid MS, Riouak I, Tonetta S, Zaffanella E. 2019. ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics. ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems, EPiC Series in Computing, vol. 61, 1–13.' mla: 'Frehse, Goran, et al. “ARCH-COMP19 Category Report: Hybrid Systems with Piecewise Constant Dynamics.” ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, edited by Goran Frehse and Matthias Althoff, vol. 61, EasyChair, 2019, pp. 1–13, doi:10.29007/rjwn.' short: G. Frehse, A. Abate, D. Adzkiya, A. Becchi, L. Bu, A. Cimatti, M. Giacobbe, A. Griggio, S. Mover, M.S. Mufid, I. Riouak, S. Tonetta, E. Zaffanella, in:, G. Frehse, M. Althoff (Eds.), ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems, EasyChair, 2019, pp. 1–13. conference: end_date: 2019-04-15 location: Montreal, Canada name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2019-04-15 date_created: 2022-03-18T12:29:23Z date_published: 2019-05-25T00:00:00Z date_updated: 2022-05-17T07:09:47Z day: '25' ddc: - '000' department: - _id: ToHe doi: 10.29007/rjwn editor: - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff file: - access_level: open_access checksum: 4b92e333db7b4e2349501a804dfede69 content_type: application/pdf creator: dernst date_created: 2022-05-17T06:55:49Z date_updated: 2022-05-17T06:55:49Z file_id: '11391' file_name: 2019_EPiCs_Frehse.pdf file_size: 346415 relation: main_file success: 1 file_date_updated: 2022-05-17T06:55:49Z has_accepted_license: '1' intvolume: ' 61' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1-13 publication: ARCH19. 6th International Workshop on Applied Verification of Continuous and Hybrid Systems publication_identifier: issn: - 2398-7340 publication_status: published publisher: EasyChair quality_controlled: '1' scopus_import: '1' status: public title: 'ARCH-COMP19 Category Report: Hybrid systems with piecewise constant dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 61 year: '2019' ... --- _id: '11061' abstract: - lang: eng text: Many adult tissues contain postmitotic cells as old as the host organism. The only organelle that does not turn over in these cells is the nucleus, and its maintenance represents a formidable challenge, as it harbors regulatory proteins that persist throughout adulthood. Here we developed strategies to visualize two classes of such long-lived proteins, histones and nucleoporins, to understand the function of protein longevity in nuclear maintenance. Genome-wide mapping of histones revealed specific enrichment of long-lived variants at silent gene loci. Interestingly, nuclear pores are maintained by piecemeal replacement of subunits, resulting in mosaic complexes composed of polypeptides with vastly different ages. In contrast, nondividing quiescent cells remove old nuclear pores in an ESCRT-dependent manner. Our findings reveal distinct molecular strategies of nuclear maintenance, linking lifelong protein persistence to gene regulation and nuclear integrity. article_processing_charge: No article_type: original author: - first_name: Brandon H. full_name: Toyama, Brandon H. last_name: Toyama - first_name: Rafael full_name: Arrojo e Drigo, Rafael last_name: Arrojo e Drigo - first_name: Varda full_name: Lev-Ram, Varda last_name: Lev-Ram - first_name: Ranjan full_name: Ramachandra, Ranjan last_name: Ramachandra - first_name: Thomas J. full_name: Deerinck, Thomas J. last_name: Deerinck - first_name: Claude full_name: Lechene, Claude last_name: Lechene - first_name: Mark H. full_name: Ellisman, Mark H. last_name: Ellisman - first_name: Martin W full_name: HETZER, Martin W id: 86c0d31b-b4eb-11ec-ac5a-eae7b2e135ed last_name: HETZER orcid: 0000-0002-2111-992X citation: ama: Toyama BH, Arrojo e Drigo R, Lev-Ram V, et al. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. Journal of Cell Biology. 2019;218(2):433-444. doi:10.1083/jcb.201809123 apa: Toyama, B. H., Arrojo e Drigo, R., Lev-Ram, V., Ramachandra, R., Deerinck, T. J., Lechene, C., … Hetzer, M. (2019). Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.201809123 chicago: Toyama, Brandon H., Rafael Arrojo e Drigo, Varda Lev-Ram, Ranjan Ramachandra, Thomas J. Deerinck, Claude Lechene, Mark H. Ellisman, and Martin Hetzer. “Visualization of Long-Lived Proteins Reveals Age Mosaicism within Nuclei of Postmitotic Cells.” Journal of Cell Biology. Rockefeller University Press, 2019. https://doi.org/10.1083/jcb.201809123. ieee: B. H. Toyama et al., “Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells,” Journal of Cell Biology, vol. 218, no. 2. Rockefeller University Press, pp. 433–444, 2019. ista: Toyama BH, Arrojo e Drigo R, Lev-Ram V, Ramachandra R, Deerinck TJ, Lechene C, Ellisman MH, Hetzer M. 2019. Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells. Journal of Cell Biology. 218(2), 433–444. mla: Toyama, Brandon H., et al. “Visualization of Long-Lived Proteins Reveals Age Mosaicism within Nuclei of Postmitotic Cells.” Journal of Cell Biology, vol. 218, no. 2, Rockefeller University Press, 2019, pp. 433–44, doi:10.1083/jcb.201809123. short: B.H. Toyama, R. Arrojo e Drigo, V. Lev-Ram, R. Ramachandra, T.J. Deerinck, C. Lechene, M.H. Ellisman, M. Hetzer, Journal of Cell Biology 218 (2019) 433–444. date_created: 2022-04-07T07:45:11Z date_published: 2019-02-04T00:00:00Z date_updated: 2022-07-18T08:31:52Z day: '04' ddc: - '570' doi: 10.1083/jcb.201809123 extern: '1' external_id: pmid: - '30552100' file: - access_level: open_access checksum: 7964ebbf833b0b35f9fba840eea9531d content_type: application/pdf creator: dernst date_created: 2022-04-08T08:26:32Z date_updated: 2022-04-08T08:26:32Z file_id: '11139' file_name: 2019_JCB_Toyama.pdf file_size: 2503838 relation: main_file success: 1 file_date_updated: 2022-04-08T08:26:32Z has_accepted_license: '1' intvolume: ' 218' issue: '2' keyword: - Cell Biology language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '02' oa: 1 oa_version: Published Version page: 433-444 pmid: 1 publication: Journal of Cell Biology publication_identifier: eissn: - 1540-8140 issn: - 0021-9525 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Visualization of long-lived proteins reveals age mosaicism within nuclei of postmitotic cells tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 218 year: '2019' ... --- _id: '11062' abstract: - lang: eng text: Most neurons are not replaced during an animal’s lifetime. This nondividing state is characterized by extreme longevity and age-dependent decline of key regulatory proteins. To study the lifespans of cells and proteins in adult tissues, we combined isotope labeling of mice with a hybrid imaging method (MIMS-EM). Using 15N mapping, we show that liver and pancreas are composed of cells with vastly different ages, many as old as the animal. Strikingly, we also found that a subset of fibroblasts and endothelial cells, both known for their replicative potential, are characterized by the absence of cell division during adulthood. In addition, we show that the primary cilia of beta cells and neurons contains different structural regions with vastly different lifespans. Based on these results, we propose that age mosaicism across multiple scales is a fundamental principle of adult tissue, cell, and protein complex organization. article_processing_charge: No article_type: original author: - first_name: Rafael full_name: Arrojo e Drigo, Rafael last_name: Arrojo e Drigo - first_name: Varda full_name: Lev-Ram, Varda last_name: Lev-Ram - first_name: Swati full_name: Tyagi, Swati last_name: Tyagi - first_name: Ranjan full_name: Ramachandra, Ranjan last_name: Ramachandra - first_name: Thomas full_name: Deerinck, Thomas last_name: Deerinck - first_name: Eric full_name: Bushong, Eric last_name: Bushong - first_name: Sebastien full_name: Phan, Sebastien last_name: Phan - first_name: Victoria full_name: Orphan, Victoria last_name: Orphan - first_name: Claude full_name: Lechene, Claude last_name: Lechene - first_name: Mark H. full_name: Ellisman, Mark H. last_name: Ellisman - first_name: Martin W full_name: HETZER, Martin W id: 86c0d31b-b4eb-11ec-ac5a-eae7b2e135ed last_name: HETZER orcid: 0000-0002-2111-992X citation: ama: Arrojo e Drigo R, Lev-Ram V, Tyagi S, et al. Age mosaicism across multiple scales in adult tissues. Cell Metabolism. 2019;30(2):343-351.e3. doi:10.1016/j.cmet.2019.05.010 apa: Arrojo e Drigo, R., Lev-Ram, V., Tyagi, S., Ramachandra, R., Deerinck, T., Bushong, E., … Hetzer, M. (2019). Age mosaicism across multiple scales in adult tissues. Cell Metabolism. Elsevier. https://doi.org/10.1016/j.cmet.2019.05.010 chicago: Arrojo e Drigo, Rafael, Varda Lev-Ram, Swati Tyagi, Ranjan Ramachandra, Thomas Deerinck, Eric Bushong, Sebastien Phan, et al. “Age Mosaicism across Multiple Scales in Adult Tissues.” Cell Metabolism. Elsevier, 2019. https://doi.org/10.1016/j.cmet.2019.05.010. ieee: R. Arrojo e Drigo et al., “Age mosaicism across multiple scales in adult tissues,” Cell Metabolism, vol. 30, no. 2. Elsevier, p. 343–351.e3, 2019. ista: Arrojo e Drigo R, Lev-Ram V, Tyagi S, Ramachandra R, Deerinck T, Bushong E, Phan S, Orphan V, Lechene C, Ellisman MH, Hetzer M. 2019. Age mosaicism across multiple scales in adult tissues. Cell Metabolism. 30(2), 343–351.e3. mla: Arrojo e Drigo, Rafael, et al. “Age Mosaicism across Multiple Scales in Adult Tissues.” Cell Metabolism, vol. 30, no. 2, Elsevier, 2019, p. 343–351.e3, doi:10.1016/j.cmet.2019.05.010. short: R. Arrojo e Drigo, V. Lev-Ram, S. Tyagi, R. Ramachandra, T. Deerinck, E. Bushong, S. Phan, V. Orphan, C. Lechene, M.H. Ellisman, M. Hetzer, Cell Metabolism 30 (2019) 343–351.e3. date_created: 2022-04-07T07:45:21Z date_published: 2019-08-06T00:00:00Z date_updated: 2022-07-18T08:32:30Z day: '06' doi: 10.1016/j.cmet.2019.05.010 extern: '1' external_id: pmid: - '31178361' intvolume: ' 30' issue: '2' keyword: - Cell Biology - Molecular Biology - Physiology language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.cmet.2019.05.010 month: '08' oa: 1 oa_version: Published Version page: 343-351.e3 pmid: 1 publication: Cell Metabolism publication_identifier: issn: - 1550-4131 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Age mosaicism across multiple scales in adult tissues type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 30 year: '2019' ... --- _id: '11499' abstract: - lang: eng text: Deep optical spectroscopic surveys of galaxies provide a unique opportunity to investigate rest-frame ultra-violet (UV) emission line properties of galaxies at z ∼ 2 − 4.5. Here we combine VLT/MUSE Guaranteed Time Observations of the Hubble Deep Field South, Ultra Deep Field, COSMOS, and several quasar fields with other publicly available data from VLT/VIMOS and VLT/FORS2 to construct a catalogue of He II λ1640 emitters at z ≳ 2. The deepest areas of our MUSE pointings reach a 3σ line flux limit of 3.1 × 10−19 erg s−1 cm−2. After discarding broad-line active galactic nuclei, we find 13 He II λ1640 detections from MUSE with a median MUV = −20.1 and 21 tentative He II λ1640 detections from other public surveys. Excluding Lyα, all except two galaxies in our sample show at least one other rest-UV emission line, with C III] λ1907, λ1909 being the most prominent. We use multi-wavelength data available in the Hubble legacy fields to derive basic galaxy properties of our sample through spectral energy distribution fitting techniques. Taking advantage of the high-quality spectra obtained by MUSE (∼10 − 30 h of exposure time per pointing), we use photo-ionisation models to study the rest-UV emission line diagnostics of the He II λ1640 emitters. Line ratios of our sample can be reproduced by moderately sub-solar photo-ionisation models, however, we find that including