--- _id: '8949' abstract: - lang: eng text: Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis. acknowledgement: This research was funded by grants from the National Institutes of Health to H.T.G. (R01NS098370 and R01NS089795). C.V.M. was supported by a National Science Foundation Graduate Research Fellowship (DGE-1746939). R.B. was supported by the FWF Lise-Meitner program (M 2416), and S.H. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 725780 LinPro).The authors thank members of the Ghashghaei lab for discussions, technical support, and help with preparation of the manuscript. article_number: '2662' article_processing_charge: No article_type: original author: - first_name: Xuying full_name: Zhang, Xuying last_name: Zhang - first_name: Christine V. full_name: Mennicke, Christine V. last_name: Mennicke - first_name: Guanxi full_name: Xiao, Guanxi last_name: Xiao - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Mansoor full_name: Haider, Mansoor last_name: Haider - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: H. Troy full_name: Ghashghaei, H. Troy last_name: Ghashghaei citation: ama: Zhang X, Mennicke CV, Xiao G, et al. Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage. Cells. 2020;9(12). doi:10.3390/cells9122662 apa: Zhang, X., Mennicke, C. V., Xiao, G., Beattie, R. J., Haider, M., Hippenmeyer, S., & Ghashghaei, H. T. (2020). Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage. Cells. MDPI. https://doi.org/10.3390/cells9122662 chicago: Zhang, Xuying, Christine V. Mennicke, Guanxi Xiao, Robert J Beattie, Mansoor Haider, Simon Hippenmeyer, and H. Troy Ghashghaei. “Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage.” Cells. MDPI, 2020. https://doi.org/10.3390/cells9122662. ieee: X. Zhang et al., “Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage,” Cells, vol. 9, no. 12. MDPI, 2020. ista: Zhang X, Mennicke CV, Xiao G, Beattie RJ, Haider M, Hippenmeyer S, Ghashghaei HT. 2020. Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage. Cells. 9(12), 2662. mla: Zhang, Xuying, et al. “Clonal Analysis of Gliogenesis in the Cerebral Cortex Reveals Stochastic Expansion of Glia and Cell Autonomous Responses to Egfr Dosage.” Cells, vol. 9, no. 12, 2662, MDPI, 2020, doi:10.3390/cells9122662. short: X. Zhang, C.V. Mennicke, G. Xiao, R.J. Beattie, M. Haider, S. Hippenmeyer, H.T. Ghashghaei, Cells 9 (2020). date_created: 2020-12-14T08:04:03Z date_published: 2020-12-11T00:00:00Z date_updated: 2023-08-24T10:57:48Z day: '11' ddc: - '570' department: - _id: SiHi doi: 10.3390/cells9122662 ec_funded: 1 external_id: isi: - '000601787300001' file: - access_level: open_access checksum: 5095cbdc728c9a510c5761cf60a8861c content_type: application/pdf creator: dernst date_created: 2020-12-14T08:09:43Z date_updated: 2020-12-14T08:09:43Z file_id: '8950' file_name: 2020_Cells_Zhang.pdf file_size: 3504525 relation: main_file success: 1 file_date_updated: 2020-12-14T08:09:43Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Cells publication_identifier: issn: - 2073-4409 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: Clonal analysis of gliogenesis in the cerebral cortex reveals stochastic expansion of glia and cell autonomous responses to Egfr dosage tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8971' abstract: - lang: eng text: The actin-related protein (Arp)2/3 complex nucleates branched actin filament networks pivotal for cell migration, endocytosis and pathogen infection. Its activation is tightly regulated and involves complex structural rearrangements and actin filament binding, which are yet to be understood. Here, we report a 9.0 Å resolution structure of the actin filament Arp2/3 complex branch junction in cells using cryo-electron tomography and subtomogram averaging. This allows us to generate an accurate model of the active Arp2/3 complex in the branch junction and its interaction with actin filaments. Notably, our model reveals a previously undescribed set of interactions of the Arp2/3 complex with the mother filament, significantly different to the previous branch junction model. Our structure also indicates a central role for the ArpC3 subunit in stabilizing the active conformation. acknowledged_ssus: - _id: ScienComp - _id: LifeSc - _id: Bio - _id: EM-Fac acknowledgement: "This research was supported by the Scientific Service Units (SSUs) of IST Austria through resources provided by Scientific Computing (SciComp), the Life Science Facility (LSF), the BioImaging Facility (BIF), and the Electron Microscopy Facility (EMF). We also thank Dimitry Tegunov (MPI for Biophysical Chemistry) for helpful discussions\r\nabout the M software, and Michael Sixt (IST Austria) and Klemens Rottner (Technical University Braunschweig, HZI Braunschweig) for critical reading of the manuscript. We also thank Gregory Voth (University of Chicago) for providing us the MD-derived branch junction model for comparison. The authors acknowledge support from IST Austria and from the Austrian Science Fund (FWF): M02495 to G.D. and Austrian Science Fund (FWF): P33367 to F.K.M.S. " article_number: '6437' article_processing_charge: No article_type: original author: - first_name: Florian full_name: Fäßler, Florian id: 404F5528-F248-11E8-B48F-1D18A9856A87 last_name: Fäßler orcid: 0000-0001-7149-769X - first_name: Georgi A full_name: Dimchev, Georgi A id: 38C393BE-F248-11E8-B48F-1D18A9856A87 last_name: Dimchev orcid: 0000-0001-8370-6161 - first_name: Victor-Valentin full_name: Hodirnau, Victor-Valentin id: 3661B498-F248-11E8-B48F-1D18A9856A87 last_name: Hodirnau - first_name: William full_name: Wan, William last_name: Wan - first_name: Florian KM full_name: Schur, Florian KM id: 48AD8942-F248-11E8-B48F-1D18A9856A87 last_name: Schur orcid: 0000-0003-4790-8078 citation: ama: Fäßler F, Dimchev GA, Hodirnau V-V, Wan W, Schur FK. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nature Communications. 2020;11. doi:10.1038/s41467-020-20286-x apa: Fäßler, F., Dimchev, G. A., Hodirnau, V.-V., Wan, W., & Schur, F. K. (2020). Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-20286-x chicago: Fäßler, Florian, Georgi A Dimchev, Victor-Valentin Hodirnau, William Wan, and Florian KM Schur. “Cryo-Electron Tomography Structure of Arp2/3 Complex in Cells Reveals New Insights into the Branch Junction.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-20286-x. ieee: F. Fäßler, G. A. Dimchev, V.-V. Hodirnau, W. Wan, and F. K. Schur, “Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Fäßler F, Dimchev GA, Hodirnau V-V, Wan W, Schur FK. 2020. Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nature Communications. 11, 6437. mla: Fäßler, Florian, et al. “Cryo-Electron Tomography Structure of Arp2/3 Complex in Cells Reveals New Insights into the Branch Junction.” Nature Communications, vol. 11, 6437, Springer Nature, 2020, doi:10.1038/s41467-020-20286-x. short: F. Fäßler, G.A. Dimchev, V.-V. Hodirnau, W. Wan, F.K. Schur, Nature Communications 11 (2020). date_created: 2020-12-23T08:25:45Z date_published: 2020-12-22T00:00:00Z date_updated: 2023-08-24T11:01:50Z day: '22' ddc: - '570' department: - _id: FlSc - _id: EM-Fac doi: 10.1038/s41467-020-20286-x external_id: isi: - '000603078000003' file: - access_level: open_access checksum: 55d43ea0061cc4027ba45e966e1db8cc content_type: application/pdf creator: dernst date_created: 2020-12-28T08:16:10Z date_updated: 2020-12-28T08:16:10Z file_id: '8975' file_name: 2020_NatureComm_Faessler.pdf file_size: 3958727 relation: main_file success: 1 file_date_updated: 2020-12-28T08:16:10Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 9B954C5C-BA93-11EA-9121-9846C619BF3A grant_number: P33367 name: Structure and isoform diversity of the Arp2/3 complex - _id: 2674F658-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02495 name: Protein structure and function in filopodia across scales publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/cutting-edge-technology-reveals-structures-within-cells/ scopus_import: '1' status: public title: Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8987' abstract: - lang: eng text: "Currently several projects aim at designing and implementing protocols for privacy preserving automated contact tracing to help fight the current pandemic. Those proposal are quite similar, and in their most basic form basically propose an app for mobile phones which broadcasts frequently changing pseudorandom identifiers via (low energy) Bluetooth, and at the same time, the app stores IDs broadcast by phones in its proximity. Only if a user is tested positive, they upload either the beacons they did broadcast (which is the case in decentralized proposals as DP-3T, east and west coast PACT or Covid watch) or received (as in Popp-PT or ROBERT) during the last two weeks or so.