effects of binary stars lead to degeneracies in most free parameters. Even after considering extra ionising photons produced by extreme sub-solar metallicity binary stellar models, photo-ionisation models are unable to reproduce rest-frame He II λ1640 equivalent widths (∼0.2 − 10 Å), thus additional mechanisms are necessary in models to match the observed He II λ1640 properties. acknowledgement: 'The authors wish to thank the referee for constructive comments that improved the paper substantially. We thank the BPASS team for making the stellar population models available. We thank Elizabeth Stanway, Claus Leitherer, Daniel Schaerer, Jorick Vink, and Nell Byler for insightful discussions. We thank the Lorentz Centre and the scientific organizers of the Characterizing galaxies with spectroscopy with a view for JWST workshop held at the Lorentz Centre in 2017 October, which promoted useful discussions in the wider community. TN, JB, and RB acknowledges the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) top grant TOP1.16.057. AF acknowledges support from the ERC via an Advanced Grant under grant agreement no. 339659-MUSICOS. JB acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003, and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). JR acknowledges support from the ERC Starting grant 336736 (CALENDS). This research made use of astropy (http://www.astropy.org) a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018) and pandas (McKinney 2010). Figures were generated using matplotlib (Hunter 2007) and seaborn (https://seaborn.pydata.org). Facilities: VLT (MUSE).' article_number: A89 article_processing_charge: No article_type: original author: - first_name: Themiya full_name: Nanayakkara, Themiya last_name: Nanayakkara - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Leindert full_name: Boogaard, Leindert last_name: Boogaard - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Sebastiano full_name: Cantalupo, Sebastiano last_name: Cantalupo - first_name: Anna full_name: Feltre, Anna last_name: Feltre - first_name: Wolfram full_name: Kollatschny, Wolfram last_name: Kollatschny - first_name: Raffaella Anna full_name: Marino, Raffaella Anna last_name: Marino - first_name: Michael full_name: Maseda, Michael last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Mieke full_name: Paalvast, Mieke last_name: Paalvast - first_name: Johan full_name: Richard, Johan last_name: Richard - first_name: Anne full_name: Verhamme, Anne last_name: Verhamme citation: ama: Nanayakkara T, Brinchmann J, Boogaard L, et al. Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. 2019;648. doi:10.1051/0004-6361/201834565 apa: Nanayakkara, T., Brinchmann, J., Boogaard, L., Bouwens, R., Cantalupo, S., Feltre, A., … Verhamme, A. (2019). Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834565 chicago: Nanayakkara, Themiya, Jarle Brinchmann, Leindert Boogaard, Rychard Bouwens, Sebastiano Cantalupo, Anna Feltre, Wolfram Kollatschny, et al. “Exploring He II Λ1640 Emission Line Properties at z ∼2−4.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834565. ieee: T. Nanayakkara et al., “Exploring He II λ1640 emission line properties at z ∼2−4,” Astronomy & Astrophysics, vol. 648. EDP Sciences, 2019. ista: Nanayakkara T, Brinchmann J, Boogaard L, Bouwens R, Cantalupo S, Feltre A, Kollatschny W, Marino RA, Maseda M, Matthee JJ, Paalvast M, Richard J, Verhamme A. 2019. Exploring He II λ1640 emission line properties at z ∼2−4. Astronomy & Astrophysics. 648, A89. mla: Nanayakkara, Themiya, et al. “Exploring He II Λ1640 Emission Line Properties at z ∼2−4.” Astronomy & Astrophysics, vol. 648, A89, EDP Sciences, 2019, doi:10.1051/0004-6361/201834565. short: T. Nanayakkara, J. Brinchmann, L. Boogaard, R. Bouwens, S. Cantalupo, A. Feltre, W. Kollatschny, R.A. Marino, M. Maseda, J.J. Matthee, M. Paalvast, J. Richard, A. Verhamme, Astronomy & Astrophysics 648 (2019). date_created: 2022-07-06T09:07:06Z date_published: 2019-04-16T00:00:00Z date_updated: 2022-07-19T09:36:08Z day: '16' doi: 10.1051/0004-6361/201834565 extern: '1' external_id: arxiv: - '1902.05960' intvolume: ' 648' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: ISM / galaxies: star formation / galaxies: evolution / galaxies: high-redshift' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1902.05960 month: '04' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1051/0004-6361/201834565e scopus_import: '1' status: public title: Exploring He II λ1640 emission line properties at z ∼2−4 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 648 year: '2019' ... --- _id: '11505' abstract: - lang: eng text: "Contact. This paper presents the results obtained with the Multi-Unit Spectroscopic Explorer (MUSE) at the ESO Very Large Telescope on the faint end of the Lyman-alpha luminosity function (LF) based on deep observations of four lensing clusters. The goal of our project is to set strong constraints on the relative contribution of the Lyman-alpha emitter (LAE) population to cosmic reionization.\r\n\r\nAims. The precise aim of the present study is to further constrain the abundance of LAEs by taking advantage of the magnification provided by lensing clusters to build a blindly selected sample of galaxies which is less biased than current blank field samples in redshift and luminosity. By construction, this sample of LAEs is complementary to those built from deep blank fields, whether observed by MUSE or by other facilities, and makes it possible to determine the shape of the LF at fainter levels, as well as its evolution with redshift.\r\n\r\nMethods. We selected a sample of 156 LAEs with redshifts between 2.9 ≤ z ≤ 6.7 and magnification-corrected luminosities in the range 39 ≲ log LLyα [erg s−1] ≲43. To properly take into account the individual differences in detection conditions between the LAEs when computing the LF, including lensing configurations, and spatial and spectral morphologies, the non-parametric 1/Vmax method was adopted. The price to pay to benefit from magnification is a reduction of the effective volume of the survey, together with a more complex analysis procedure to properly determine the effective volume Vmax for each galaxy. In this paper we present a complete procedure for the determination of the LF based on IFU detections in lensing clusters. This procedure, including some new methods for masking, effective volume integration and (individual) completeness determinations, has been fully automated when possible, and it can be easily generalized to the analysis of IFU observations in blank fields.\r\n\r\nResults. As a result of this analysis, the Lyman-alpha LF has been obtained in four different redshift bins: 2.9 <  z <  6, 7, 2.9 <  z <  4.0, 4.0 <  z <  5.0, and 5.0 <  z <  6.7 with constraints down to log LLyα = 40.5. From our data only, no significant evolution of LF mean slope can be found. When performing a Schechter analysis also including data from the literature to complete the present sample towards the brightest luminosities, a steep faint end slope was measured varying from α = −1.69−0.08+0.08 to α = −1.87−0.12+0.12 between the lowest and the highest redshift bins.\r\n\r\nConclusions. The contribution of the LAE population to the star formation rate density at z ∼ 6 is ≲50% depending on the luminosity limit considered, which is of the same order as the Lyman-break galaxy (LBG) contribution. The evolution of the LAE contribution with redshift depends on the assumed escape fraction of Lyman-alpha photons, and appears to slightly increase with increasing redshift when this fraction is conservatively set to one. Depending on the intersection between the LAE/LBG populations, the contribution of the observed galaxies to the ionizing flux may suffice to keep the universe ionized at z ∼ 6." acknowledgement: We thank the anonymous referee for their critical review and useful suggestions. This work has been carried out thanks to the support of the OCEVU Labex (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French government programme managed by the ANR. Partially funded by the ERC starting grant CALENDS (JR, VP, BC, JM), the Agence Nationale de la recherche bearing the reference ANR-13-BS05-0010-02 (FOGHAR), and the “Programme National de Cosmologie and Galaxies” (PNCG) of CNRS/INSU, France. GdV, RP, JR, GM, JM, BC, and VP also acknowledge support by the Programa de Cooperacion Cientifica – ECOS SUD Program C16U02. NL acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 669253), ABD acknowledges support from the ERC advanced grant “Cosmic Gas”. LW acknowledges support by the Competitive Fund of the Leibniz Association through grant SAW-2015-AIP-2, and TG acknowledges support from the European Research Council under grant agreement ERC-stg-757258 (TRIPLE).. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 060.A-9345, 094.A-0115, 095.A-0181, 096.A-0710, 097.A0269, 100.A-0249, and 294.A-5032. Also based on observations obtained with the NASA/ESA Hubble Space Telescope, retrieved from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013). All plots in this paper were created using Matplotlib (Hunter 2007). article_number: A3 article_processing_charge: No article_type: original author: - first_name: G. full_name: de La Vieuville, G. last_name: de La Vieuville - first_name: D. full_name: Bina, D. last_name: Bina - first_name: R. full_name: Pello, R. last_name: Pello - first_name: G. full_name: Mahler, G. last_name: Mahler - first_name: J. full_name: Richard, J. last_name: Richard - first_name: A. B. full_name: Drake, A. B. last_name: Drake - first_name: E. C. full_name: Herenz, E. C. last_name: Herenz - first_name: F. E. full_name: Bauer, F. E. last_name: Bauer - first_name: B. full_name: Clément, B. last_name: Clément - first_name: D. full_name: Lagattuta, D. last_name: Lagattuta - first_name: N. full_name: Laporte, N. last_name: Laporte - first_name: J. full_name: Martinez, J. last_name: Martinez - first_name: V. full_name: Patrício, V. last_name: Patrício - first_name: L. full_name: Wisotzki, L. last_name: Wisotzki - first_name: J. full_name: Zabl, J. last_name: Zabl - first_name: R. J. full_name: Bouwens, R. J. last_name: Bouwens - first_name: T. full_name: Contini, T. last_name: Contini - first_name: T. full_name: Garel, T. last_name: Garel - first_name: B. full_name: Guiderdoni, B. last_name: Guiderdoni - first_name: R. A. full_name: Marino, R. A. last_name: Marino - first_name: M. V. full_name: Maseda, M. V. last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: J. full_name: Schaye, J. last_name: Schaye - first_name: G. full_name: Soucail, G. last_name: Soucail citation: ama: de La Vieuville G, Bina D, Pello R, et al. Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. 2019;628. doi:10.1051/0004-6361/201834471 apa: de La Vieuville, G., Bina, D., Pello, R., Mahler, G., Richard, J., Drake, A. B., … Soucail, G. (2019). Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201834471 chicago: La Vieuville, G. de, D. Bina, R. Pello, G. Mahler, J. Richard, A. B. Drake, E. C. Herenz, et al. “Faint End of the z ∼ 3–7 Luminosity Function of Lyman-Alpha Emitters behind Lensing Clusters Observed with MUSE.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201834471. ieee: G. de La Vieuville et al., “Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE,” Astronomy & Astrophysics, vol. 628. EDP Sciences, 2019. ista: de La Vieuville G, Bina D, Pello R, Mahler G, Richard J, Drake AB, Herenz EC, Bauer FE, Clément B, Lagattuta D, Laporte N, Martinez J, Patrício V, Wisotzki L, Zabl J, Bouwens RJ, Contini T, Garel T, Guiderdoni B, Marino RA, Maseda MV, Matthee JJ, Schaye J, Soucail G. 2019. Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE. Astronomy & Astrophysics. 628, A3. mla: de La Vieuville, G., et al. “Faint End of the z ∼ 3–7 Luminosity Function of Lyman-Alpha Emitters behind Lensing Clusters Observed with MUSE.” Astronomy & Astrophysics, vol. 628, A3, EDP Sciences, 2019, doi:10.1051/0004-6361/201834471. short: G. de La Vieuville, D. Bina, R. Pello, G. Mahler, J. Richard, A.B. Drake, E.C. Herenz, F.E. Bauer, B. Clément, D. Lagattuta, N. Laporte, J. Martinez, V. Patrício, L. Wisotzki, J. Zabl, R.J. Bouwens, T. Contini, T. Garel, B. Guiderdoni, R.A. Marino, M.V. Maseda, J.J. Matthee, J. Schaye, G. Soucail, Astronomy & Astrophysics 628 (2019). date_created: 2022-07-06T10:09:36Z date_published: 2019-07-25T00:00:00Z date_updated: 2022-07-19T09:36:31Z day: '25' doi: 10.1051/0004-6361/201834471 extern: '1' external_id: arxiv: - '1905.13696' intvolume: ' 628' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'gravitational lensing: strong / galaxies: high-redshift / dark ages' - reionization - 'first stars / galaxies: clusters: general / galaxies: luminosity function' - mass function language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.13696 month: '07' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: Faint end of the z ∼ 3–7 luminosity function of Lyman-alpha emitters behind lensing clusters observed with MUSE type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 628 year: '2019' ... --- _id: '11507' abstract: - lang: eng text: 'Lyman-α (Lyα) is intrinsically the brightest line emitted from active galaxies. While it originates from many physical processes, for star-forming galaxies the intrinsic Lyα luminosity is a direct tracer of the Lyman-continuum (LyC) radiation produced by the most massive O- and early-type B-stars (M⋆ ≳ 10 M⊙) with lifetimes of a few Myrs. As such, Lyα luminosity should be an excellent instantaneous star formation rate (SFR) indicator. However, its resonant nature and susceptibility to dust as a rest-frame UV photon makes Lyα very hard to interpret due to the uncertain Lyα escape fraction, fesc, Lyα. Here we explore results from the CAlibrating LYMan-α with Hα (CALYMHA) survey at z = 2.2, follow-up of Lyα emitters (LAEs) at z = 2.2 − 2.6 and a z ∼ 0−0.3 compilation of LAEs to directly measure fesc, Lyα with Hα. We derive a simple empirical relation that robustly retrieves fesc, Lyα as a function of Lyα rest-frame EW (EW0): fesc,Lyα = 0.0048 EW0[Å] ± 0.05 and we show that it constrains a well-defined anti-correlation between ionisation efficiency (ξion) and dust extinction in LAEs. Observed Lyα luminosities and EW0 are easy measurable quantities at high redshift, thus making our relation a practical tool to estimate intrinsic Lyα and LyC luminosities under well controlled and simple assumptions. Our results allow observed Lyα luminosities to be used to compute SFRs for LAEs at z ∼ 0−2.6 within ±0.2 dex of the Hα dust corrected SFRs. We apply our empirical SFR(Lyα,EW0) calibration to several sources at z ≥ 2.6 to find that star-forming LAEs have SFRs typically ranging from 0.1 to 20 M⊙ yr−1 and that our calibration might be even applicable for the most luminous LAEs within the epoch of re-ionisation. Our results imply high ionisation efficiencies (log10[ξion/Hz erg−1] = 25.4−25.6) and low dust content in LAEs across cosmic time, and will be easily tested with future observations with JWST which can obtain Hα and Hβ measurements for high-redshift LAEs.' acknowledgement: We thank the anonymous referees for multiple comments and suggestions which have improved the manuscript. JM acknowledges the support of a Huygens PhD fellowship from Leiden University. We have benefited greatly from the publicly available programming language PYTHON, including the NUMPY & SCIPY (Van Der Walt et al. 2011; Jones et al. 2001), MATPLOTLIB (Hunter 2007) and ASTROPY (Astropy Collaboration 2013) packages, and the TOPCAT analysis program (Taylor 2013). The results and samples of LAEs used for this paper are publicly available (see e.g. Sobral et al. 2017, 2018a) and we also provide the toy model used as a PYTHON script. article_number: A157 article_processing_charge: No article_type: original author: - first_name: David full_name: Sobral, David last_name: Sobral - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X citation: ama: 'Sobral D, Matthee JJ. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 2019;623. doi:10.1051/0004-6361/201833075' apa: 'Sobral, D., & Matthee, J. J. (2019). Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/201833075' chicago: 'Sobral, David, and Jorryt J Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics. EDP Sciences, 2019. https://doi.org/10.1051/0004-6361/201833075.' ieee: 'D. Sobral and J. J. Matthee, “Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator,” Astronomy & Astrophysics, vol. 623. EDP Sciences, 2019.' ista: 'Sobral D, Matthee JJ. 2019. Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator. Astronomy & Astrophysics. 623, A157.' mla: 'Sobral, David, and Jorryt J. Matthee. “Predicting Lyα Escape Fractions with a Simple Observable: Lyα in Emission as an Empirically Calibrated Star Formation Rate Indicator.” Astronomy & Astrophysics, vol. 623, A157, EDP Sciences, 2019, doi:10.1051/0004-6361/201833075.' short: D. Sobral, J.J. Matthee, Astronomy & Astrophysics 623 (2019). date_created: 2022-07-06T11:08:16Z date_published: 2019-03-26T00:00:00Z date_updated: 2022-07-19T09:37:20Z day: '26' doi: 10.1051/0004-6361/201833075 extern: '1' external_id: arxiv: - '1803.08923' intvolume: ' 623' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: high-redshift / galaxies: star formation / galaxies: statistics / galaxies: evolution / galaxies: formation / galaxies: ISM' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.08923 month: '03' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: 'Predicting Lyα escape fractions with a simple observable: Lyα in emission as an empirically calibrated star formation rate indicator' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 623 year: '2019' ... --- _id: '11514' abstract: - lang: eng text: We discuss the nature and physical properties of gas-mass selected galaxies in the ALMA spectroscopic survey (ASPECS) of the Hubble Ultra Deep Field (HUDF). We capitalize on the deep optical integral-field spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE) HUDF Survey and multiwavelength data to uniquely associate all 16 line emitters, detected in the ALMA data without preselection, with rotational transitions of carbon monoxide (CO). We identify 10 as CO(2–1) at 1 < z < 2, 5 as CO(3–2) at 2 < z < 3, and 1 as CO(4–3) at z = 3.6. Using the MUSE data as a prior, we identify two additional CO(2–1) emitters, increasing the total sample size to 18. We infer metallicities consistent with (super-)solar for the CO-detected galaxies at z ≤ 1.5, motivating our choice of a Galactic conversion factor between CO luminosity and molecular gas mass for these galaxies. Using deep Chandra imaging of the HUDF, we determine an X-ray AGN fraction of 20% and 60% among the CO emitters at z ∼ 1.4 and z ∼ 2.6, respectively. Being a CO-flux-limited survey, ASPECS-LP detects molecular gas in galaxies on, above, and below the main sequence (MS) at z ∼ 1.4. For stellar masses ≥1010 (1010.5) ${M}_{\odot }$, we detect about 40% (50%) of all galaxies in the HUDF at 1 < z < 2 (2 < z < 3). The combination of ALMA and MUSE integral-field spectroscopy thus enables an unprecedented view of MS galaxies during the peak of galaxy formation. acknowledgement: "We are grateful to the referee for providing a constructive report. L.A.B. wants to thank Madusha L.P. Gunawardhana for her help with platefit. Based on observations collected at the European Southern Observatory under ESO programme(s): 094.A-2089(B), 095.A-0010(A), 096.A-0045(A), and 096.A-0045(B). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00324.L. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.\r\n\r\n\"Este trabajo contó con el apoyo de CONICYT+Programa de Astronomía+ Fondo CHINA-CONICYT\" J.G-L. acknowledges partial support from ALMA-CONICYT project 31160033. F.E.B. acknowledges support from CONICYT grant Basal AFB-170002 (FEB), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (FEB). J.B. acknowledges support by Fundação para a Ciência e a Tecnologia (FCT) through national funds (UID/FIS/04434/2013) and Investigador FCT contract IF/01654/2014/CP1215/CT0003., and by FEDER through COMPETE2020 (POCI-01-0145-FEDER-007672). T.D-S. acknowledges support from ALMA-CONYCIT project 31130005 and FONDECYT project 1151239. J.H. acknowledges support of the VIDI research programme with project number 639.042.611, which is (partly) financed by the Netherlands Organization for Scientific Research (NWO). D.R. acknowledges support from the National Science Foundation under grant No. AST-1614213. I.R.S. acknowledges support from the ERC Advanced Grant DUSTYGAL (321334) and STFC (ST/P000541/1)\r\n\r\nWork on Gnuastro has been funded by the Japanese MEXT scholarship and its Grant-in-Aid for Scientific Research (21244012, 24253003), the ERC advanced grant 339659-MUSICOS, European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL ITN, and from the Spanish MINECO under grant No. AYA2016-76219-P." article_number: '140' article_processing_charge: No article_type: original author: - first_name: Leindert A. full_name: Boogaard, Leindert A. last_name: Boogaard - first_name: Roberto full_name: Decarli, Roberto last_name: Decarli - first_name: Jorge full_name: González-López, Jorge last_name: González-López - first_name: Paul full_name: van der Werf, Paul last_name: van der Werf - first_name: Fabian full_name: Walter, Fabian last_name: Walter - first_name: Rychard full_name: Bouwens, Rychard last_name: Bouwens - first_name: Manuel full_name: Aravena, Manuel last_name: Aravena - first_name: Chris full_name: Carilli, Chris last_name: Carilli - first_name: Franz Erik full_name: Bauer, Franz Erik last_name: Bauer - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Thierry full_name: Contini, Thierry last_name: Contini - first_name: Pierre full_name: Cox, Pierre last_name: Cox - first_name: Elisabete full_name: da Cunha, Elisabete last_name: da Cunha - first_name: Emanuele full_name: Daddi, Emanuele last_name: Daddi - first_name: Tanio full_name: Díaz-Santos, Tanio last_name: Díaz-Santos - first_name: Jacqueline full_name: Hodge, Jacqueline last_name: Hodge - first_name: Hanae full_name: Inami, Hanae last_name: Inami - first_name: Rob full_name: Ivison, Rob last_name: Ivison - first_name: Michael full_name: Maseda, Michael last_name: Maseda - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Pascal full_name: Oesch, Pascal last_name: Oesch - first_name: Gergö full_name: Popping, Gergö last_name: Popping - first_name: Dominik full_name: Riechers, Dominik last_name: Riechers - first_name: Joop full_name: Schaye, Joop last_name: Schaye - first_name: Sander full_name: Schouws, Sander last_name: Schouws - first_name: Ian full_name: Smail, Ian last_name: Smail - first_name: Axel full_name: Weiss, Axel last_name: Weiss - first_name: Lutz full_name: Wisotzki, Lutz last_name: Wisotzki - first_name: Roland full_name: Bacon, Roland last_name: Bacon - first_name: Paulo C. full_name: Cortes, Paulo C. last_name: Cortes - first_name: Hans-Walter full_name: Rix, Hans-Walter last_name: Rix - first_name: Rachel S. full_name: Somerville, Rachel S. last_name: Somerville - first_name: Mark full_name: Swinbank, Mark last_name: Swinbank - first_name: Jeff full_name: Wagg, Jeff last_name: Wagg citation: ama: 'Boogaard LA, Decarli R, González-López J, et al. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 2019;882(2). doi:10.3847/1538-4357/ab3102' apa: 'Boogaard, L. A., Decarli, R., González-López, J., van der Werf, P., Walter, F., Bouwens, R., … Wagg, J. (2019). The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab3102' chicago: 'Boogaard, Leindert A., Roberto Decarli, Jorge González-López, Paul van der Werf, Fabian Walter, Rychard Bouwens, Manuel Aravena, et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab3102.' ieee: 'L. A. Boogaard et al., “The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy,” The Astrophysical Journal, vol. 882, no. 2. IOP Publishing, 2019.' ista: 'Boogaard LA, Decarli R, González-López J, van der Werf P, Walter F, Bouwens R, Aravena M, Carilli C, Bauer FE, Brinchmann J, Contini T, Cox P, da Cunha E, Daddi E, Díaz-Santos T, Hodge J, Inami H, Ivison R, Maseda M, Matthee JJ, Oesch P, Popping G, Riechers D, Schaye J, Schouws S, Smail I, Weiss A, Wisotzki L, Bacon R, Cortes PC, Rix H-W, Somerville RS, Swinbank M, Wagg J. 2019. The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy. The Astrophysical Journal. 882(2), 140.' mla: 'Boogaard, Leindert A., et al. “The ALMA Spectroscopic Survey in the HUDF: Nature and Physical Properties of Gas-Mass Selected Galaxies Using MUSE Spectroscopy.” The Astrophysical Journal, vol. 882, no. 2, 140, IOP Publishing, 2019, doi:10.3847/1538-4357/ab3102.' short: L.A. Boogaard, R. Decarli, J. González-López, P. van der Werf, F. Walter, R. Bouwens, M. Aravena, C. Carilli, F.E. Bauer, J. Brinchmann, T. Contini, P. Cox, E. da Cunha, E. Daddi, T. Díaz-Santos, J. Hodge, H. Inami, R. Ivison, M. Maseda, J.J. Matthee, P. Oesch, G. Popping, D. Riechers, J. Schaye, S. Schouws, I. Smail, A. Weiss, L. Wisotzki, R. Bacon, P.C. Cortes, H.-W. Rix, R.S. Somerville, M. Swinbank, J. Wagg, The Astrophysical Journal 882 (2019). date_created: 2022-07-06T13:31:35Z date_published: 2019-09-11T00:00:00Z date_updated: 2022-07-19T09:50:55Z day: '11' doi: 10.3847/1538-4357/ab3102 extern: '1' external_id: arxiv: - '1903.09167' intvolume: ' 882' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.09167 month: '09' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'The ALMA spectroscopic survey in the HUDF: Nature and physical properties of gas-mass selected galaxies using MUSE spectroscopy' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 882 year: '2019' ... --- _id: '11516' abstract: - lang: eng text: The well-known quasar SDSS J095253.83+011421.9 (J0952+0114) at z = 3.02 has one of the most peculiar spectra discovered so far, showing the presence of narrow Lyα and broad metal emission lines. Although recent studies have suggested that a proximate damped Lyα absorption (PDLA) system causes this peculiar spectrum, the origin of the gas associated with the PDLA is unknown. Here we report the results of observations with the Multi Unit Spectroscopic Explorer (MUSE) that reveal a new giant (≈100 physical kpc) Lyα nebula. The detailed analysis of the Lyα velocity, velocity dispersion, and surface brightness profiles suggests that the J0952+0114 Lyα nebula shares similar properties with other QSO nebulae previously detected with MUSE, implying that the PDLA in J0952+0144 is covering only a small fraction of the solid angle of the QSO emission. We also detected bright and spectrally narrow C iv λ1550 and He ii λ1640 extended emission around J0952+0114 with velocity centroids similar to the peak of the extended and central narrow Lyα emission. The presence of a peculiarly bright, unresolved, and relatively broad He ii λ1640 emission in the central region at exactly the same PDLA redshift hints at the possibility that the PDLA originates in a clumpy outflow with a bulk velocity of about 500 km s−1. The smaller velocity dispersion of the large-scale Lyα emission suggests that the high-speed outflow is confined to the central region. Lastly, the derived spatially resolved He ii/Lyα and C iv/Lyα maps show a positive gradient with the distance to the QSO, hinting at a non-homogeneous distribution of the ionization parameter. acknowledgement: We thank Lutz Wisotzki for stimulating discussions. This work is based on observations taken at ESO/VLT in Paranal and we would like to thank the ESO staff for their assistance and support during the MUSE GTO campaigns. This work was supported by the Swiss National Science Foundation. This research made use of Astropy, a community-developed core PYTHON package for astronomy (Astropy Collaboration et al. 2013), NumPy and SciPy (Oliphant 2007), Matplotlib (Hunter 2007), IPython (Perez & Granger 2007), and of the NASA Astrophysics Data System Bibliographic Services. S.C. and G.P. gratefully acknowledge support from Swiss National Science Foundation grant PP00P2−163824. A.F. acknowledges support from the ERC via Advanced Grant under grants agreement no. 339659-MUSICOS. J.B. acknowledges support by FCT/MCTES through national funds by grant UID/FIS/04434/2019 and through Investigador FCT Contract No. IF/01654/2014/CP1215/CT0003. S.D.J. is supported by a NASA Hubble Fellowship (HST-HF2-51375.001-A). T.N. acknowledges the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) top grant TOP1.16.057. article_number: '47' article_processing_charge: No article_type: original author: - first_name: Raffaella Anna full_name: Marino, Raffaella Anna last_name: Marino - first_name: Sebastiano full_name: Cantalupo, Sebastiano last_name: Cantalupo - first_name: Gabriele full_name: Pezzulli, Gabriele last_name: Pezzulli - first_name: Simon J. full_name: Lilly, Simon J. last_name: Lilly - first_name: Sofia full_name: Gallego, Sofia last_name: Gallego - first_name: Ruari full_name: Mackenzie, Ruari last_name: Mackenzie - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Jarle full_name: Brinchmann, Jarle last_name: Brinchmann - first_name: Nicolas full_name: Bouché, Nicolas last_name: Bouché - first_name: Anna full_name: Feltre, Anna last_name: Feltre - first_name: Sowgat full_name: Muzahid, Sowgat last_name: Muzahid - first_name: Ilane full_name: Schroetter, Ilane last_name: Schroetter - first_name: Sean D. full_name: Johnson, Sean D. last_name: Johnson - first_name: Themiya full_name: Nanayakkara, Themiya last_name: Nanayakkara citation: ama: Marino RA, Cantalupo S, Pezzulli G, et al. A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE. The Astrophysical Journal. 2019;880(1). doi:10.3847/1538-4357/ab2881 apa: Marino, R. A., Cantalupo, S., Pezzulli, G., Lilly, S. J., Gallego, S., Mackenzie, R., … Nanayakkara, T. (2019). A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab2881 chicago: Marino, Raffaella Anna, Sebastiano Cantalupo, Gabriele Pezzulli, Simon J. Lilly, Sofia Gallego, Ruari Mackenzie, Jorryt J Matthee, et al. “A Giant Lyα Nebula and a Small-Scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab2881. ieee: R. A. Marino et al., “A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE,” The Astrophysical Journal, vol. 880, no. 1. IOP Publishing, 2019. ista: Marino RA, Cantalupo S, Pezzulli G, Lilly SJ, Gallego S, Mackenzie R, Matthee JJ, Brinchmann J, Bouché N, Feltre A, Muzahid S, Schroetter I, Johnson SD, Nanayakkara T. 2019. A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE. The Astrophysical Journal. 880(1), 47. mla: Marino, Raffaella Anna, et al. “A Giant Lyα Nebula and a Small-Scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE.” The Astrophysical Journal, vol. 880, no. 1, 47, IOP Publishing, 2019, doi:10.3847/1538-4357/ab2881. short: R.A. Marino, S. Cantalupo, G. Pezzulli, S.J. Lilly, S. Gallego, R. Mackenzie, J.J. Matthee, J. Brinchmann, N. Bouché, A. Feltre, S. Muzahid, I. Schroetter, S.D. Johnson, T. Nanayakkara, The Astrophysical Journal 880 (2019). date_created: 2022-07-06T13:50:33Z date_published: 2019-07-24T00:00:00Z date_updated: 2022-08-18T10:20:18Z day: '24' doi: 10.3847/1538-4357/ab2881 extern: '1' external_id: arxiv: - '1906.06347' intvolume: ' 880' issue: '1' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.06347 month: '07' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: A giant Lyα nebula and a small-scale clumpy outflow in the system of the exotic quasar J0952+0114 unveiled by MUSE type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 880 year: '2019' ... --- _id: '11515' abstract: - lang: eng text: We present new deep ALMA and Hubble Space Telescope (HST)/WFC3 observations of MASOSA and VR7, two luminous Lyα emitters (LAEs) at z = 6.5, for which the UV continuum levels differ by a factor of four. No IR dust continuum emission is detected in either, indicating little amounts of obscured star formation and/or high dust temperatures. MASOSA, with a UV luminosity M1500 = −20.9, compact size, and very high Lyα ${\mathrm{EW}}_{0}\approx 145\,\mathring{\rm A} $, is undetected in [C ii] to a limit of L[C ii] < 2.2 × 107 L⊙, implying a metallicity Z ≲ 0.07 Z⊙. Intriguingly, our HST data indicate a red UV slope β = −1.1 ± 0.7, at odds with the low dust content. VR7, which is a bright (M1500 = −22.4) galaxy with moderate color (β = −1.4 ± 0.3) and Lyα EW0 = 34 Å, is clearly detected in [C ii] emission (S/N = 15). VR7's rest-frame UV morphology can be described by two components separated by ≈1.5 kpc and is globally more compact than the [C ii] emission. The global [C ii]/UV ratio indicates Z ≈ 0.2 Z⊙, but there are large variations in the UV/[C ii] ratio on kiloparsec scales. We also identify diffuse, possibly outflowing, [C ii]-emitting gas at ≈100 km s−1 with respect to the peak. VR7 appears to be assembling its components at a slightly more evolved stage than other luminous LAEs, with outflows already shaping its direct environment at z ∼ 7. Our results further indicate that the global [C ii]−UV relation steepens at SFR < 30 M⊙ yr−1, naturally explaining why the [C ii]/UV ratio is anticorrelated with Lyα EW in many, but not all, observed LAEs. acknowledgement: 'We thank the anonymous referee for constructive comments and suggestions. We thank Max Gronke for comments on an earlier version of this paper. L.V. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 746119. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2017.1.01451.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. Based on observations obtained with the Very Large Telescope, programs 294.A-5018, 097.A-0943, and 99.A-0462. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained (from the Data Archive) at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program No. 14699.' article_number: '124' article_processing_charge: No article_type: original author: - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: D. full_name: Sobral, D. last_name: Sobral - first_name: L. A. full_name: Boogaard, L. A. last_name: Boogaard - first_name: H. full_name: Röttgering, H. last_name: Röttgering - first_name: L. full_name: Vallini, L. last_name: Vallini - first_name: A. full_name: Ferrara, A. last_name: Ferrara - first_name: A. full_name: Paulino-Afonso, A. last_name: Paulino-Afonso - first_name: F. full_name: Boone, F. last_name: Boone - first_name: D. full_name: Schaerer, D. last_name: Schaerer - first_name: B. full_name: Mobasher, B. last_name: Mobasher citation: ama: Matthee JJ, Sobral D, Boogaard LA, et al. Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization. The Astrophysical Journal. 2019;881(2). doi:10.3847/1538-4357/ab2f81 apa: Matthee, J. J., Sobral, D., Boogaard, L. A., Röttgering, H., Vallini, L., Ferrara, A., … Mobasher, B. (2019). Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab2f81 chicago: Matthee, Jorryt J, D. Sobral, L. A. Boogaard, H. Röttgering, L. Vallini, A. Ferrara, A. Paulino-Afonso, F. Boone, D. Schaerer, and B. Mobasher. “Resolved UV and [C Ii] Structures of Luminous Galaxies within the Epoch of Reionization.