\r\n\r\nVaudenay [eprint 2020/399] observes that this basic scheme (he considers the DP-3T proposal) succumbs to relay and even replay attacks, and proposes more complex interactive schemes which prevent those attacks without giving up too many privacy aspects. Unfortunately interaction is problematic for this application for efficiency and security reasons. The countermeasures that have been suggested so far are either not practical or give up on key privacy aspects. We propose a simple non-interactive variant of the basic protocol that\r\n(security) Provably prevents replay and (if location data is available) relay attacks.\r\n(privacy) The data of all parties (even jointly) reveals no information on the location or time where encounters happened.\r\n(efficiency) The broadcasted message can fit into 128 bits and uses only basic crypto (commitments and secret key authentication).\r\n\r\nTowards this end we introduce the concept of “delayed authentication”, which basically is a message authentication code where verification can be done in two steps, where the first doesn’t require the key, and the second doesn’t require the message." article_processing_charge: No author: - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Pietrzak KZ. Delayed authentication: Preventing replay and relay attacks in private contact tracing. In: Progress in Cryptology. Vol 12578. LNCS. Springer Nature; 2020:3-15. doi:10.1007/978-3-030-65277-7_1' apa: 'Pietrzak, K. Z. (2020). Delayed authentication: Preventing replay and relay attacks in private contact tracing. In Progress in Cryptology (Vol. 12578, pp. 3–15). Bangalore, India: Springer Nature. https://doi.org/10.1007/978-3-030-65277-7_1' chicago: 'Pietrzak, Krzysztof Z. “Delayed Authentication: Preventing Replay and Relay Attacks in Private Contact Tracing.” In Progress in Cryptology, 12578:3–15. LNCS. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-65277-7_1.' ieee: 'K. Z. Pietrzak, “Delayed authentication: Preventing replay and relay attacks in private contact tracing,” in Progress in Cryptology, Bangalore, India, 2020, vol. 12578, pp. 3–15.' ista: 'Pietrzak KZ. 2020. Delayed authentication: Preventing replay and relay attacks in private contact tracing. Progress in Cryptology. INDOCRYPT: International Conference on Cryptology in IndiaLNCS vol. 12578, 3–15.' mla: 'Pietrzak, Krzysztof Z. “Delayed Authentication: Preventing Replay and Relay Attacks in Private Contact Tracing.” Progress in Cryptology, vol. 12578, Springer Nature, 2020, pp. 3–15, doi:10.1007/978-3-030-65277-7_1.' short: K.Z. Pietrzak, in:, Progress in Cryptology, Springer Nature, 2020, pp. 3–15. conference: end_date: 2020-12-16 location: Bangalore, India name: 'INDOCRYPT: International Conference on Cryptology in India' start_date: 2020-12-13 date_created: 2021-01-03T23:01:23Z date_published: 2020-12-08T00:00:00Z date_updated: 2023-08-24T11:08:58Z day: '08' department: - _id: KrPi doi: 10.1007/978-3-030-65277-7_1 ec_funded: 1 external_id: isi: - '000927592800001' intvolume: ' 12578' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2020/418 month: '12' oa: 1 oa_version: Preprint page: 3-15 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Progress in Cryptology publication_identifier: eissn: - '16113349' isbn: - '9783030652760' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: 'Delayed authentication: Preventing replay and relay attacks in private contact tracing' type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12578 year: '2020' ... --- _id: '9000' abstract: - lang: eng text: 'In prokaryotes, thermodynamic models of gene regulation provide a highly quantitative mapping from promoter sequences to gene-expression levels that is compatible with in vivo and in vitro biophysical measurements. Such concordance has not been achieved for models of enhancer function in eukaryotes. In equilibrium models, it is difficult to reconcile the reported short transcription factor (TF) residence times on the DNA with the high specificity of regulation. In nonequilibrium models, progress is difficult due to an explosion in the number of parameters. Here, we navigate this complexity by looking for minimal nonequilibrium enhancer models that yield desired regulatory phenotypes: low TF residence time, high specificity, and tunable cooperativity. We find that a single extra parameter, interpretable as the “linking rate,” by which bound TFs interact with Mediator components, enables our models to escape equilibrium bounds and access optimal regulatory phenotypes, while remaining consistent with the reported phenomenology and simple enough to be inferred from upcoming experiments. We further find that high specificity in nonequilibrium models is in a trade-off with gene-expression noise, predicting bursty dynamics—an experimentally observed hallmark of eukaryotic transcription. By drastically reducing the vast parameter space of nonequilibrium enhancer models to a much smaller subspace that optimally realizes biological function, we deliver a rich class of models that could be tractably inferred from data in the near future.' acknowledgement: G.T. was supported by Human Frontiers Science Program Grant RGP0034/2018. R.G. was supported by the Austrian Academy of Sciences DOC Fellowship. R.G. thanks S. Avvakumov for helpful discussions. article_processing_charge: No article_type: original author: - first_name: Rok full_name: Grah, Rok id: 483E70DE-F248-11E8-B48F-1D18A9856A87 last_name: Grah orcid: 0000-0003-2539-3560 - first_name: Benjamin full_name: Zoller, Benjamin last_name: Zoller - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Grah R, Zoller B, Tkačik G. Nonequilibrium models of optimal enhancer function. PNAS. 2020;117(50):31614-31622. doi:10.1073/pnas.2006731117 apa: Grah, R., Zoller, B., & Tkačik, G. (2020). Nonequilibrium models of optimal enhancer function. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.2006731117 chicago: Grah, Rok, Benjamin Zoller, and Gašper Tkačik. “Nonequilibrium Models of Optimal Enhancer Function.” PNAS. National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2006731117. ieee: R. Grah, B. Zoller, and G. Tkačik, “Nonequilibrium models of optimal enhancer function,” PNAS, vol. 117, no. 50. National Academy of Sciences, pp. 31614–31622, 2020. ista: Grah R, Zoller B, Tkačik G. 2020. Nonequilibrium models of optimal enhancer function. PNAS. 117(50), 31614–31622. mla: Grah, Rok, et al. “Nonequilibrium Models of Optimal Enhancer Function.” PNAS, vol. 117, no. 50, National Academy of Sciences, 2020, pp. 31614–22, doi:10.1073/pnas.2006731117. short: R. Grah, B. Zoller, G. Tkačik, PNAS 117 (2020) 31614–31622. date_created: 2021-01-10T23:01:17Z date_published: 2020-12-15T00:00:00Z date_updated: 2023-08-24T11:10:22Z day: '15' ddc: - '570' department: - _id: GaTk doi: 10.1073/pnas.2006731117 external_id: isi: - '000600608300015' pmid: - '33268497' file: - access_level: open_access checksum: 69039cd402a571983aa6cb4815ffa863 content_type: application/pdf creator: dernst date_created: 2021-01-11T08:37:31Z date_updated: 2021-01-11T08:37:31Z file_id: '9004' file_name: 2020_PNAS_Grah.pdf file_size: 1199247 relation: main_file success: 1 file_date_updated: 2021-01-11T08:37:31Z has_accepted_license: '1' intvolume: ' 117' isi: 1 issue: '50' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 31614-31622 pmid: 1 project: - _id: 2665AAFE-B435-11E9-9278-68D0E5697425 grant_number: RGP0034/2018 name: Can evolution minimize spurious signaling crosstalk to reach optimal performance? - _id: 267C84F4-B435-11E9-9278-68D0E5697425 name: Biophysically realistic genotype-phenotype maps for regulatory networks publication: PNAS publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-compact-model-for-gene-regulation-in-higher-organisms/ scopus_import: '1' status: public title: Nonequilibrium models of optimal enhancer function tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 117 year: '2020' ... --- _id: '7910' abstract: - lang: eng text: Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits. article_number: eabb0451 article_processing_charge: No article_type: original author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: S. full_name: Pirandola, S. last_name: Pirandola - first_name: D full_name: Vitali, D last_name: Vitali - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination using a digital receiver. Science Advances. 2020;6(19). doi:10.1126/sciadv.abb0451 apa: Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination using a digital receiver. Science Advances. AAAS. https://doi.org/10.1126/sciadv.abb0451 chicago: Barzanjeh, Shabir, S. Pirandola, D Vitali, and Johannes M Fink. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances. AAAS, 2020. https://doi.org/10.1126/sciadv.abb0451. ieee: S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination using a digital receiver,” Science Advances, vol. 6, no. 19. AAAS, 2020. ista: Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination using a digital receiver. Science Advances. 6(19), eabb0451. mla: Barzanjeh, Shabir, et al. “Microwave Quantum Illumination Using a Digital Receiver.” Science Advances, vol. 6, no. 19, eabb0451, AAAS, 2020, doi:10.1126/sciadv.abb0451. short: S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, Science Advances 6 (2020). date_created: 2020-05-31T22:00:49Z date_published: 2020-05-06T00:00:00Z date_updated: 2023-08-24T11:10:49Z day: '06' ddc: - '530' department: - _id: JoFi doi: 10.1126/sciadv.abb0451 ec_funded: 1 external_id: arxiv: - '1908.03058' isi: - '000531171100045' file: - access_level: open_access checksum: 16fa61cc1951b444ee74c07188cda9da content_type: application/pdf creator: dernst date_created: 2020-06-02T09:18:36Z date_updated: 2020-07-14T12:48:05Z file_id: '7913' file_name: 2020_ScienceAdvances_Barzanjeh.pdf file_size: 795822 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '19' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits publication: Science Advances publication_identifier: eissn: - '23752548' publication_status: published publisher: AAAS quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/scientists-demonstrate-quantum-radar-prototype/ record: - id: '9001' relation: later_version status: public scopus_import: '1' status: public title: Microwave quantum illumination using a digital receiver tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2020' ... --- _id: '9001' abstract: - lang: eng text: Quantum illumination is a sensing technique that employs entangled signal-idler beams to improve the detection efficiency of low-reflectivity objects in environments with large thermal noise. The advantage over classical strategies is evident at low signal brightness, a feature which could make the protocol an ideal prototype for non-invasive scanning or low-power short-range radar. Here we experimentally investigate the concept of quantum illumination at microwave frequencies, by generating entangled fields using a Josephson parametric converter which are then amplified to illuminate a room-temperature object at a distance of 1 meter. Starting from experimental data, we simulate the case of perfect idler photon number detection, which results in a quantum advantage compared to the relative classical benchmark. Our results highlight the opportunities and challenges on the way towards a first room-temperature application of microwave quantum circuits. acknowledgement: "This work was supported by the Institute of Science and Technology Austria (IST Austria), the European Research Council under grant agreement number 758053 (ERC StG QUNNECT) and the EU’s Horizon 2020 research and innovation programme under grant agreement number 862644 (FET Open QUARTET). S.B. acknowledges support from the Marie Skłodowska Curie\r\nfellowship number 707438 (MSC-IF SUPEREOM), DV acknowledge support from EU’s Horizon 2020 research and innovation programme under grant agreement number 732894 (FET Proactive HOT) and the Project QuaSeRT funded by the QuantERA ERANET Cofund in Quantum Technologies, and J.M.F from the Austrian Science Fund (FWF) through BeyondC (F71), a NOMIS foundation research grant, and the EU’s Horizon 2020 research and\r\ninnovation programme under grant agreement number 732894 (FET Proactive\r\nHOT)." article_number: '9266397' article_processing_charge: No author: - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Stefano full_name: Pirandola, Stefano last_name: Pirandola - first_name: David full_name: Vitali, David last_name: Vitali - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Barzanjeh S, Pirandola S, Vitali D, Fink JM. Microwave quantum illumination with a digital phase-conjugated receiver. In: IEEE National Radar Conference - Proceedings. Vol 2020. IEEE; 2020. doi:10.1109/RadarConf2043947.2020.9266397' apa: 'Barzanjeh, S., Pirandola, S., Vitali, D., & Fink, J. M. (2020). Microwave quantum illumination with a digital phase-conjugated receiver. In IEEE National Radar Conference - Proceedings (Vol. 2020). Florence, Italy: IEEE. https://doi.org/10.1109/RadarConf2043947.2020.9266397' chicago: Barzanjeh, Shabir, Stefano Pirandola, David Vitali, and Johannes M Fink. “Microwave Quantum Illumination with a Digital Phase-Conjugated Receiver.” In IEEE National Radar Conference - Proceedings, Vol. 2020. IEEE, 2020. https://doi.org/10.1109/RadarConf2043947.2020.9266397. ieee: S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, “Microwave quantum illumination with a digital phase-conjugated receiver,” in IEEE National Radar Conference - Proceedings, Florence, Italy, 2020, vol. 2020, no. 9. ista: 'Barzanjeh S, Pirandola S, Vitali D, Fink JM. 2020. Microwave quantum illumination with a digital phase-conjugated receiver. IEEE National Radar Conference - Proceedings. RadarConf: National Conference on Radar vol. 2020, 9266397.' mla: Barzanjeh, Shabir, et al. “Microwave Quantum Illumination with a Digital Phase-Conjugated Receiver.” IEEE National Radar Conference - Proceedings, vol. 2020, no. 9, 9266397, IEEE, 2020, doi:10.1109/RadarConf2043947.2020.9266397. short: S. Barzanjeh, S. Pirandola, D. Vitali, J.M. Fink, in:, IEEE National Radar Conference - Proceedings, IEEE, 2020. conference: end_date: 2020-09-25 location: Florence, Italy name: 'RadarConf: National Conference on Radar' start_date: 2020-09-21 date_created: 2021-01-10T23:01:17Z date_published: 2020-09-21T00:00:00Z date_updated: 2023-08-24T11:10:49Z day: '21' department: - _id: JoFi doi: 10.1109/RadarConf2043947.2020.9266397 ec_funded: 1 external_id: arxiv: - '1908.03058' isi: - '000612224900089' intvolume: ' 2020' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.03058 month: '09' oa: 1 oa_version: Preprint project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies publication: IEEE National Radar Conference - Proceedings publication_identifier: isbn: - '9781728189420' issn: - 1097-5659 publication_status: published publisher: IEEE quality_controlled: '1' related_material: record: - id: '7910' relation: earlier_version status: public scopus_import: '1' status: public title: Microwave quantum illumination with a digital phase-conjugated receiver type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2020 year: '2020' ... --- _id: '9007' abstract: - lang: eng text: Motivated by a recent question of Peyre, we apply the Hardy–Littlewood circle method to count “sufficiently free” rational points of bounded height on arbitrary smooth projective hypersurfaces of low degree that are defined over the rationals. article_processing_charge: No article_type: original author: - first_name: Timothy D full_name: Browning, Timothy D id: 35827D50-F248-11E8-B48F-1D18A9856A87 last_name: Browning orcid: 0000-0002-8314-0177 - first_name: Will full_name: Sawin, Will last_name: Sawin citation: ama: Browning TD, Sawin W. Free rational points on smooth hypersurfaces. Commentarii Mathematici Helvetici. 