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab2f81. ieee: J. J. Matthee et al., “Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization,” The Astrophysical Journal, vol. 881, no. 2. IOP Publishing, 2019. ista: Matthee JJ, Sobral D, Boogaard LA, Röttgering H, Vallini L, Ferrara A, Paulino-Afonso A, Boone F, Schaerer D, Mobasher B. 2019. Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization. The Astrophysical Journal. 881(2), 124. mla: Matthee, Jorryt J., et al. “Resolved UV and [C Ii] Structures of Luminous Galaxies within the Epoch of Reionization.” The Astrophysical Journal, vol. 881, no. 2, 124, IOP Publishing, 2019, doi:10.3847/1538-4357/ab2f81. short: J.J. Matthee, D. Sobral, L.A. Boogaard, H. Röttgering, L. Vallini, A. Ferrara, A. Paulino-Afonso, F. Boone, D. Schaerer, B. Mobasher, The Astrophysical Journal 881 (2019). date_created: 2022-07-06T13:38:15Z date_published: 2019-08-21T00:00:00Z date_updated: 2022-08-18T10:19:48Z day: '21' doi: 10.3847/1538-4357/ab2f81 extern: '1' external_id: arxiv: - '1903.08171' intvolume: ' 881' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.08171 month: '08' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Resolved UV and [C ii] structures of luminous galaxies within the epoch of reionization type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 881 year: '2019' ... --- _id: '11517' abstract: - lang: eng text: To understand star formation in galaxies, we investigate the star formation rate (SFR) surface density (ΣSFR) profiles for galaxies, based on a well-defined sample of 976 star-forming MaNGA galaxies. We find that the typical ΣSFR profiles within 1.5Re of normal SF galaxies can be well described by an exponential function for different stellar mass intervals, while the sSFR profile shows positive gradients, especially for more massive SF galaxies. This is due to the more pronounced central cores or bulges rather than the onset of a `quenching' process. While galaxies that lie significantly above (or below) the star formation main sequence (SFMS) show overall an elevation (or suppression) of ΣSFR at all radii, this central elevation (or suppression) is more pronounced in more massive galaxies. The degree of central enhancement and suppression is quite symmetric, suggesting that both the elevation and suppression of star formation are following the same physical processes. Furthermore, we find that the dispersion in ΣSFR within and across the population is found to be tightly correlated with the inferred gas depletion time, whether based on the stellar surface mass density or the orbital dynamical time. This suggests that we are seeing the response of a simple gas-regulator system to variations in the accretion rate. This is explored using a heuristic model that can quantitatively explain the dependence of σ(ΣSFR) on gas depletion timescale. Variations in accretion rate are progressively more damped out in regions of low star-formation efficiency leading to a reduced amplitude of variations in star-formation. acknowledgement: "We are grateful to the anonymous referee for their thoughtful and constructive review of the paper and their several suggestions (including the analysis of Section 3.4), which have improved the paper. This research has been supported by the Swiss National Science Foundation.\r\n\r\nFunding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org.\r\n\r\nSDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, the Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, the Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University" article_number: '132' article_processing_charge: No article_type: original author: - first_name: Enci full_name: Wang, Enci last_name: Wang - first_name: Simon J. full_name: Lilly, Simon J. last_name: Lilly - first_name: Gabriele full_name: Pezzulli, Gabriele last_name: Pezzulli - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X citation: ama: Wang E, Lilly SJ, Pezzulli G, Matthee JJ. On the elevation and suppression of star formation within galaxies. The Astrophysical Journal. 2019;877(2). doi:10.3847/1538-4357/ab1c5b apa: Wang, E., Lilly, S. J., Pezzulli, G., & Matthee, J. J. (2019). On the elevation and suppression of star formation within galaxies. The Astrophysical Journal. IOP Publishing. https://doi.org/10.3847/1538-4357/ab1c5b chicago: Wang, Enci, Simon J. Lilly, Gabriele Pezzulli, and Jorryt J Matthee. “On the Elevation and Suppression of Star Formation within Galaxies.” The Astrophysical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-4357/ab1c5b. ieee: E. Wang, S. J. Lilly, G. Pezzulli, and J. J. Matthee, “On the elevation and suppression of star formation within galaxies,” The Astrophysical Journal, vol. 877, no. 2. IOP Publishing, 2019. ista: Wang E, Lilly SJ, Pezzulli G, Matthee JJ. 2019. On the elevation and suppression of star formation within galaxies. The Astrophysical Journal. 877(2), 132. mla: Wang, Enci, et al. “On the Elevation and Suppression of Star Formation within Galaxies.” The Astrophysical Journal, vol. 877, no. 2, 132, IOP Publishing, 2019, doi:10.3847/1538-4357/ab1c5b. short: E. Wang, S.J. Lilly, G. Pezzulli, J.J. Matthee, The Astrophysical Journal 877 (2019). date_created: 2022-07-07T08:38:24Z date_published: 2019-06-04T00:00:00Z date_updated: 2022-08-18T10:19:08Z day: '04' doi: 10.3847/1538-4357/ab1c5b extern: '1' external_id: arxiv: - '1901.10276' intvolume: ' 877' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1901.10276 month: '06' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: On the elevation and suppression of star formation within galaxies type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 877 year: '2019' ... --- _id: '11535' abstract: - lang: eng text: We investigate the clustering and halo properties of ∼5000 Ly α-selected emission-line galaxies (LAEs) from the Slicing COSMOS 4K (SC4K) and from archival NB497 imaging of SA22 split in 15 discrete redshift slices between z ∼ 2.5 and 6. We measure clustering lengths of r0 ∼ 3–6 h−1 Mpc and typical halo masses of ∼1011 M⊙ for our narrowband-selected LAEs with typical LLy α ∼ 1042–43 erg s−1. The intermediate-band-selected LAEs are observed to have r0 ∼ 3.5–15 h−1 Mpc with typical halo masses of ∼1011–12 M⊙ and typical LLy α ∼ 1043–43.6 erg s−1. We find a strong, redshift-independent correlation between halo mass and Ly α luminosity normalized by the characteristic Ly α luminosity, L⋆(z). The faintest LAEs (L ∼ 0.1 L⋆(z)) typically identified by deep narrowband surveys are found in 1010 M⊙ haloes and the brightest LAEs (L ∼ 7 L⋆(z)) are found in ∼5 × 1012 M⊙ haloes. A dependency on the rest-frame 1500 Å UV luminosity, MUV, is also observed where the halo masses increase from 1011 to 1013 M⊙ for MUV ∼ −19 to −23.5 mag. Halo mass is also observed to increase from 109.8 to 1012 M⊙ for dust-corrected UV star formation rates from ∼0.6 to 10 M⊙ yr−1 and continues to increase up to 1013 M⊙ in halo mass, where the majority of those sources are active galactic nuclei. All the trends we observe are found to be redshift independent. Our results reveal that LAEs are the likely progenitors of a wide range of galaxies depending on their luminosity, from dwarf-like, to Milky Way-type, to bright cluster galaxies. LAEs therefore provide unique insight into the early formation and evolution of the galaxies we observe in the local Universe. acknowledgement: We thank the anonymous referee for their useful comments and suggestions that helped improve this study. AAK acknowledges that this work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program – Grant NNX16AO92H. JM acknowledges support from the ETH Zwicky fellowship. RKC acknowledges funding from STFC via a studentship. APA acknowledges support from the Fundac¸ao para a Ci ˜ encia e a Tecnologia FCT through the fellowship PD/BD/52706/2014 and the research grant UID/FIS/04434/2013. JC and SS both acknowledge their support from the Lancaster University PhD Fellowship. We have benefited greatly from the publicly available programming language PYTHON, including the NUMPY, SCIPY, MATPLOTLIB, SCIKIT-LEARN, and ASTROPY packages, as well as the TOPCAT analysis program. The SC4K samples used in this paper are all publicly available for use by the community (Sobral et al. 2018a). The catalogue is also available on the COSMOS IPAC website (https://irsa.ipac.caltech.edu/data/COSMOS/overview.html). article_processing_charge: No article_type: original author: - first_name: A A full_name: Khostovan, A A last_name: Khostovan - first_name: D full_name: Sobral, D last_name: Sobral - first_name: B full_name: Mobasher, B last_name: Mobasher - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: R K full_name: Cochrane, R K last_name: Cochrane - first_name: N full_name: Chartab, N last_name: Chartab - first_name: M full_name: Jafariyazani, M last_name: Jafariyazani - first_name: A full_name: Paulino-Afonso, A last_name: Paulino-Afonso - first_name: S full_name: Santos, S last_name: Santos - first_name: J full_name: Calhau, J last_name: Calhau citation: ama: 'Khostovan AA, Sobral D, Mobasher B, et al. The clustering of typical Ly α emitters from z ∼ 2.5–6: Host halo masses depend on Ly α and UV luminosities. Monthly Notices of the Royal Astronomical Society. 2019;489(1):555-573. doi:10.1093/mnras/stz2149' apa: 'Khostovan, A. A., Sobral, D., Mobasher, B., Matthee, J. J., Cochrane, R. K., Chartab, N., … Calhau, J. (2019). The clustering of typical Ly α emitters from z ∼ 2.5–6: Host halo masses depend on Ly α and UV luminosities. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stz2149' chicago: 'Khostovan, A A, D Sobral, B Mobasher, Jorryt J Matthee, R K Cochrane, N Chartab, M Jafariyazani, A Paulino-Afonso, S Santos, and J Calhau. “The Clustering of Typical Ly α Emitters from z ∼ 2.5–6: Host Halo Masses Depend on Ly α and UV Luminosities.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2019. https://doi.org/10.1093/mnras/stz2149.' ieee: 'A. A. Khostovan et al., “The clustering of typical Ly α emitters from z ∼ 2.5–6: Host halo masses depend on Ly α and UV luminosities,” Monthly Notices of the Royal Astronomical Society, vol. 489, no. 1. Oxford University Press, pp. 555–573, 2019.' ista: 'Khostovan AA, Sobral D, Mobasher B, Matthee JJ, Cochrane RK, Chartab N, Jafariyazani M, Paulino-Afonso A, Santos S, Calhau J. 2019. The clustering of typical Ly α emitters from z ∼ 2.5–6: Host halo masses depend on Ly α and UV luminosities. Monthly Notices of the Royal Astronomical Society. 