2020;95(4):635-659. doi:10.4171/CMH/499 apa: Browning, T. D., & Sawin, W. (2020). Free rational points on smooth hypersurfaces. Commentarii Mathematici Helvetici. European Mathematical Society. https://doi.org/10.4171/CMH/499 chicago: Browning, Timothy D, and Will Sawin. “Free Rational Points on Smooth Hypersurfaces.” Commentarii Mathematici Helvetici. European Mathematical Society, 2020. https://doi.org/10.4171/CMH/499. ieee: T. D. Browning and W. Sawin, “Free rational points on smooth hypersurfaces,” Commentarii Mathematici Helvetici, vol. 95, no. 4. European Mathematical Society, pp. 635–659, 2020. ista: Browning TD, Sawin W. 2020. Free rational points on smooth hypersurfaces. Commentarii Mathematici Helvetici. 95(4), 635–659. mla: Browning, Timothy D., and Will Sawin. “Free Rational Points on Smooth Hypersurfaces.” Commentarii Mathematici Helvetici, vol. 95, no. 4, European Mathematical Society, 2020, pp. 635–59, doi:10.4171/CMH/499. short: T.D. Browning, W. Sawin, Commentarii Mathematici Helvetici 95 (2020) 635–659. date_created: 2021-01-17T23:01:11Z date_published: 2020-12-07T00:00:00Z date_updated: 2023-08-24T11:11:36Z day: '07' department: - _id: TiBr doi: 10.4171/CMH/499 external_id: arxiv: - '1906.08463' isi: - '000596833300001' intvolume: ' 95' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1906.08463 month: '12' oa: 1 oa_version: Preprint page: 635-659 publication: Commentarii Mathematici Helvetici publication_identifier: eissn: - '14208946' issn: - '00102571' publication_status: published publisher: European Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: Free rational points on smooth hypersurfaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 95 year: '2020' ... --- _id: '9114' abstract: - lang: eng text: "Microwave photonics lends the advantages of fiber optics to electronic sensing and communication systems. In contrast to nonlinear optics, electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a microwave mode occupancy as low as 0.025 ± 0.005 and an added output noise of less than or equal to 0.074 photons. This is facilitated by radiative cooling and a triply resonant ultra-low-loss transducer operating at millikelvin temperatures. The high bandwidth of 10.7 MHz and total (internal) photon conversion\r\nefficiency of 0.03% (0.67%) combined with the extremely slow heating rate of 1.1 added output noise photons per second for the highest available pump power of 1.48 mW puts near-unity efficiency pulsed quantum transduction within reach. Together with the non-Gaussian resources of superconducting qubits this might provide the practical foundation to extend the range and scope of current quantum networks in analogy to electrical repeaters in classical fiber optic communication." acknowledged_ssus: - _id: M-Shop acknowledgement: "The authors acknowledge the support of T. Menner, A. Arslani, and T. Asenov from the Miba machine shop for machining the microwave cavity, and thank S. Barzanjeh, F. Sedlmeir, and C. Marquardt for fruitful discussions. This work is supported by IST Austria and the European Research Council under Grant No. 758053 (ERC StG QUNNECT). W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant No. 754411.\r\nG.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (F71) and the European Union’s Horizon 2020 research and innovation program under Grant No. 899354 (FET Open SuperQuLAN). H.G.L.S. acknowledges support from the Aotearoa/New Zealand’s MBIE Endeavour Smart Ideas Grant No UOOX1805." article_number: '020315' article_processing_charge: No article_type: original author: - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Harald G.L. full_name: Schwefel, Harald G.L. last_name: Schwefel - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hease WJ, Rueda Sanchez AR, Sahu R, et al. Bidirectional electro-optic wavelength conversion in the quantum ground state. PRX Quantum. 2020;1(2). doi:10.1103/prxquantum.1.020315 apa: Hease, W. J., Rueda Sanchez, A. R., Sahu, R., Wulf, M., Arnold, G. M., Schwefel, H. G. L., & Fink, J. M. (2020). Bidirectional electro-optic wavelength conversion in the quantum ground state. PRX Quantum. American Physical Society. https://doi.org/10.1103/prxquantum.1.020315 chicago: Hease, William J, Alfredo R Rueda Sanchez, Rishabh Sahu, Matthias Wulf, Georg M Arnold, Harald G.L. Schwefel, and Johannes M Fink. “Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State.” PRX Quantum. American Physical Society, 2020. https://doi.org/10.1103/prxquantum.1.020315. ieee: W. J. Hease et al., “Bidirectional electro-optic wavelength conversion in the quantum ground state,” PRX Quantum, vol. 1, no. 2. American Physical Society, 2020. ista: Hease WJ, Rueda Sanchez AR, Sahu R, Wulf M, Arnold GM, Schwefel HGL, Fink JM. 2020. Bidirectional electro-optic wavelength conversion in the quantum ground state. PRX Quantum. 1(2), 020315. mla: Hease, William J., et al. “Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State.” PRX Quantum, vol. 1, no. 2, 020315, American Physical Society, 2020, doi:10.1103/prxquantum.1.020315. short: W.J. Hease, A.R. Rueda Sanchez, R. Sahu, M. Wulf, G.M. Arnold, H.G.L. Schwefel, J.M. Fink, PRX Quantum 1 (2020). date_created: 2021-02-12T10:41:28Z date_published: 2020-11-23T00:00:00Z date_updated: 2023-08-24T11:16:36Z day: '23' ddc: - '530' department: - _id: JoFi doi: 10.1103/prxquantum.1.020315 ec_funded: 1 external_id: isi: - '000674680100001' file: - access_level: open_access checksum: b70b12ded6d7660d4c9037eb09bfed0c content_type: application/pdf creator: dernst date_created: 2021-02-12T11:16:16Z date_updated: 2021-02-12T11:16:16Z file_id: '9115' file_name: 2020_PRXQuantum_Hease.pdf file_size: 2146924 relation: main_file success: 1 file_date_updated: 2021-02-12T11:16:16Z has_accepted_license: '1' intvolume: ' 1' isi: 1 issue: '2' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: PRX Quantum publication_identifier: issn: - 2691-3399 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-transport-microwave-quantum-information-via-optical-fiber/ record: - id: '13071' relation: research_data status: public - id: '12900' relation: dissertation_contains status: public - id: '13175' relation: dissertation_contains status: public status: public title: Bidirectional electro-optic wavelength conversion in the quantum ground state tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 1 year: '2020' ... --- _id: '9194' abstract: - lang: eng text: Quantum transduction, the process of converting quantum signals from one form of energy to another, is an important area of quantum science and technology. The present perspective article reviews quantum transduction between microwave and optical photons, an area that has recently seen a lot of activity and progress because of its relevance for connecting superconducting quantum processors over long distances, among other applications. Our review covers the leading approaches to achieving such transduction, with an emphasis on those based on atomic ensembles, opto-electro-mechanics, and electro-optics. We briefly discuss relevant metrics from the point of view of different applications, as well as challenges for the future. acknowledgement: "During the writing of this article we became aware of another review of quantum transduction with somewhat different emphasis [99].\r\nWe would like to thank the participants of the transduction workshop at Caltech in September 2018 for helpful and stimulating discussions. We particularly thank John Bartholomew, Andrei Faraon, Johannes Fink, Jeff Holzgrafe, Linbo Shao, Marko Lončar, Daniel Oblak, and Oskar Painter.\r\nN L and N S acknowledge support from the Alliance for Quantum Technologies' (AQT) Intelligent Quantum Networks and Technologies (INQNET) research program and by DOE/HEP QuantISED program grant, QCCFP (Quantum Communication Channels for Fundamental Physics), award number DE-SC0019219. NS further acknowledges support by the Natural Sciences and Engineering Research Council of Canada (NSERC). SB acknowledges support from the Marie Skłodowska Curie fellowship number 707 438 (MSC-IF SUPEREOM). JPC acknowledges support from the Caltech PMA prize postdoctoral fellowship. MS acknowledges support from the ARL-CDQI and the National Science Foundation. CS acknowledges NSERC, Quantum Alberta, and the Alberta Major Innovation Fund." article_number: '020501' article_processing_charge: No article_type: review author: - first_name: Nikolai full_name: Lauk, Nikolai last_name: Lauk - first_name: Neil full_name: Sinclair, Neil last_name: Sinclair - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Jacob P full_name: Covey, Jacob P last_name: Covey - first_name: Mark full_name: Saffman, Mark last_name: Saffman - first_name: Maria full_name: Spiropulu, Maria last_name: Spiropulu - first_name: Christoph full_name: Simon, Christoph last_name: Simon citation: ama: Lauk N, Sinclair N, Barzanjeh S, et al. Perspectives on quantum transduction. Quantum Science and Technology. 