489(1), 555–573.' mla: 'Khostovan, A. A., et al. “The Clustering of Typical Ly α Emitters from z ∼ 2.5–6: Host Halo Masses Depend on Ly α and UV Luminosities.” Monthly Notices of the Royal Astronomical Society, vol. 489, no. 1, Oxford University Press, 2019, pp. 555–73, doi:10.1093/mnras/stz2149.' short: A.A. Khostovan, D. Sobral, B. Mobasher, J.J. Matthee, R.K. Cochrane, N. Chartab, M. Jafariyazani, A. Paulino-Afonso, S. Santos, J. Calhau, Monthly Notices of the Royal Astronomical Society 489 (2019) 555–573. date_created: 2022-07-07T13:01:03Z date_published: 2019-10-01T00:00:00Z date_updated: 2022-08-19T06:38:42Z day: '01' doi: 10.1093/mnras/stz2149 extern: '1' external_id: arxiv: - '1811.00556' intvolume: ' 489' issue: '1' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: evolution' - 'galaxies: haloes' - 'galaxies: high-redshift' - 'galaxies: star formation' - 'cosmology: observations' - large-scale structure of Universe language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1811.00556 month: '10' oa: 1 oa_version: Preprint page: 555-573 publication: Monthly Notices of the Royal Astronomical Society publication_identifier: eissn: - 1365-2966 issn: - 0035-8711 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: 'The clustering of typical Ly α emitters from z ∼ 2.5–6: Host halo masses depend on Ly α and UV luminosities' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 489 year: '2019' ... --- _id: '11541' abstract: - lang: eng text: We present new Hubble Space Telescope (HST)/WFC3 observations and re-analyse VLT data to unveil the continuum, variability, and rest-frame ultraviolet (UV) lines of the multiple UV clumps of the most luminous Lyα emitter at z = 6.6, CR7 (COSMOS Redshift 7). Our re-reduced, flux-calibrated X-SHOOTER spectra of CR7 reveal an He II emission line in observations obtained along the major axis of Lyα emission with the best seeing conditions. He II is spatially offset by ≈+0.8 arcsec from the peak of Lyα emission, and it is found towards clump B. Our WFC3 grism spectra detects the UV continuum of CR7’s clump A, yielding a power law with β=−2.5+0.6−0.7 and MUV=−21.87+0.25−0.20⁠. No significant variability is found for any of the UV clumps on their own, but there is tentative (≈2.2 σ) brightening of CR7 in F110W as a whole from 2012 to 2017. HST grism data fail to robustly detect rest-frame UV lines in any of the clumps, implying fluxes ≲2×10−17 erg s−1 cm−2 (3σ). We perform CLOUDY modelling to constrain the metallicity and the ionizing nature of CR7. CR7 seems to be actively forming stars without any clear active galactic nucleus activity in clump A, consistent with a metallicity of ∼0.05–0.2 Z⊙. Component C or an interclump component between B and C may host a high ionization source. Our results highlight the need for spatially resolved information to study the formation and assembly of early galaxies. acknowledgement: We thank the anonymous reviewer for the numerous detailed comments that led us to greatly improve the quality, extent, and statistical robustness of this work. DS acknowledges financial support from the Netherlands Organisation for Scientific research through a Veni fellowship. JM acknowledges the support of a Huygens PhD fellowship from Leiden University. AF acknowledges support from the ERC Advanced Grant INTERSTELLAR H2020/740120. BD acknowledges financial support from NASA through the Astrophysics Data Analysis Program, grant number NNX12AE20G and the National Science Foundation, grant number 1716907. We are thankful for several discussions and constructive comments from Johannes Zabl, Eros Vanzella, Bo Milvang-Jensen, Henry McCracken, Max Gronke, Mark Dijkstra, Richard Ellis, and Nicolas Laporte. We also thank Umar Burhanudin and Izzy Garland for taking part in the XGAL internship in Lancaster and for exploring the HST grism data independently. Based on observations obtained with HST/WFC3 programs 12578, 14495, and 14596. Based on observations of the National Japanese Observatory with the Suprime-Cam on the Subaru telescope (S14A-086) on the big island of Hawaii. This work is based in part on data products produced at TERAPIX available at the Canadian Astronomy Data Centre as part of the Canada–France–Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme IDs 294.A-5018, 294.A-5039, 092.A 0786, 093.A-0561, 097.A0043, 097.A-0943, 098.A-0819, 298.A-5012, and 179.A-2005, and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. The authors acknowledge the award of service time (SW2014b20) on the William Herschel Telescope (WHT). WHT and its service programme are operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This research was supported by the Munich Institute for Astro- and Particle Physics of the DFG cluster of excellence ‘Origin and Structure of the Universe’. We have benefitted immensely from the public available programming language PYTHON, including NUMPY and SCIPY (Jones et al. 2001; Van Der Walt, Colbert & Varoquaux 2011), MATPLOTLIB (Hunter 2007), ASTROPY (Astropy Collaboration et al. 2013), and the TOPCAT analysis program (Taylor 2013). This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. All data used for this paper are publicly available, and we make all reduced data available with the refereed paper. article_processing_charge: No article_type: original author: - first_name: David full_name: Sobral, David last_name: Sobral - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Gabriel full_name: Brammer, Gabriel last_name: Brammer - first_name: Andrea full_name: Ferrara, Andrea last_name: Ferrara - first_name: Lara full_name: Alegre, Lara last_name: Alegre - first_name: Huub full_name: Röttgering, Huub last_name: Röttgering - first_name: Daniel full_name: Schaerer, Daniel last_name: Schaerer - first_name: Bahram full_name: Mobasher, Bahram last_name: Mobasher - first_name: Behnam full_name: Darvish, Behnam last_name: Darvish citation: ama: Sobral D, Matthee JJ, Brammer G, et al. On the nature and physical conditions of the luminous Ly α emitter CR7 and its rest-frame UV components. Monthly Notices of the Royal Astronomical Society. 2019;482(2):2422-2441. doi:10.1093/mnras/sty2779 apa: Sobral, D., Matthee, J. J., Brammer, G., Ferrara, A., Alegre, L., Röttgering, H., … Darvish, B. (2019). On the nature and physical conditions of the luminous Ly α emitter CR7 and its rest-frame UV components. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/sty2779 chicago: Sobral, David, Jorryt J Matthee, Gabriel Brammer, Andrea Ferrara, Lara Alegre, Huub Röttgering, Daniel Schaerer, Bahram Mobasher, and Behnam Darvish. “On the Nature and Physical Conditions of the Luminous Ly α Emitter CR7 and Its Rest-Frame UV Components.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2019. https://doi.org/10.1093/mnras/sty2779. ieee: D. Sobral et al., “On the nature and physical conditions of the luminous Ly α emitter CR7 and its rest-frame UV components,” Monthly Notices of the Royal Astronomical Society, vol. 482, no. 2. Oxford University Press, pp. 2422–2441, 2019. ista: Sobral D, Matthee JJ, Brammer G, Ferrara A, Alegre L, Röttgering H, Schaerer D, Mobasher B, Darvish B. 2019. On the nature and physical conditions of the luminous Ly α emitter CR7 and its rest-frame UV components. Monthly Notices of the Royal Astronomical Society. 482(2), 2422–2441. mla: Sobral, David, et al. “On the Nature and Physical Conditions of the Luminous Ly α Emitter CR7 and Its Rest-Frame UV Components.” Monthly Notices of the Royal Astronomical Society, vol. 482, no. 2, Oxford University Press, 2019, pp. 2422–41, doi:10.1093/mnras/sty2779. short: D. Sobral, J.J. Matthee, G. Brammer, A. Ferrara, L. Alegre, H. Röttgering, D. Schaerer, B. Mobasher, B. Darvish, Monthly Notices of the Royal Astronomical Society 482 (2019) 2422–2441. date_created: 2022-07-08T10:40:05Z date_published: 2019-01-01T00:00:00Z date_updated: 2022-08-19T06:49:36Z day: '01' doi: 10.1093/mnras/sty2779 extern: '1' external_id: arxiv: - '1710.08422' intvolume: ' 482' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics - 'galaxies: evolution' - 'galaxies: high-redshift' - 'galaxies: ISM' - 'cosmology: observations' - dark ages - reionization - first stars - early Universe language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1710.08422 month: '01' oa: 1 oa_version: Preprint page: 2422-2441 publication: Monthly Notices of the Royal Astronomical Society publication_identifier: eissn: - 1365-2966 issn: - 0035-8711 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: On the nature and physical conditions of the luminous Ly α emitter CR7 and its rest-frame UV components type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 482 year: '2019' ... --- _id: '11540' abstract: - lang: eng text: Observations have revealed that the star formation rate (SFR) and stellar mass (Mstar) of star-forming galaxies follow a tight relation known as the galaxy main sequence. However, what physical information is encoded in this relation is under debate. Here, we use the EAGLE cosmological hydrodynamical simulation to study the mass dependence, evolution, and origin of scatter in the SFR–Mstar relation. At z = 0, we find that the scatter decreases slightly with stellar mass from 0.35 dex at Mstar ≈ 109 M⊙ to 0.30 dex at Mstar ≳ 1010.5 M⊙. The scatter decreases from z = 0 to z = 5 by 0.05 dex at Mstar ≳ 1010 M⊙ and by 0.15 dex for lower masses. We show that the scatter at z = 0.1 originates from a combination of fluctuations on short time-scales (ranging from 0.2–2 Gyr) that are presumably associated with self-regulation from cooling, star formation, and outflows, but is dominated by long time-scale (∼10 Gyr) variations related to differences in halo formation times. Shorter time-scale fluctuations are relatively more important for lower mass galaxies. At high masses, differences in black hole formation efficiency cause additional scatter, but also diminish the scatter caused by different halo formation times. While individual galaxies cross the main sequence multiple times during their evolution, they fluctuate around tracks associated with their halo properties, i.e. galaxies above/below the main sequence at z = 0.1 tend to have been above/below the main sequence for ≫1 Gyr. acknowledgement: JM acknowledges the support of a Huygens PhD fellowship from Leiden University. We thank Camila Correa for help analysing snipshot merger trees. We thank the anonymous referee for constructive comments. We also thank Jarle Brinchmann, Rob Crain, Antonios Katsianis, Paola Popesso, and David Sobral for discussions and suggestions. We also thank the participants of the Lorentz Center workshop ‘A Decade of the Star-Forming Main Sequence’ held on 2017 September 4–8, for discussions and ideas. We have benefited from the public available programming language PYTHON, including the NUMPY, MATPLOTLIB, and SCIPY (Hunter 2007) packages and the TOPCAT analysis tool (Taylor 2013). article_processing_charge: No article_type: original author: - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: Joop full_name: Schaye, Joop last_name: Schaye citation: ama: Matthee JJ, Schaye J. The origin of scatter in the star formation rate–stellar mass relation. Monthly Notices of the Royal Astronomical Society. 2019;484(1):915-932. doi:10.1093/mnras/stz030 apa: Matthee, J. J., & Schaye, J. (2019). The origin of scatter in the star formation rate–stellar mass relation. Monthly Notices of the Royal Astronomical Society. Oxford University Press. https://doi.org/10.1093/mnras/stz030 chicago: Matthee, Jorryt J, and Joop Schaye. “The Origin of Scatter in the Star Formation Rate–Stellar Mass Relation.” Monthly Notices of the Royal Astronomical Society. Oxford University Press, 2019. https://doi.org/10.1093/mnras/stz030. ieee: J. J. Matthee and J. Schaye, “The origin of scatter in the star formation rate–stellar mass relation,” Monthly Notices of the Royal Astronomical Society, vol. 484, no. 1. Oxford University Press, pp. 915–932, 2019. ista: Matthee JJ, Schaye J. 2019. The origin of scatter in the star formation rate–stellar mass relation. Monthly Notices of the Royal Astronomical Society. 484(1), 915–932. mla: Matthee, Jorryt J., and Joop Schaye. “The Origin of Scatter in the Star Formation Rate–Stellar Mass Relation.” Monthly Notices of the Royal Astronomical Society, vol. 484, no. 1, Oxford University Press, 2019, pp. 915–32, doi:10.1093/mnras/stz030. short: J.J. Matthee, J. Schaye, Monthly Notices of the Royal Astronomical Society 484 (2019) 915–932. date_created: 2022-07-08T07:48:31Z date_published: 2019-03-01T00:00:00Z date_updated: 2022-08-19T06:42:43Z day: '01' doi: 10.1093/mnras/stz030 extern: '1' external_id: arxiv: - '1805.05956' intvolume: ' 484' issue: '1' keyword: - Space and Planetary Science - 'Astronomy and Astrophysics : galaxies: evolution' - 'galaxies: formation' - 'galaxies: star formation' - 'cosmology: theory' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1805.05956 month: '03' oa: 1 oa_version: Preprint page: 915-932 publication: Monthly Notices of the Royal Astronomical Society publication_identifier: eissn: - 1365-2966 issn: - 0035-8711 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: The origin of scatter in the star formation rate–stellar mass relation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 484 year: '2019' ... --- _id: '11616' abstract: - lang: eng text: We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V = 8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 μHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R⋆ = 2.943 ± 0.064 R⊙), mass (M⋆ = 1.212 ± 0.074 M⊙), and age (4.9 ± 1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (Rp = 9.17 ± 0.33 R⊕) with an orbital period of ∼14.3 days, irradiance of F = 343 ± 24 F⊕, and moderate mass (Mp = 60.5 ± 5.7 M⊕) and density (ρp = 0.431 ± 0.062 g cm−3). The properties of HD 221416 b show that the host-star metallicity–planet mass correlation found in sub-Saturns (4–8 R⊕) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ∼15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology. acknowledgement: "The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawai'ian community. We are most fortunate to have the opportunity to conduct observations from this mountain. We thank Andrei Tokovinin for helpful information on the Speckle observations obtained with SOAR. D.H. acknowledges support by the National Aeronautics and Space Administration through the TESS Guest Investigator Program (80NSSC18K1585) and by the National Science Foundation (AST-1717000). A.C. acknowledges support by the National Science Foundation under the Graduate Research Fellowship Program. W.J.C., W.H.B., A.M., O.J.H., and G.R.D. acknowledge support from the Science and Technology Facilities Council and UK Space Agency. H.K. and F.G. acknowledge support from the European Social Fund via the Lithuanian Science Council grant No. 09.3.3-LMT-K-712-01-0103. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant DNRF106). A.J. acknowledges support from FONDECYT project 1171208, CONICYT project BASAL AFB-170002, and by the Ministry for the Economy, Development, and Tourism's Programa Iniciativa Científica Milenio through grant IC 120009, awarded to the Millennium Institute of Astrophysics (MAS). R.B. acknowledges support from FONDECYT Post-doctoral Fellowship Project 3180246, and from the Millennium Institute of Astrophysics (MAS). A.M.S. is supported by grants ESP2017-82674-R (MINECO) and SGR2017-1131 (AGAUR). R.A.G. and L.B. acknowledge the support of the PLATO grant from the CNES. The research leading to the presented results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP72007-2013)ERC grant agreement No. 338251 (StellarAges). S.M. acknowledges support from the European Research Council through the SPIRE grant 647383. This work was also supported by FCT (Portugal) through national funds and by FEDER through COMPETE2020 by these grants: UID/FIS/04434/2013 and POCI-01-0145-FEDER-007672, PTDC/FIS-AST/30389/2017, and POCI-01-0145-FEDER-030389. T.L.C. acknowledges support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 792848 (PULSATION). E.C. is funded by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 664931. V.S.A. acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B). D.S. acknowledges support from the Australian Research Council. S.B. acknowledges NASA grant NNX16AI09G and NSF grant AST-1514676. T.R.W. acknowledges support from the Australian Research Council through grant DP150100250. A.M. acknowledges support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, G.A. n. 772293). S.M. acknowledges support from the Ramon y Cajal fellowship number RYC-2015-17697. M.S.L. is supported by the Carlsberg Foundation (grant agreement No. CF17-0760). A.M. and P.R. acknowledge support from the HBCSE-NIUS programme. J.K.T. and J.T. acknowledge that support for this work was provided by NASA through Hubble Fellowship grants HST-HF2-51399.001 and HST-HF2-51424.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. T.S.R. acknowledges financial support from Premiale 2015 MITiC (PI B. Garilli). This project has been supported by the NKFIH K-115709 grant and the Lendület Program of the Hungarian Academy of Sciences, project No. LP2018-7/2018.\r\n\r\nBased on observations made with the Hertzsprung SONG telescope operated on the Spanish Observatorio del Teide on the island of Tenerife by the Aarhus and Copenhagen Universities and by the Instituto de Astrofísica de Canarias. Funding for the TESS mission is provided by NASA's Science Mission directorate. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST).\r\n\r\nSoftware: Astropy (Astropy Collaboration et al. 2018), Matplotlib (Hunter 2007), DIAMONDS (Corsaro & De Ridder 2014), isoclassify (Huber et al. 2017), EXOFASTv2 (Eastman 2017), ktransit (Barclay 2018)." article_number: '245' article_processing_charge: No article_type: original author: - first_name: Daniel full_name: Huber, Daniel last_name: Huber - first_name: William J. full_name: Chaplin, William J. last_name: Chaplin - first_name: Ashley full_name: Chontos, Ashley last_name: Chontos - first_name: Hans full_name: Kjeldsen, Hans last_name: Kjeldsen - first_name: Jørgen full_name: Christensen-Dalsgaard, Jørgen last_name: Christensen-Dalsgaard - first_name: Timothy R. full_name: Bedding, Timothy R. last_name: Bedding - first_name: Warrick full_name: Ball, Warrick last_name: Ball - first_name: Rafael full_name: Brahm, Rafael last_name: Brahm - first_name: Nestor full_name: Espinoza, Nestor last_name: Espinoza - first_name: Thomas full_name: Henning, Thomas last_name: Henning - first_name: Andrés full_name: Jordán, Andrés last_name: Jordán - first_name: Paula full_name: Sarkis, Paula last_name: Sarkis - first_name: Emil full_name: Knudstrup, Emil last_name: Knudstrup - first_name: Simon full_name: Albrecht, Simon last_name: Albrecht - first_name: Frank full_name: Grundahl, Frank last_name: Grundahl - first_name: Mads Fredslund full_name: Andersen, Mads Fredslund last_name: Andersen - first_name: Pere L. full_name: Pallé, Pere L. last_name: Pallé - first_name: Ian full_name: Crossfield, Ian last_name: Crossfield - first_name: Benjamin full_name: Fulton, Benjamin last_name: Fulton - first_name: Andrew W. full_name: Howard, Andrew W. last_name: Howard - first_name: Howard T. full_name: Isaacson, Howard T. last_name: Isaacson - first_name: Lauren M. full_name: Weiss, Lauren M. last_name: Weiss - first_name: Rasmus full_name: Handberg, Rasmus last_name: Handberg - first_name: Mikkel N. full_name: Lund, Mikkel N. last_name: Lund - first_name: Aldo M. full_name: Serenelli, Aldo M. last_name: Serenelli - first_name: Jakob full_name: Rørsted Mosumgaard, Jakob last_name: Rørsted Mosumgaard - first_name: Amalie full_name: Stokholm, Amalie last_name: Stokholm - first_name: Allyson full_name: Bieryla, Allyson last_name: Bieryla - first_name: Lars A. full_name: Buchhave, Lars A. last_name: Buchhave - first_name: David W. full_name: Latham, David W. last_name: Latham - first_name: Samuel N. full_name: Quinn, Samuel N. last_name: Quinn - first_name: Eric full_name: Gaidos, Eric last_name: Gaidos - first_name: Teruyuki full_name: Hirano, Teruyuki last_name: Hirano - first_name: George R. full_name: Ricker, George R. last_name: Ricker - first_name: Roland K. full_name: Vanderspek, Roland K. last_name: Vanderspek - first_name: Sara full_name: Seager, Sara last_name: Seager - first_name: Jon M. full_name: Jenkins, Jon M. last_name: Jenkins - first_name: Joshua N. full_name: Winn, Joshua N. last_name: Winn - first_name: H. M. full_name: Antia, H. M. last_name: Antia - first_name: Thierry full_name: Appourchaux, Thierry last_name: Appourchaux - first_name: Sarbani full_name: Basu, Sarbani last_name: Basu - first_name: Keaton J. full_name: Bell, Keaton J. last_name: Bell - first_name: Othman full_name: Benomar, Othman last_name: Benomar - first_name: Alfio full_name: Bonanno, Alfio last_name: Bonanno - first_name: Derek L. full_name: Buzasi, Derek L. last_name: Buzasi - first_name: Tiago L. full_name: Campante, Tiago L. last_name: Campante - first_name: Z. full_name: Çelik Orhan, Z. last_name: Çelik Orhan - first_name: Enrico full_name: Corsaro, Enrico last_name: Corsaro - first_name: Margarida S. full_name: Cunha, Margarida S. last_name: Cunha - first_name: Guy R. full_name: Davies, Guy R. last_name: Davies - first_name: Sebastien full_name: Deheuvels, Sebastien last_name: Deheuvels - first_name: Samuel K. full_name: Grunblatt, Samuel K. last_name: Grunblatt - first_name: Amir full_name: Hasanzadeh, Amir last_name: Hasanzadeh - first_name: Maria Pia full_name: Di Mauro, Maria Pia last_name: Di Mauro - first_name: Rafael full_name: A. García, Rafael last_name: A. García - first_name: Patrick full_name: Gaulme, Patrick last_name: Gaulme - first_name: Léo full_name: Girardi, Léo last_name: Girardi - first_name: Joyce A. full_name: Guzik, Joyce A. last_name: Guzik - first_name: Marc full_name: Hon, Marc last_name: Hon - first_name: Chen full_name: Jiang, Chen last_name: Jiang - first_name: Thomas full_name: Kallinger, Thomas last_name: Kallinger - first_name: Steven D. full_name: Kawaler, Steven D. last_name: Kawaler - first_name: James S. full_name: Kuszlewicz, James S. last_name: Kuszlewicz - first_name: Yveline full_name: Lebreton, Yveline last_name: Lebreton - first_name: Tanda full_name: Li, Tanda last_name: Li - first_name: Miles full_name: Lucas, Miles last_name: Lucas - first_name: Mia S. full_name: Lundkvist, Mia S. last_name: Lundkvist - first_name: Andrew W. full_name: Mann, Andrew W. last_name: Mann - first_name: Stéphane full_name: Mathis, Stéphane last_name: Mathis - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Anwesh full_name: Mazumdar, Anwesh last_name: Mazumdar - first_name: Travis S. full_name: Metcalfe, Travis S. last_name: Metcalfe - first_name: Andrea full_name: Miglio, Andrea last_name: Miglio - first_name: Mário J. P. full_name: F. G. Monteiro, Mário J. P. last_name: F. G. Monteiro - first_name: Benoit full_name: Mosser, Benoit last_name: Mosser - first_name: Anthony full_name: Noll, Anthony last_name: Noll - first_name: Benard full_name: Nsamba, Benard last_name: Nsamba - first_name: Jia Mian full_name: Joel Ong, Jia Mian last_name: Joel Ong - first_name: S. full_name: Örtel, S. last_name: Örtel - first_name: Filipe full_name: Pereira, Filipe last_name: Pereira - first_name: Pritesh full_name: Ranadive, Pritesh last_name: Ranadive - first_name: Clara full_name: Régulo, Clara last_name: Régulo - first_name: Thaíse S. full_name: Rodrigues, Thaíse S. last_name: Rodrigues - first_name: Ian W. full_name: Roxburgh, Ian W. last_name: Roxburgh - first_name: Victor Silva full_name: Aguirre, Victor Silva last_name: Aguirre - first_name: Barry full_name: Smalley, Barry last_name: Smalley - first_name: Mathew full_name: Schofield, Mathew last_name: Schofield - first_name: Sérgio G. full_name: Sousa, Sérgio G. last_name: Sousa - first_name: Keivan G. full_name: Stassun, Keivan G. last_name: Stassun - first_name: Dennis full_name: Stello, Dennis last_name: Stello - first_name: Jamie full_name: Tayar, Jamie last_name: Tayar - first_name: Timothy R. full_name: White, Timothy R. last_name: White - first_name: Kuldeep full_name: Verma, Kuldeep last_name: Verma - first_name: Mathieu full_name: Vrard, Mathieu last_name: Vrard - first_name: M. full_name: Yıldız, M. last_name: Yıldız - first_name: David full_name: Baker, David last_name: Baker - first_name: Michaël full_name: Bazot, Michaël last_name: Bazot - first_name: Charles full_name: Beichmann, Charles last_name: Beichmann - first_name: Christoph full_name: Bergmann, Christoph last_name: Bergmann - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: Bryson full_name: Cale, Bryson last_name: Cale - first_name: Roberto full_name: Carlino, Roberto last_name: Carlino - first_name: Scott M. full_name: Cartwright, Scott M. last_name: Cartwright - first_name: Jessie L. full_name: Christiansen, Jessie L. last_name: Christiansen - first_name: David R. full_name: Ciardi, David R. last_name: Ciardi - first_name: Orlagh full_name: Creevey, Orlagh last_name: Creevey - first_name: Jason A. full_name: Dittmann, Jason A. last_name: Dittmann - first_name: Jose-Dias Do full_name: Nascimento, Jose-Dias Do last_name: Nascimento - first_name: Vincent Van full_name: Eylen, Vincent Van last_name: Eylen - first_name: Gabor full_name: Fürész, Gabor last_name: Fürész - first_name: Jonathan full_name: Gagné, Jonathan last_name: Gagné - first_name: Peter full_name: Gao, Peter last_name: Gao - first_name: Kosmas full_name: Gazeas, Kosmas last_name: Gazeas - first_name: Frank full_name: Giddens, Frank last_name: Giddens - first_name: Oliver J. full_name: Hall, Oliver J. last_name: Hall - first_name: Saskia full_name: Hekker, Saskia last_name: Hekker - first_name: Michael J. full_name: Ireland, Michael J. last_name: Ireland - first_name: Natasha full_name: Latouf, Natasha last_name: Latouf - first_name: Danny full_name: LeBrun, Danny last_name: LeBrun - first_name: Alan M. full_name: Levine, Alan M. last_name: Levine - first_name: William full_name: Matzko, William last_name: Matzko - first_name: Eva full_name: Natinsky, Eva last_name: Natinsky - first_name: Emma full_name: Page, Emma last_name: Page - first_name: Peter full_name: Plavchan, Peter last_name: Plavchan - first_name: Masoud full_name: Mansouri-Samani, Masoud last_name: Mansouri-Samani - first_name: Sean full_name: McCauliff, Sean last_name: McCauliff - first_name: Susan E. full_name: Mullally, Susan E. last_name: Mullally - first_name: Brendan full_name: Orenstein, Brendan last_name: Orenstein - first_name: Aylin Garcia full_name: Soto, Aylin Garcia last_name: Soto - first_name: Martin full_name: Paegert, Martin last_name: Paegert - first_name: Jennifer L. full_name: van Saders, Jennifer L. last_name: van Saders - first_name: Chloe full_name: Schnaible, Chloe last_name: Schnaible - first_name: David R. full_name: Soderblom, David R. last_name: Soderblom - first_name: Róbert full_name: Szabó, Róbert last_name: Szabó - first_name: Angelle full_name: Tanner, Angelle last_name: Tanner - first_name: C. G. full_name: Tinney, C. G. last_name: Tinney - first_name: Johanna full_name: Teske, Johanna last_name: Teske - first_name: Alexandra full_name: Thomas, Alexandra last_name: Thomas - first_name: Regner full_name: Trampedach, Regner last_name: Trampedach - first_name: Duncan full_name: Wright, Duncan last_name: Wright - first_name: Thomas T. full_name: Yuan, Thomas T. last_name: Yuan - first_name: Farzaneh full_name: Zohrabi, Farzaneh last_name: Zohrabi citation: ama: Huber D, Chaplin WJ, Chontos A, et al. A hot Saturn orbiting an oscillating late subgiant discovered by TESS. The Astronomical Journal. 2019;157(6). doi:10.3847/1538-3881/ab1488 apa: Huber, D., Chaplin, W. J., Chontos, A., Kjeldsen, H., Christensen-Dalsgaard, J., Bedding, T. R., … Zohrabi, F. (2019). A hot Saturn orbiting an oscillating late subgiant discovered by TESS. The Astronomical Journal. IOP Publishing. https://doi.org/10.3847/1538-3881/ab1488 chicago: Huber, Daniel, William J. Chaplin, Ashley Chontos, Hans Kjeldsen, Jørgen Christensen-Dalsgaard, Timothy R. Bedding, Warrick Ball, et al. “A Hot Saturn Orbiting an Oscillating Late Subgiant Discovered by TESS.” The Astronomical Journal. IOP Publishing, 2019. https://doi.org/10.3847/1538-3881/ab1488. ieee: D. Huber et al., “A hot Saturn orbiting an oscillating late subgiant discovered by TESS,” The Astronomical Journal, vol. 157, no. 6. IOP Publishing, 2019. ista: Huber D et al. 2019. A hot Saturn orbiting an oscillating late subgiant discovered by TESS. The Astronomical Journal. 157(6), 245. mla: Huber, Daniel, et al. “A Hot Saturn Orbiting an Oscillating Late Subgiant Discovered by TESS.” The Astronomical Journal, vol. 157, no. 6, 245, IOP Publishing, 2019, doi:10.3847/1538-3881/ab1488. short: D. Huber, W.J. Chaplin, A. Chontos, H. Kjeldsen, J. Christensen-Dalsgaard, T.R. Bedding, W. Ball, R. Brahm, N. Espinoza, T. Henning, A. Jordán, P. Sarkis, E. Knudstrup, S. Albrecht, F. Grundahl, M.F. Andersen, P.L. Pallé, I. Crossfield, B. Fulton, A.W. Howard, H.T. Isaacson, L.M. Weiss, R. Handberg, M.N. Lund, A.M. Serenelli, J. Rørsted Mosumgaard, A. Stokholm, A. Bieryla, L.A. Buchhave, D.W. Latham, S.N. Quinn, E. Gaidos, T. Hirano, G.R. Ricker, R.K. Vanderspek, S. Seager, J.M. Jenkins, J.N. Winn, H.M. Antia, T. Appourchaux, S. Basu, K.J. Bell, O. Benomar, A. Bonanno, D.L. Buzasi, T.L. Campante, Z. Çelik Orhan, E. Corsaro, M.S. Cunha, G.R. Davies, S. Deheuvels, S.K. Grunblatt, A. Hasanzadeh, M.P. Di Mauro, R. A. García, P. Gaulme, L. Girardi, J.A. Guzik, M. Hon, C. Jiang, T. Kallinger, S.D. Kawaler, J.S. Kuszlewicz, Y. Lebreton, T. Li, M. Lucas, M.S. Lundkvist, A.W. Mann, S. Mathis, S. Mathur, A. Mazumdar, T.S. Metcalfe, A. Miglio, M.J.P. F. G. Monteiro, B. Mosser, A. Noll, B. Nsamba, J.M. Joel Ong, S. Örtel, F. Pereira, P. Ranadive, C. Régulo, T.S. Rodrigues, I.W. Roxburgh, V.S. Aguirre, B. Smalley, M. Schofield, S.G. Sousa, K.G. Stassun, D. Stello, J. Tayar, T.R. White, K. Verma, M. Vrard, M. Yıldız, D. Baker, M. Bazot, C. Beichmann, C. Bergmann, L.A. Bugnet, B. Cale, R. Carlino, S.M. Cartwright, J.L. Christiansen, D.R. Ciardi, O. Creevey, J.A. Dittmann, J.-D.D. Nascimento, V.V. Eylen, G. Fürész, J. Gagné, P. Gao, K. Gazeas, F. Giddens, O.J. Hall, S. Hekker, M.J. Ireland, N. Latouf, D. LeBrun, A.M. Levine, W. Matzko, E. Natinsky, E. Page, P. Plavchan, M. Mansouri-Samani, S. McCauliff, S.E. Mullally, B. Orenstein, A.G. Soto, M. Paegert, J.L. van Saders, C. Schnaible, D.R. Soderblom, R. Szabó, A. Tanner, C.G. Tinney, J. Teske, A. Thomas, R. Trampedach, D. Wright, T.T. Yuan, F. Zohrabi, The Astronomical Journal 157 (2019). date_created: 2022-07-18T14:29:07Z date_published: 2019-05-30T00:00:00Z date_updated: 2022-08-22T07:38:34Z day: '30' doi: 10.3847/1538-3881/ab1488 extern: '1' external_id: arxiv: - '1901.01643' intvolume: ' 157' issue: '6' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1901.01643 month: '05' oa: 1 oa_version: Preprint publication: The Astronomical Journal publication_identifier: issn: - 0004-6256 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: A hot Saturn orbiting an oscillating late subgiant discovered by TESS type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 157 year: '2019' ... --- _id: '11613' abstract: - lang: eng text: Over 2,000 stars were observed for 1 month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillations were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity of the stars. However, the sample of stars studied contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of main-sequence solar-like stars that consists of 1,014 stars. First we compute the predicted amplitude of the modes of that sample and for the stars with detected oscillation and compare it to the noise at high frequency in the power spectrum. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars out of the full sample and in particular for 323 stars where the amplitude of the modes is predicted to be high enough to be detected. We find that among these 323 stars 32% of them have a level of magnetic activity larger than the Sun during its maximum activity, explaining the non-detection of acoustic modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without acoustic modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle of the rotation axis, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20–30 ppm) below which rotation and magnetic activity are not detected. Finally, with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected. acknowledgement: This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Partly Based on observations obtained with the HERMES spectrograph on the Mercator Telescope, which was supported by the Research Foundation—Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany. SM acknowledges support by the National Aeronautics and Space Administration under Grant NNX15AF13G, by the National Science Foundation grant AST-1411685, and the Ramon y Cajal fellowship number RYC-2015-17697. RG acknowledges the support from PLATO and GOLF CNES grants. ÂS acknowledges the support from National Aeronautics and Space Administration under Grant NNX17AF27G. PB acknowledges the support of the MINECO under the fellowship program Juan de la Cierva Incorporacion (IJCI-2015-26034). article_number: '46' article_processing_charge: No article_type: original author: - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Rafael A. full_name: García, Rafael A. last_name: García - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: Ângela R.G. full_name: Santos, Ângela R.G. last_name: Santos - first_name: Netsha full_name: Santiago, Netsha last_name: Santiago - first_name: Paul G. full_name: Beck, Paul G. last_name: Beck citation: ama: Mathur S, García RA, Bugnet LA, Santos ÂRG, Santiago N, Beck PG. Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. 2019;6. doi:10.3389/fspas.2019.00046 apa: Mathur, S., García, R. A., Bugnet, L. A., Santos, Â. R. G., Santiago, N., & Beck, P. G. (2019). Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. Frontiers Media. https://doi.org/10.3389/fspas.2019.00046 chicago: Mathur, Savita, Rafael A. García, Lisa Annabelle Bugnet, Ângela R.G. Santos, Netsha Santiago, and Paul G. Beck. “Revisiting the Impact of Stellar Magnetic Activity on the Detectability of Solar-like Oscillations by Kepler.” Frontiers in Astronomy and Space Sciences. Frontiers Media, 2019. https://doi.org/10.3389/fspas.2019.00046. ieee: S. Mathur, R. A. García, L. A. Bugnet, Â. R. G. Santos, N. Santiago, and P. G. Beck, “Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler,” Frontiers in Astronomy and Space Sciences, vol. 6. Frontiers Media, 2019. ista: Mathur S, García RA, Bugnet LA, Santos ÂRG, Santiago N, Beck PG. 2019. Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler. Frontiers in Astronomy and Space Sciences. 6, 46. mla: Mathur, Savita, et al. “Revisiting the Impact of Stellar Magnetic Activity on the Detectability of Solar-like Oscillations by Kepler.” Frontiers in Astronomy and Space Sciences, vol. 6, 46, Frontiers Media, 2019, doi:10.3389/fspas.2019.00046. short: S. Mathur, R.A. García, L.A. Bugnet, Â.R.G. Santos, N. Santiago, P.G. Beck, Frontiers in Astronomy and Space Sciences 6 (2019). date_created: 2022-07-18T14:00:36Z date_published: 2019-07-10T00:00:00Z date_updated: 2022-08-22T07:29:55Z day: '10' doi: 10.3389/fspas.2019.00046 extern: '1' external_id: arxiv: - '1907.01415' intvolume: ' 6' keyword: - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.01415 month: '07' oa: 1 oa_version: Preprint publication: Frontiers in Astronomy and Space Sciences publication_identifier: eissn: - 2296-987X publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: Revisiting the impact of stellar magnetic activity on the detectability of solar-like oscillations by Kepler type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2019' ...