2020;5(2). doi:10.1088/2058-9565/ab788a apa: Lauk, N., Sinclair, N., Barzanjeh, S., Covey, J. P., Saffman, M., Spiropulu, M., & Simon, C. (2020). Perspectives on quantum transduction. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ab788a chicago: Lauk, Nikolai, Neil Sinclair, Shabir Barzanjeh, Jacob P Covey, Mark Saffman, Maria Spiropulu, and Christoph Simon. “Perspectives on Quantum Transduction.” Quantum Science and Technology. IOP Publishing, 2020. https://doi.org/10.1088/2058-9565/ab788a. ieee: N. Lauk et al., “Perspectives on quantum transduction,” Quantum Science and Technology, vol. 5, no. 2. IOP Publishing, 2020. ista: Lauk N, Sinclair N, Barzanjeh S, Covey JP, Saffman M, Spiropulu M, Simon C. 2020. Perspectives on quantum transduction. Quantum Science and Technology. 5(2), 020501. mla: Lauk, Nikolai, et al. “Perspectives on Quantum Transduction.” Quantum Science and Technology, vol. 5, no. 2, 020501, IOP Publishing, 2020, doi:10.1088/2058-9565/ab788a. short: N. Lauk, N. Sinclair, S. Barzanjeh, J.P. Covey, M. Saffman, M. Spiropulu, C. Simon, Quantum Science and Technology 5 (2020). date_created: 2021-02-25T08:32:29Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-08-24T11:17:48Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ab788a ec_funded: 1 external_id: isi: - '000521449500001' file: - access_level: open_access checksum: a8562c42124a66b86836fe2489eb5f4f content_type: application/pdf creator: dernst date_created: 2021-03-02T09:47:13Z date_updated: 2021-03-02T09:47:13Z file_id: '9215' file_name: 2020_QuantumScience_Lauk.pdf file_size: 974399 relation: main_file success: 1 file_date_updated: 2021-03-02T09:47:13Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '2' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' publication: Quantum Science and Technology publication_identifier: issn: - 2058-9565 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Perspectives on quantum transduction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ... --- _id: '9039' abstract: - lang: eng text: We give a short and self-contained proof for rates of convergence of the Allen--Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is based on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen--Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems. acknowledgement: "This work was supported by the European Union's Horizon 2020 Research and Innovation\r\nProgramme under Marie Sklodowska-Curie grant agreement 665385 and by the Deutsche\r\nForschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy, EXC-2047/1--390685813." article_processing_charge: No article_type: original author: - first_name: Julian L full_name: Fischer, Julian L id: 2C12A0B0-F248-11E8-B48F-1D18A9856A87 last_name: Fischer orcid: 0000-0002-0479-558X - first_name: Tim full_name: Laux, Tim last_name: Laux - first_name: Theresa M. full_name: Simon, Theresa M. last_name: Simon citation: ama: 'Fischer JL, Laux T, Simon TM. Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies. SIAM Journal on Mathematical Analysis. 2020;52(6):6222-6233. doi:10.1137/20M1322182' apa: 'Fischer, J. L., Laux, T., & Simon, T. M. (2020). Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies. SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/20M1322182' chicago: 'Fischer, Julian L, Tim Laux, and Theresa M. Simon. “Convergence Rates of the Allen-Cahn Equation to Mean Curvature Flow: A Short Proof Based on Relative Entropies.” SIAM Journal on Mathematical Analysis. Society for Industrial and Applied Mathematics, 2020. https://doi.org/10.1137/20M1322182.' ieee: 'J. L. Fischer, T. Laux, and T. M. Simon, “Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies,” SIAM Journal on Mathematical Analysis, vol. 52, no. 6. Society for Industrial and Applied Mathematics, pp. 6222–6233, 2020.' ista: 'Fischer JL, Laux T, Simon TM. 2020. Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies. SIAM Journal on Mathematical Analysis. 52(6), 6222–6233.' mla: 'Fischer, Julian L., et al. “Convergence Rates of the Allen-Cahn Equation to Mean Curvature Flow: A Short Proof Based on Relative Entropies.” SIAM Journal on Mathematical Analysis, vol. 52, no. 6, Society for Industrial and Applied Mathematics, 2020, pp. 6222–33, doi:10.1137/20M1322182.' short: J.L. Fischer, T. Laux, T.M. Simon, SIAM Journal on Mathematical Analysis 52 (2020) 6222–6233. date_created: 2021-01-24T23:01:09Z date_published: 2020-12-15T00:00:00Z date_updated: 2023-08-24T11:15:16Z day: '15' ddc: - '510' department: - _id: JuFi doi: 10.1137/20M1322182 ec_funded: 1 external_id: isi: - '000600695200027' file: - access_level: open_access checksum: 21aa1cf4c30a86a00cae15a984819b5d content_type: application/pdf creator: dernst date_created: 2021-01-25T07:48:39Z date_updated: 2021-01-25T07:48:39Z file_id: '9041' file_name: 2020_SIAM_Fischer.pdf file_size: 310655 relation: main_file success: 1 file_date_updated: 2021-01-25T07:48:39Z has_accepted_license: '1' intvolume: ' 52' isi: 1 issue: '6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 6222-6233 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: SIAM Journal on Mathematical Analysis publication_identifier: eissn: - '10957154' issn: - '00361410' publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: 'Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 52 year: '2020' ... --- _id: '9104' abstract: - lang: eng text: We consider the free additive convolution of two probability measures μ and ν on the real line and show that μ ⊞ v is supported on a single interval if μ and ν each has single interval support. Moreover, the density of μ ⊞ ν is proven to vanish as a square root near the edges of its support if both μ and ν have power law behavior with exponents between −1 and 1 near their edges. In particular, these results show the ubiquity of the conditions in our recent work on optimal local law at the spectral edges for addition of random matrices [5]. acknowledgement: "Supported in part by Hong Kong RGC Grant ECS 26301517.\r\nSupported in part by ERC Advanced Grant RANMAT No. 338804.\r\nSupported in part by the Knut and Alice Wallenberg Foundation and the Swedish Research Council Grant VR-2017-05195." article_processing_charge: No article_type: original author: - first_name: Zhigang full_name: Bao, Zhigang id: 442E6A6C-F248-11E8-B48F-1D18A9856A87 last_name: Bao orcid: 0000-0003-3036-1475 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Kevin full_name: Schnelli, Kevin id: 434AD0AE-F248-11E8-B48F-1D18A9856A87 last_name: Schnelli orcid: 0000-0003-0954-3231 citation: ama: Bao Z, Erdös L, Schnelli K. On the support of the free additive convolution. Journal d’Analyse Mathematique. 2020;142:323-348. doi:10.1007/s11854-020-0135-2 apa: Bao, Z., Erdös, L., & Schnelli, K. (2020). On the support of the free additive convolution. Journal d’Analyse Mathematique. Springer Nature. https://doi.org/10.1007/s11854-020-0135-2 chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “On the Support of the Free Additive Convolution.” Journal d’Analyse Mathematique. Springer Nature, 2020. https://doi.org/10.1007/s11854-020-0135-2. ieee: Z. Bao, L. Erdös, and K. Schnelli, “On the support of the free additive convolution,” Journal d’Analyse Mathematique, vol. 142. Springer Nature, pp. 323–348, 2020. ista: Bao Z, Erdös L, Schnelli K. 2020. On the support of the free additive convolution. Journal d’Analyse Mathematique. 142, 323–348. mla: Bao, Zhigang, et al. “On the Support of the Free Additive Convolution.” Journal d’Analyse Mathematique, vol. 142, Springer Nature, 2020, pp. 323–48, doi:10.1007/s11854-020-0135-2. short: Z. Bao, L. Erdös, K. Schnelli, Journal d’Analyse Mathematique 142 (2020) 323–348. date_created: 2021-02-07T23:01:15Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-24T11:16:03Z day: '01' department: - _id: LaEr doi: 10.1007/s11854-020-0135-2 ec_funded: 1 external_id: arxiv: - '1804.11199' isi: - '000611879400008' intvolume: ' 142' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.11199 month: '11' oa: 1 oa_version: Preprint page: 323-348 project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Journal d'Analyse Mathematique publication_identifier: eissn: - '15658538' issn: - '00217670' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: On the support of the free additive convolution type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 142 year: '2020' ... --- _id: '13071' abstract: - lang: eng text: This dataset comprises all data shown in the plots of the main part of the submitted article "Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Harald full_name: Schwefel, Harald last_name: Schwefel - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hease WJ, Rueda Sanchez AR, Sahu R, et al. Bidirectional electro-optic wavelength conversion in the quantum ground state. 2020. doi:10.5281/ZENODO.4266025 apa: Hease, W. J., Rueda Sanchez, A. R., Sahu, R., Wulf, M., Arnold, G. M., Schwefel, H., & Fink, J. M. (2020). Bidirectional electro-optic wavelength conversion in the quantum ground state. Zenodo. https://doi.org/10.5281/ZENODO.4266025 chicago: Hease, William J, Alfredo R Rueda Sanchez, Rishabh Sahu, Matthias Wulf, Georg M Arnold, Harald Schwefel, and Johannes M Fink. “Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.4266025. ieee: W. J. Hease et al., “Bidirectional electro-optic wavelength conversion in the quantum ground state.” Zenodo, 2020. ista: Hease WJ, Rueda Sanchez AR, Sahu R, Wulf M, Arnold GM, Schwefel H, Fink JM. 2020. Bidirectional electro-optic wavelength conversion in the quantum ground state, Zenodo, 10.5281/ZENODO.4266025. mla: Hease, William J., et al. Bidirectional Electro-Optic Wavelength Conversion in the Quantum Ground State. Zenodo, 2020, doi:10.5281/ZENODO.4266025. short: W.J. Hease, A.R. Rueda Sanchez, R. Sahu, M. Wulf, G.M. Arnold, H. Schwefel, J.M. Fink, (2020). date_created: 2023-05-23T16:44:11Z date_published: 2020-11-10T00:00:00Z date_updated: 2023-08-24T11:16:35Z day: '10' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.4266025 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4266026 month: '11' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9114' relation: used_in_publication status: public status: public title: Bidirectional electro-optic wavelength conversion in the quantum ground state tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9195' abstract: - lang: eng text: Quantum information technology based on solid state qubits has created much interest in converting quantum states from the microwave to the optical domain. Optical photons, unlike microwave photons, can be transmitted by fiber, making them suitable for long distance quantum communication. Moreover, the optical domain offers access to a large set of very well‐developed quantum optical tools, such as highly efficient single‐photon detectors and long‐lived quantum memories. For a high fidelity microwave to optical transducer, efficient conversion at single photon level and low added noise is needed. Currently, the most promising approaches to build such systems are based on second‐order nonlinear phenomena such as optomechanical and electro‐optic interactions. Alternative approaches, although not yet as efficient, include magneto‐optical coupling and schemes based on isolated quantum systems like atoms, ions, or quantum dots. Herein, the necessary theoretical foundations for the most important microwave‐to‐optical conversion experiments are provided, their implementations are described, and the current limitations and future prospects are discussed. acknowledgement: The authors thank Amita Deb for useful comments on this manuscript. The authors acknowledge support from the MBIE of New Zealand Endeavour Smart Ideas fund. The reference numbers in Figure 8 were corrected in April 2020, after online publication. article_number: '1900077' article_processing_charge: No article_type: original author: - first_name: Nicholas J. full_name: Lambert, Nicholas J. last_name: Lambert - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Florian full_name: Sedlmeir, Florian last_name: Sedlmeir - first_name: Harald G. L. full_name: Schwefel, Harald G. L. last_name: Schwefel citation: ama: Lambert NJ, Rueda Sanchez AR, Sedlmeir F, Schwefel HGL. Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. 2020;3(1). doi:10.1002/qute.201900077 apa: Lambert, N. J., Rueda Sanchez, A. R., Sedlmeir, F., & Schwefel, H. G. L. (2020). Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. Wiley. https://doi.org/10.1002/qute.201900077 chicago: Lambert, Nicholas J., Alfredo R Rueda Sanchez, Florian Sedlmeir, and Harald G. L. Schwefel. “Coherent Conversion between Microwave and Optical Photons - An Overview of Physical Implementations.” Advanced Quantum Technologies. Wiley, 2020. https://doi.org/10.1002/qute.201900077. ieee: N. J. Lambert, A. R. Rueda Sanchez, F. Sedlmeir, and H. G. L. Schwefel, “Coherent conversion between microwave and optical photons - An overview of physical implementations,” Advanced Quantum Technologies, vol. 3, no. 1. Wiley, 2020. ista: Lambert NJ, Rueda Sanchez AR, Sedlmeir F, Schwefel HGL. 2020. Coherent conversion between microwave and optical photons - An overview of physical implementations. Advanced Quantum Technologies. 3(1), 1900077. mla: Lambert, Nicholas J., et al. “Coherent Conversion between Microwave and Optical Photons - An Overview of Physical Implementations.” Advanced Quantum Technologies, vol. 3, no. 1, 1900077, Wiley, 2020, doi:10.1002/qute.201900077. short: N.J. Lambert, A.R. Rueda Sanchez, F. Sedlmeir, H.G.L. Schwefel, Advanced Quantum Technologies 3 (2020). date_created: 2021-02-25T08:52:36Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-08-24T13:53:02Z day: '01' ddc: - '530' department: - _id: JoFi doi: 10.1002/qute.201900077 external_id: isi: - '000548088300001' file: - access_level: open_access checksum: 157e95abd6883c3b35b0fa78ae10775e content_type: application/pdf creator: dernst date_created: 2021-03-02T12:30:03Z date_updated: 2021-03-02T12:30:03Z file_id: '9216' file_name: 2020_AdvQuantumTech_Lambert.pdf file_size: 2410114 relation: main_file success: 1 file_date_updated: 2021-03-02T12:30:03Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Advanced Quantum Technologies publication_identifier: issn: - 2511-9044 publication_status: published publisher: Wiley quality_controlled: '1' related_material: link: - description: Cover Page relation: poster url: https://doi.org/10.1002/qute.202070011 status: public title: Coherent conversion between microwave and optical photons - An overview of physical implementations tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2020' ... --- _id: '9011' abstract: - lang: eng text: "Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, however. This work enhances permissioned and permissionless blockchains with the ability to manage confidential data without forfeiting availability or decentralization. The proposed Calypso architecture addresses two orthogonal challenges confronting modern distributed ledgers: (a) enabling the auditable management of secrets and (b) protecting distributed computations against arbitrage attacks when their results depend on the ordering and secrecy of inputs.\r\n\r\nCalypso introduces on-chain secrets, a novel abstraction that enforces atomic deposition of an auditable trace whenever users access confidential data. Calypso provides user-controlled consent management that ensures revocation atomicity and accountable anonymity. To enable permissionless deployment, we introduce an incentive scheme and provide users with the option to select their preferred trustees. We evaluated our Calypso prototype with a confidential document-sharing application and a decentralized lottery. Our benchmarks show that transaction-processing latency increases linearly in terms of security (number of trustees) and is in the range of 0.2 to 8 seconds for 16 to 128 trustees." acknowledgement: 'We thank Nicolas Gailly, Vincent Graf, Jean-Pierre Hubaux, Wouter Lueks, Massimo Marelli, Carmela Troncoso, Juan-Ramón Troncoso Pastoriza, Frédéric Pont, and Sandra Siby for their valuable feedback. This project was supported in part by the ETH domain under PHRT grant #2017−201, and by the AXA Research Fund, Byzgen, DFINITY, and the Swiss Data Science Center (SDSC).' article_processing_charge: No article_type: original author: - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias - first_name: Enis Ceyhun full_name: Alp, Enis Ceyhun last_name: Alp - first_name: Linus full_name: Gasser, Linus last_name: Gasser - first_name: Philipp full_name: Jovanovic, Philipp last_name: Jovanovic - first_name: Ewa full_name: Syta, Ewa last_name: Syta - first_name: Bryan full_name: Ford, Bryan last_name: Ford citation: ama: 'Kokoris Kogias E, Alp EC, Gasser L, Jovanovic P, Syta E, Ford B. CALYPSO: Private data management for decentralized ledgers. Proceedings of the VLDB Endowment. 2020;14(4):586-599. doi:10.14778/3436905.3436917' apa: 'Kokoris Kogias, E., Alp, E. C., Gasser, L., Jovanovic, P., Syta, E., & Ford, B. (2020). CALYPSO: Private data management for decentralized ledgers. Proceedings of the VLDB Endowment. Association for Computing Machinery. https://doi.org/10.14778/3436905.3436917' chicago: 'Kokoris Kogias, Eleftherios, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. “CALYPSO: Private Data Management for Decentralized Ledgers.” Proceedings of the VLDB Endowment. Association for Computing Machinery, 2020. https://doi.org/10.14778/3436905.3436917.' ieee: 'E. Kokoris Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and B. Ford, “CALYPSO: Private data management for decentralized ledgers,” Proceedings of the VLDB Endowment, vol. 14, no. 4. Association for Computing Machinery, pp. 586–599, 2020.' ista: 'Kokoris Kogias E, Alp EC, Gasser L, Jovanovic P, Syta E, Ford B. 2020. CALYPSO: Private data management for decentralized ledgers. Proceedings of the VLDB Endowment. 14(4), 586–599.' mla: 'Kokoris Kogias, Eleftherios, et al. “CALYPSO: Private Data Management for Decentralized Ledgers.” Proceedings of the VLDB Endowment, vol. 14, no. 4, Association for Computing Machinery, 2020, pp. 586–99, doi:10.14778/3436905.3436917.' short: E. Kokoris Kogias, E.C. Alp, L. Gasser, P. Jovanovic, E. Syta, B. Ford, Proceedings of the VLDB Endowment 14 (2020) 586–599. date_created: 2021-01-17T23:01:13Z date_published: 2020-12-01T00:00:00Z date_updated: 2023-08-24T13:57:13Z day: '01' department: - _id: ElKo doi: 10.14778/3436905.3436917 external_id: isi: - '000658495400012' intvolume: ' 14' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://dl.acm.org/doi/10.14778/3436905.3436917 month: '12' oa: 1 oa_version: Published Version page: 586-599 publication: Proceedings of the VLDB Endowment publication_identifier: eissn: - 2150-8097 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: 'CALYPSO: Private data management for decentralized ledgers' tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2020' ... --- _id: '8308' abstract: - lang: eng text: 'Many-body localization provides a mechanism to avoid thermalization in isolated interacting quantum systems. The breakdown of thermalization may be complete, when all eigenstates in the many-body spectrum become localized, or partial, when the so-called many-body mobility edge separates localized and delocalized parts of the spectrum. Previously, De Roeck et al. [Phys. Rev. B 93, 014203 (2016)] suggested a possible instability of the many-body mobility edge in energy density. The local ergodic regions—so-called “bubbles”—resonantly spread throughout the system, leading to delocalization. In order to study such instability mechanism, in this work we design a model featuring many-body mobility edge in particle density: the states at small particle density are localized, while increasing the density of particles leads to delocalization. Using numerical simulations with matrix product states, we demonstrate the stability of many-body localization with respect to small bubbles in large dilute systems for experimentally relevant timescales. In addition, we demonstrate that processes where the bubble spreads are favored over processes that lead to resonant tunneling, suggesting a possible mechanism behind the observed stability of many-body mobility edge. We conclude by proposing experiments to probe particle density mobility edge in the Bose-Hubbard model.' acknowledgement: 'Acknowledgments. We acknowledge useful discussions with W. De Roeck and A. Michailidis. P.B. was supported by the European Union''s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 665385. D.A. was supported by the Swiss National Science Foundation. M.S. was supported by European Research Council (ERC) under the European Union''s Horizon 2020 research and innovation program (Grant Agreement No. 850899). This work benefited from visits to KITP, supported by the National Science Foundation under Grant No. NSF PHY-1748958 and from the program “Thermalization, Many Body Localization and Hydrodynamics” at International Centre for Theoretical Sciences (Code: ICTS/hydrodynamics2019/11).' article_number: 060202(R) article_processing_charge: No article_type: original author: - first_name: Pietro full_name: Brighi, Pietro id: 4115AF5C-F248-11E8-B48F-1D18A9856A87 last_name: Brighi orcid: 0000-0002-7969-2729 - first_name: Dmitry A. full_name: Abanin, Dmitry A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Brighi P, Abanin DA, Serbyn M. Stability of mobility edges in disordered interacting systems. Physical Review B. 2020;102(6). doi:10.1103/physrevb.102.060202 apa: Brighi, P., Abanin, D. A., & Serbyn, M. (2020). Stability of mobility edges in disordered interacting systems. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.060202 chicago: Brighi, Pietro, Dmitry A. Abanin, and Maksym Serbyn. “Stability of Mobility Edges in Disordered Interacting Systems.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.060202. ieee: P. Brighi, D. A. Abanin, and M. Serbyn, “Stability of mobility edges in disordered interacting systems,” Physical Review B, vol. 102, no. 6. American Physical Society, 2020. ista: Brighi P, Abanin DA, Serbyn M. 2020. Stability of mobility edges in disordered interacting systems. Physical Review B. 102(6), 060202(R). mla: Brighi, Pietro, et al. “Stability of Mobility Edges in Disordered Interacting Systems.” Physical Review B, vol. 102, no. 6, 060202(R), American Physical Society, 2020, doi:10.1103/physrevb.102.060202. short: P. Brighi, D.A. Abanin, M. Serbyn, Physical Review B 102 (2020). date_created: 2020-08-26T19:27:42Z date_published: 2020-08-26T00:00:00Z date_updated: 2023-08-24T14:20:21Z day: '26' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevb.102.060202 ec_funded: 1 external_id: isi: - '000562628300001' file: - access_level: open_access checksum: 716442fa7861323fcc80b93718ca009c content_type: application/pdf creator: mserbyn date_created: 2020-08-26T19:28:55Z date_updated: 2020-08-26T19:28:55Z file_id: '8309' file_name: PhysRevB.102.060202.pdf file_size: 488825 relation: main_file success: 1 - access_level: open_access checksum: be0abdc8f60fe065ea6dc92e08487122 content_type: application/pdf creator: mserbyn date_created: 2020-08-26T19:29:00Z date_updated: 2020-08-26T19:29:00Z file_id: '8310' file_name: Supplementary-mbme.pdf file_size: 711405 relation: main_file success: 1 file_date_updated: 2020-08-26T19:29:00Z has_accepted_license: '1' intvolume: ' 102' isi: 1 issue: '6' language: - iso: eng month: '08' oa: 1 oa_version: None project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '12732' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stability of mobility edges in disordered interacting systems type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 102 year: '2020' ... --- _id: '10862' abstract: - lang: eng text: We consider the sum of two large Hermitian matrices A and B with a Haar unitary conjugation bringing them into a general relative position. We prove that the eigenvalue density on the scale slightly above the local eigenvalue spacing is asymptotically given by the free additive convolution of the laws of A and B as the dimension of the matrix increases. This implies optimal rigidity of the eigenvalues and optimal rate of convergence in Voiculescu's theorem. Our previous works [4], [5] established these results in the bulk spectrum, the current paper completely settles the problem at the spectral edges provided they have the typical square-root behavior. The key element of our proof is to compensate the deterioration of the stability of the subordination equations by sharp error estimates that properly account for the local density near the edge. Our results also hold if the Haar unitary matrix is replaced by the Haar orthogonal matrix. acknowledgement: Partially supported by ERC Advanced Grant RANMAT No. 338804. article_number: '108639' article_processing_charge: No article_type: original author: - first_name: Zhigang full_name: Bao, Zhigang id: 442E6A6C-F248-11E8-B48F-1D18A9856A87 last_name: Bao orcid: 0000-0003-3036-1475 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 - first_name: Kevin full_name: Schnelli, Kevin last_name: Schnelli citation: ama: Bao Z, Erdös L, Schnelli K. Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. 2020;279(7). doi:10.1016/j.jfa.2020.108639 apa: Bao, Z., Erdös, L., & Schnelli, K. (2020). Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2020.108639 chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “Spectral Rigidity for Addition of Random Matrices at the Regular Edge.” Journal of Functional Analysis. Elsevier, 2020. https://doi.org/10.1016/j.jfa.2020.108639. ieee: Z. Bao, L. Erdös, and K. Schnelli, “Spectral rigidity for addition of random matrices at the regular edge,” Journal of Functional Analysis, vol. 279, no. 7. Elsevier, 2020. ista: Bao Z, Erdös L, Schnelli K. 2020. Spectral rigidity for addition of random matrices at the regular edge. Journal of Functional Analysis. 279(7), 108639. mla: Bao, Zhigang, et al. “Spectral Rigidity for Addition of Random Matrices at the Regular Edge.” Journal of Functional Analysis, vol. 279, no. 7, 108639, Elsevier, 2020, doi:10.1016/j.jfa.2020.108639. short: Z. Bao, L. Erdös, K. Schnelli, Journal of Functional Analysis 279 (2020). date_created: 2022-03-18T10:18:59Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-24T14:08:42Z day: '15' department: - _id: LaEr doi: 10.1016/j.jfa.2020.108639 ec_funded: 1 external_id: arxiv: - '1708.01597' isi: - '000559623200009' intvolume: ' 279' isi: 1 issue: '7' keyword: - Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1708.01597 month: '10' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems publication: Journal of Functional Analysis publication_identifier: issn: - 0022-1236 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Spectral rigidity for addition of random matrices at the regular edge type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 279 year: '2020' ... --- _id: '10867' abstract: - lang: eng text: In this paper we find a tight estimate for Gromov’s waist of the balls in spaces of constant curvature, deduce the estimates for the balls in Riemannian manifolds with upper bounds on the curvature (CAT(ϰ)-spaces), and establish similar result for normed spaces. acknowledgement: ' Supported by the Russian Foundation for Basic Research grant 18-01-00036.' article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Roman full_name: Karasev, Roman last_name: Karasev citation: ama: Akopyan A, Karasev R. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020;2020(3):669-697. doi:10.1093/imrn/rny037 apa: Akopyan, A., & Karasev, R. (2020). Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rny037 chicago: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices. Oxford University Press, 2020. https://doi.org/10.1093/imrn/rny037. ieee: A. Akopyan and R. Karasev, “Waist of balls in hyperbolic and spherical spaces,” International Mathematics Research Notices, vol. 2020, no. 3. Oxford University Press, pp. 669–697, 2020. ista: Akopyan A, Karasev R. 2020. Waist of balls in hyperbolic and spherical spaces. International Mathematics Research Notices. 2020(3), 669–697. mla: Akopyan, Arseniy, and Roman Karasev. “Waist of Balls in Hyperbolic and Spherical Spaces.” International Mathematics Research Notices, vol. 2020, no. 3, Oxford University Press, 2020, pp. 669–97, doi:10.1093/imrn/rny037. short: A. Akopyan, R. Karasev, International Mathematics Research Notices 2020 (2020) 669–697. date_created: 2022-03-18T11:39:30Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-24T14:19:55Z day: '01' department: - _id: HeEd doi: 10.1093/imrn/rny037 external_id: arxiv: - '1702.07513' isi: - '000522852700002' intvolume: ' 2020' isi: 1 issue: '3' keyword: - General Mathematics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.07513 month: '02' oa: 1 oa_version: Preprint page: 669-697 publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Waist of balls in hyperbolic and spherical spaces type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 2020 year: '2020' ... --- _id: '9799' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957469.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957469.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957469.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957469.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957469.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:26:57Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957469.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957469.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '9798' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957472.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957472.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957472.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957472.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957472.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:18:15Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957472.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957472.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '6488' abstract: - lang: eng text: We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish. article_number: '2050006' article_processing_charge: No article_type: original author: - first_name: Giorgio full_name: Cipolloni, Giorgio id: 42198EFA-F248-11E8-B48F-1D18A9856A87 last_name: Cipolloni orcid: 0000-0002-4901-7992 - first_name: László full_name: Erdös, László id: 4DBD5372-F248-11E8-B48F-1D18A9856A87 last_name: Erdös orcid: 0000-0001-5366-9603 citation: ama: 'Cipolloni G, Erdös L. Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. 2020;9(3). doi:10.1142/S2010326320500069' apa: 'Cipolloni, G., & Erdös, L. (2020). Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. World Scientific Publishing. https://doi.org/10.1142/S2010326320500069' chicago: 'Cipolloni, Giorgio, and László Erdös. “Fluctuations for Differences of Linear Eigenvalue Statistics for Sample Covariance Matrices.” Random Matrices: Theory and Application. World Scientific Publishing, 2020. https://doi.org/10.1142/S2010326320500069.' ieee: 'G. Cipolloni and L. Erdös, “Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices,” Random Matrices: Theory and Application, vol. 9, no. 3. World Scientific Publishing, 2020.' ista: 'Cipolloni G, Erdös L. 2020. Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices. Random Matrices: Theory and Application. 9(3), 2050006.' mla: 'Cipolloni, Giorgio, and László Erdös. “Fluctuations for Differences of Linear Eigenvalue Statistics for Sample Covariance Matrices.” Random Matrices: Theory and Application, vol. 9, no. 3, 2050006, World Scientific Publishing, 2020, doi:10.1142/S2010326320500069.' short: 'G. Cipolloni, L. Erdös, Random Matrices: Theory and Application 9 (2020).' date_created: 2019-05-26T21:59:14Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-08-28T08:38:48Z day: '01' department: - _id: LaEr doi: 10.1142/S2010326320500069 ec_funded: 1 external_id: arxiv: - '1806.08751' isi: - '000547464400001' intvolume: ' 9' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1806.08751 month: '07' oa: 1 oa_version: Preprint project: - _id: 258DCDE6-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '338804' name: Random matrices, universality and disordered quantum systems - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 'Random Matrices: Theory and Application' publication_identifier: eissn: - '20103271' issn: - '20103263' publication_status: published publisher: World Scientific Publishing quality_controlled: '1' scopus_import: '1' status: public title: Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ...