--- _id: '10628' abstract: - lang: eng text: The surface states of 3D topological insulators in general have negligible quantum oscillations (QOs) when the chemical potential is tuned to the Dirac points. In contrast, we find that topological Kondo insulators (TKIs) can support surface states with an arbitrarily large Fermi surface (FS) when the chemical potential is pinned to the Dirac point. We illustrate that these FSs give rise to finite-frequency QOs, which can become comparable to the extremal area of the unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as 'shadow surface states'. Moreover, we show that the sufficient next-nearest neighbor out-of-plane hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal TKIs. Consequently, shadow surface states provide an important example of high-frequency QOs beyond the context of cubic TKIs. acknowledgement: PG acknowledges support from National Science Foundation Awards No. DMR-1824265 for this work. AG acknowledges support from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 754411. EMN is supported by ASU startup grant. OE is in part supported by NSF-DMR-1904716. article_number: '123042' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Emilian M. full_name: Nica, Emilian M. last_name: Nica - first_name: Onur full_name: Erten, Onur last_name: Erten - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi citation: ama: Ghazaryan A, Nica EM, Erten O, Ghaemi P. Shadow surface states in topological Kondo insulators. New Journal of Physics. 2021;23(12). doi:10.1088/1367-2630/ac4124 apa: Ghazaryan, A., Nica, E. M., Erten, O., & Ghaemi, P. (2021). Shadow surface states in topological Kondo insulators. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/ac4124 chicago: Ghazaryan, Areg, Emilian M. Nica, Onur Erten, and Pouyan Ghaemi. “Shadow Surface States in Topological Kondo Insulators.” New Journal of Physics. IOP Publishing, 2021. https://doi.org/10.1088/1367-2630/ac4124. ieee: A. Ghazaryan, E. M. Nica, O. Erten, and P. Ghaemi, “Shadow surface states in topological Kondo insulators,” New Journal of Physics, vol. 23, no. 12. IOP Publishing, 2021. ista: Ghazaryan A, Nica EM, Erten O, Ghaemi P. 2021. Shadow surface states in topological Kondo insulators. New Journal of Physics. 23(12), 123042. mla: Ghazaryan, Areg, et al. “Shadow Surface States in Topological Kondo Insulators.” New Journal of Physics, vol. 23, no. 12, 123042, IOP Publishing, 2021, doi:10.1088/1367-2630/ac4124. short: A. Ghazaryan, E.M. Nica, O. Erten, P. Ghaemi, New Journal of Physics 23 (2021). date_created: 2022-01-16T23:01:28Z date_published: 2021-12-23T00:00:00Z date_updated: 2023-08-17T06:54:54Z day: '23' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/ac4124 ec_funded: 1 external_id: arxiv: - '2012.11625' isi: - '000734063700001' file: - access_level: open_access checksum: 0c3cb6816242fa8afd1cc87a5fe77821 content_type: application/pdf creator: cchlebak date_created: 2022-01-17T10:01:58Z date_updated: 2022-01-17T10:01:58Z file_id: '10632' file_name: 2021_NewJourPhys_Ghazaryan.pdf file_size: 2533102 relation: main_file success: 1 file_date_updated: 2022-01-17T10:01:58Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: New Journal of Physics publication_identifier: issn: - 1367-2630 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Shadow surface states in topological Kondo insulators tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2021' ... --- _id: '10631' abstract: - lang: eng text: We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS2 and I2 as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum-mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity, the angular momentum, transferred from the molecule to the droplet. acknowledgement: I.C. acknowledges the support by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665385. G.B. acknowledges support from the Austrian Science Fund (FWF), under project No. M2461-N27. M.L. acknowledges support by the Austrian Science Fund (FWF), under project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). H.S acknowledges support from the European Research Council-AdG (Project No. 320459, DropletControl) and from The Villum Foundation through a Villum Investigator grant no. 25886. article_number: L061303 article_processing_charge: No article_type: original author: - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Constant A. full_name: Schouder, Constant A. last_name: Schouder - first_name: Adam S. full_name: Chatterley, Adam S. last_name: Chatterley - first_name: Simon H. full_name: Albrechtsen, Simon H. last_name: Albrechtsen - first_name: Alberto Viñas full_name: Muñoz, Alberto Viñas last_name: Muñoz - first_name: Lars full_name: Christiansen, Lars last_name: Christiansen - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Cherepanov I, Bighin G, Schouder CA, et al. Excited rotational states of molecules in a superfluid. Physical Review A. 2021;104(6). doi:10.1103/PhysRevA.104.L061303 apa: Cherepanov, I., Bighin, G., Schouder, C. A., Chatterley, A. S., Albrechtsen, S. H., Muñoz, A. V., … Lemeshko, M. (2021). Excited rotational states of molecules in a superfluid. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.104.L061303 chicago: Cherepanov, Igor, Giacomo Bighin, Constant A. Schouder, Adam S. Chatterley, Simon H. Albrechtsen, Alberto Viñas Muñoz, Lars Christiansen, Henrik Stapelfeldt, and Mikhail Lemeshko. “Excited Rotational States of Molecules in a Superfluid.” Physical Review A. American Physical Society, 2021. https://doi.org/10.1103/PhysRevA.104.L061303. ieee: I. Cherepanov et al., “Excited rotational states of molecules in a superfluid,” Physical Review A, vol. 104, no. 6. American Physical Society, 2021. ista: Cherepanov I, Bighin G, Schouder CA, Chatterley AS, Albrechtsen SH, Muñoz AV, Christiansen L, Stapelfeldt H, Lemeshko M. 2021. Excited rotational states of molecules in a superfluid. Physical Review A. 104(6), L061303. mla: Cherepanov, Igor, et al. “Excited Rotational States of Molecules in a Superfluid.” Physical Review A, vol. 104, no. 6, L061303, American Physical Society, 2021, doi:10.1103/PhysRevA.104.L061303. short: I. Cherepanov, G. Bighin, C.A. Schouder, A.S. Chatterley, S.H. Albrechtsen, A.V. Muñoz, L. Christiansen, H. Stapelfeldt, M. Lemeshko, Physical Review A 104 (2021). date_created: 2022-01-16T23:01:29Z date_published: 2021-12-30T00:00:00Z date_updated: 2023-08-17T06:52:17Z day: '30' department: - _id: MiLe doi: 10.1103/PhysRevA.104.L061303 ec_funded: 1 external_id: arxiv: - '2107.00468' isi: - '000739618300001' intvolume: ' 104' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: http://128.84.4.18/abs/2107.00468 month: '12' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Excited rotational states of molecules in a superfluid type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 104 year: '2021' ... --- _id: '10597' abstract: - lang: eng text: We thank Emmanuel Abbe and Min Ye for providing us the implementation of RPA decoding. D. Fathollahi and M. Mondelli are partially supported by the 2019 Lopez-Loreta Prize. N. Farsad is supported by Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation (CFI), John R. Evans Leader Fund. S. A. Hashemi is supported by a Postdoctoral Fellowship from NSERC. article_processing_charge: No author: - first_name: Dorsa full_name: Fathollahi, Dorsa last_name: Fathollahi - first_name: Nariman full_name: Farsad, Nariman last_name: Farsad - first_name: Seyyed Ali full_name: Hashemi, Seyyed Ali last_name: Hashemi - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 citation: ama: 'Fathollahi D, Farsad N, Hashemi SA, Mondelli M. Sparse multi-decoder recursive projection aggregation for Reed-Muller codes. In: 2021 IEEE International Symposium on Information Theory. Institute of Electrical and Electronics Engineers; 2021:1082-1087. doi:10.1109/isit45174.2021.9517887' apa: 'Fathollahi, D., Farsad, N., Hashemi, S. A., & Mondelli, M. (2021). Sparse multi-decoder recursive projection aggregation for Reed-Muller codes. In 2021 IEEE International Symposium on Information Theory (pp. 1082–1087). Virtual, Melbourne, Australia: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/isit45174.2021.9517887' chicago: Fathollahi, Dorsa, Nariman Farsad, Seyyed Ali Hashemi, and Marco Mondelli. “Sparse Multi-Decoder Recursive Projection Aggregation for Reed-Muller Codes.” In 2021 IEEE International Symposium on Information Theory, 1082–87. Institute of Electrical and Electronics Engineers, 2021. https://doi.org/10.1109/isit45174.2021.9517887. ieee: D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse multi-decoder recursive projection aggregation for Reed-Muller codes,” in 2021 IEEE International Symposium on Information Theory, Virtual, Melbourne, Australia, 2021, pp. 1082–1087. ista: 'Fathollahi D, Farsad N, Hashemi SA, Mondelli M. 2021. Sparse multi-decoder recursive projection aggregation for Reed-Muller codes. 2021 IEEE International Symposium on Information Theory. ISIT: International Symposium on Information Theory, 1082–1087.' mla: Fathollahi, Dorsa, et al. “Sparse Multi-Decoder Recursive Projection Aggregation for Reed-Muller Codes.” 2021 IEEE International Symposium on Information Theory, Institute of Electrical and Electronics Engineers, 2021, pp. 1082–87, doi:10.1109/isit45174.2021.9517887. short: D. Fathollahi, N. Farsad, S.A. Hashemi, M. Mondelli, in:, 2021 IEEE International Symposium on Information Theory, Institute of Electrical and Electronics Engineers, 2021, pp. 1082–1087. conference: end_date: 2021-07-20 location: Virtual, Melbourne, Australia name: 'ISIT: International Symposium on Information Theory' start_date: 2021-07-12 date_created: 2022-01-03T11:31:26Z date_published: 2021-09-01T00:00:00Z date_updated: 2023-08-17T06:32:06Z day: '01' department: - _id: MaMo doi: 10.1109/isit45174.2021.9517887 external_id: arxiv: - '2011.12882' isi: - '000701502201029' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2011.12882 month: '09' oa: 1 oa_version: Preprint page: 1082-1087 project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: 2021 IEEE International Symposium on Information Theory publication_identifier: eisbn: - 978-1-5386-8209-8 isbn: - 978-1-5386-8210-4 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' scopus_import: '1' status: public title: Sparse multi-decoder recursive projection aggregation for Reed-Muller codes type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '10666' abstract: - lang: eng text: Adversarial training is an effective method to train deep learning models that are resilient to norm-bounded perturbations, with the cost of nominal performance drop. While adversarial training appears to enhance the robustness and safety of a deep model deployed in open-world decision-critical applications, counterintuitively, it induces undesired behaviors in robot learning settings. In this paper, we show theoretically and experimentally that neural controllers obtained via adversarial training are subjected to three types of defects, namely transient, systematic, and conditional errors. We first generalize adversarial training to a safety-domain optimization scheme allowing for more generic specifications. We then prove that such a learning process tends to cause certain error profiles. We support our theoretical results by a thorough experimental safety analysis in a robot-learning task. Our results suggest that adversarial training is not yet ready for robot learning. acknowledgement: M.L. and T.A.H. are supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). R.H. and D.R. are supported by Boeing and R.G. by Horizon-2020 ECSEL Project grant no. 783163 (iDev40). article_processing_charge: No author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Ramin full_name: Hasani, Ramin last_name: Hasani - first_name: Radu full_name: Grosu, Radu last_name: Grosu - first_name: Daniela full_name: Rus, Daniela last_name: Rus - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Lechner M, Hasani R, Grosu R, Rus D, Henzinger TA. Adversarial training is not ready for robot learning. In: 2021 IEEE International Conference on Robotics and Automation. ICRA. ; 2021:4140-4147. doi:10.1109/ICRA48506.2021.9561036' apa: Lechner, M., Hasani, R., Grosu, R., Rus, D., & Henzinger, T. A. (2021). Adversarial training is not ready for robot learning. In 2021 IEEE International Conference on Robotics and Automation (pp. 4140–4147). Xi’an, China. https://doi.org/10.1109/ICRA48506.2021.9561036 chicago: Lechner, Mathias, Ramin Hasani, Radu Grosu, Daniela Rus, and Thomas A Henzinger. “Adversarial Training Is Not Ready for Robot Learning.” In 2021 IEEE International Conference on Robotics and Automation, 4140–47. ICRA, 2021. https://doi.org/10.1109/ICRA48506.2021.9561036. ieee: M. Lechner, R. Hasani, R. Grosu, D. Rus, and T. A. Henzinger, “Adversarial training is not ready for robot learning,” in 2021 IEEE International Conference on Robotics and Automation, Xi’an, China, 2021, pp. 4140–4147. ista: 'Lechner M, Hasani R, Grosu R, Rus D, Henzinger TA. 2021. Adversarial training is not ready for robot learning. 2021 IEEE International Conference on Robotics and Automation. ICRA: International Conference on Robotics and AutomationICRA, 4140–4147.' mla: Lechner, Mathias, et al. “Adversarial Training Is Not Ready for Robot Learning.” 2021 IEEE International Conference on Robotics and Automation, 2021, pp. 4140–47, doi:10.1109/ICRA48506.2021.9561036. short: M. Lechner, R. Hasani, R. Grosu, D. Rus, T.A. Henzinger, in:, 2021 IEEE International Conference on Robotics and Automation, 2021, pp. 4140–4147. conference: end_date: 2021-06-05 location: Xi'an, China name: 'ICRA: International Conference on Robotics and Automation' start_date: 2021-05-30 date_created: 2022-01-25T15:44:54Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-08-17T06:58:38Z ddc: - '000' department: - _id: GradSch - _id: ToHe doi: 10.1109/ICRA48506.2021.9561036 external_id: arxiv: - '2103.08187' isi: - '000765738803040' has_accepted_license: '1' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/3.0/ main_file_link: - open_access: '1' url: https://arxiv.org/abs/2103.08187 oa: 1 oa_version: None page: 4140-4147 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 2021 IEEE International Conference on Robotics and Automation publication_identifier: eisbn: - 978-1-7281-9077-8 eissn: - 2577-087X isbn: - 978-1-7281-9078-5 issn: - 1050-4729 publication_status: published quality_controlled: '1' related_material: record: - id: '11362' relation: dissertation_contains status: public series_title: ICRA status: public title: Adversarial training is not ready for robot learning tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/3.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) short: CC BY-NC-ND (3.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '10711' abstract: - lang: eng text: In this paper, we investigate the distribution of the maximum of partial sums of families of m -periodic complex-valued functions satisfying certain conditions. We obtain precise uniform estimates for the distribution function of this maximum in a near-optimal range. Our results apply to partial sums of Kloosterman sums and other families of ℓ -adic trace functions, and are as strong as those obtained by Bober, Goldmakher, Granville and Koukoulopoulos for character sums. In particular, we improve on the recent work of the third author for Birch sums. However, unlike character sums, we are able to construct families of m -periodic complex-valued functions which satisfy our conditions, but for which the Pólya–Vinogradov inequality is sharp. acknowledgement: We would like to thank the anonymous referees for carefully reading the paper and for their remarks and suggestions. article_processing_charge: No article_type: original author: - first_name: Pascal full_name: Autissier, Pascal last_name: Autissier - first_name: Dante full_name: Bonolis, Dante id: 6A459894-5FDD-11E9-AF35-BB24E6697425 last_name: Bonolis - first_name: Youness full_name: Lamzouri, Youness last_name: Lamzouri citation: ama: Autissier P, Bonolis D, Lamzouri Y. The distribution of the maximum of partial sums of Kloosterman sums and other trace functions. Compositio Mathematica. 2021;157(7):1610-1651. doi:10.1112/s0010437x21007351 apa: Autissier, P., Bonolis, D., & Lamzouri, Y. (2021). The distribution of the maximum of partial sums of Kloosterman sums and other trace functions. Compositio Mathematica. Cambridge University Press. https://doi.org/10.1112/s0010437x21007351 chicago: Autissier, Pascal, Dante Bonolis, and Youness Lamzouri. “The Distribution of the Maximum of Partial Sums of Kloosterman Sums and Other Trace Functions.” Compositio Mathematica. Cambridge University Press, 2021. https://doi.org/10.1112/s0010437x21007351. ieee: P. Autissier, D. Bonolis, and Y. Lamzouri, “The distribution of the maximum of partial sums of Kloosterman sums and other trace functions,” Compositio Mathematica, vol. 157, no. 7. Cambridge University Press, pp. 1610–1651, 2021. ista: Autissier P, Bonolis D, Lamzouri Y. 2021. The distribution of the maximum of partial sums of Kloosterman sums and other trace functions. Compositio Mathematica. 157(7), 1610–1651. mla: Autissier, Pascal, et al. “The Distribution of the Maximum of Partial Sums of Kloosterman Sums and Other Trace Functions.” Compositio Mathematica, vol. 157, no. 7, Cambridge University Press, 2021, pp. 1610–51, doi:10.1112/s0010437x21007351. short: P. Autissier, D. Bonolis, Y. Lamzouri, Compositio Mathematica 157 (2021) 1610–1651. date_created: 2022-02-01T08:10:43Z date_published: 2021-06-28T00:00:00Z date_updated: 2023-08-17T06:59:16Z day: '28' department: - _id: TiBr doi: 10.1112/s0010437x21007351 external_id: arxiv: - '1909.03266' isi: - '000667289300001' intvolume: ' 157' isi: 1 issue: '7' keyword: - Algebra and Number Theory language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1909.03266 month: '06' oa: 1 oa_version: Preprint page: 1610-1651 publication: Compositio Mathematica publication_identifier: eissn: - 1570-5846 issn: - 0010-437X publication_status: published publisher: Cambridge University Press quality_controlled: '1' status: public title: The distribution of the maximum of partial sums of Kloosterman sums and other trace functions type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 157 year: '2021' ... --- _id: '10858' abstract: - lang: eng text: The cost-effective conversion of low-grade heat into electricity using thermoelectric devices requires developing alternative materials and material processing technologies able to reduce the currently high device manufacturing costs. In this direction, thermoelectric materials that do not rely on rare or toxic elements such as tellurium or lead need to be produced using high-throughput technologies not involving high temperatures and long processes. Bi2Se3 is an obvious possible Te-free alternative to Bi2Te3 for ambient temperature thermoelectric applications, but its performance is still low for practical applications, and additional efforts toward finding proper dopants are required. Here, we report a scalable method to produce Bi2Se3 nanosheets at low synthesis temperatures. We studied the influence of different dopants on the thermoelectric properties of this material. Among the elements tested, we demonstrated that Sn doping resulted in the best performance. Sn incorporation resulted in a significant improvement to the Bi2Se3 Seebeck coefficient and a reduction in the thermal conductivity in the direction of the hot-press axis, resulting in an overall 60% improvement in the thermoelectric figure of merit of Bi2Se3. acknowledgement: "M.L., Y.Z., T.Z. and K.X. thank the China Scholarship Council for their scholarship\r\nsupport. Y.L. acknowledges funding from the European Union’s Horizon 2020 research and\r\ninnovation program under the Marie Sklodowska-Curie grant agreement No. 754411. J.L. thanks the ICREA Academia program and projects MICINN/FEDER RTI2018-093996-B-C31 and G.C. 2017 SGR 128. ICN2 acknowledges funding from the Generalitat de Catalunya 2017 SGR 327 and the Spanish MINECO ENE2017-85087-C3." article_number: '1827' article_processing_charge: No article_type: original author: - first_name: Mengyao full_name: Li, Mengyao last_name: Li - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Ting full_name: Zhang, Ting last_name: Zhang - first_name: Yong full_name: Zuo, Yong last_name: Zuo - first_name: Ke full_name: Xiao, Ke last_name: Xiao - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Jordi full_name: Llorca, Jordi last_name: Llorca - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Li M, Zhang Y, Zhang T, et al. Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping. Nanomaterials. 2021;11(7). doi:10.3390/nano11071827 apa: Li, M., Zhang, Y., Zhang, T., Zuo, Y., Xiao, K., Arbiol, J., … Cabot, A. (2021). Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping. Nanomaterials. MDPI. https://doi.org/10.3390/nano11071827 chicago: Li, Mengyao, Yu Zhang, Ting Zhang, Yong Zuo, Ke Xiao, Jordi Arbiol, Jordi Llorca, Yu Liu, and Andreu Cabot. “Enhanced Thermoelectric Performance of N-Type Bi2Se3 Nanosheets through Sn Doping.” Nanomaterials. MDPI, 2021. https://doi.org/10.3390/nano11071827. ieee: M. Li et al., “Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping,” Nanomaterials, vol. 11, no. 7. MDPI, 2021. ista: Li M, Zhang Y, Zhang T, Zuo Y, Xiao K, Arbiol J, Llorca J, Liu Y, Cabot A. 2021. Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping. Nanomaterials. 11(7), 1827. mla: Li, Mengyao, et al. “Enhanced Thermoelectric Performance of N-Type Bi2Se3 Nanosheets through Sn Doping.” Nanomaterials, vol. 11, no. 7, 1827, MDPI, 2021, doi:10.3390/nano11071827. short: M. Li, Y. Zhang, T. Zhang, Y. Zuo, K. Xiao, J. Arbiol, J. Llorca, Y. Liu, A. Cabot, Nanomaterials 11 (2021). date_created: 2022-03-18T09:45:02Z date_published: 2021-07-14T00:00:00Z date_updated: 2023-08-17T07:08:30Z day: '14' ddc: - '540' department: - _id: MaIb doi: 10.3390/nano11071827 ec_funded: 1 external_id: isi: - '000676570000001' file: - access_level: open_access checksum: f28a8b5cf80f5605828359bb398463b0 content_type: application/pdf creator: dernst date_created: 2022-03-18T09:53:15Z date_updated: 2022-03-18T09:53:15Z file_id: '10859' file_name: 2021_Nanomaterials_Li.pdf file_size: 4867547 relation: main_file success: 1 file_date_updated: 2022-03-18T09:53:15Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '7' keyword: - General Materials Science - General Chemical Engineering language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Nanomaterials publication_identifier: issn: - 2079-4991 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Enhanced thermoelectric performance of n-type Bi2Se3 nanosheets through Sn doping tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2021' ... --- _id: '10834' abstract: - lang: eng text: Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis. acknowledgement: We are grateful to Silvia Prettin, Ina Schleicher, and Petra Hagendorff for expert technical assistance; David Dettbarn for animal keeping and breeding; and Lothar Gröbe and Maria Höxter for cell sorting. We also thank Werner Tegge for peptides and Giorgio Scita for antibodies. This work was supported, in part, by the Deutsche Forschungsgemeinschaft (DFG), Priority Programm SPP1150 (to T.E.B.S., K.R., and M. Sixt), and by DFG grant GRK2223/1 (to K.R.). T.E.B.S. acknowledges support by the Helmholtz Society through HGF impulse fund W2/W3-066 and M. Schnoor by the Mexican Council for Science and Technology (CONACyT, 284292 ), Fund SEP-Cinvestav ( 108 ), and the Royal Society, UK (Newton Advanced Fellowship, NAF/R1/180017 ). article_processing_charge: No article_type: original author: - first_name: Stephanie full_name: Stahnke, Stephanie last_name: Stahnke - first_name: Hermann full_name: Döring, Hermann last_name: Döring - first_name: Charly full_name: Kusch, Charly last_name: Kusch - first_name: David J.J. full_name: de Gorter, David J.J. last_name: de Gorter - first_name: Sebastian full_name: Dütting, Sebastian last_name: Dütting - first_name: Aleks full_name: Guledani, Aleks last_name: Guledani - first_name: Irina full_name: Pleines, Irina last_name: Pleines - first_name: Michael full_name: Schnoor, Michael last_name: Schnoor - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Robert full_name: Geffers, Robert last_name: Geffers - first_name: Manfred full_name: Rohde, Manfred last_name: Rohde - first_name: Mathias full_name: Müsken, Mathias last_name: Müsken - first_name: Frieda full_name: Kage, Frieda last_name: Kage - first_name: Anika full_name: Steffen, Anika last_name: Steffen - first_name: Jan full_name: Faix, Jan last_name: Faix - first_name: Bernhard full_name: Nieswandt, Bernhard last_name: Nieswandt - first_name: Klemens full_name: Rottner, Klemens last_name: Rottner - first_name: Theresia E.B. full_name: Stradal, Theresia E.B. last_name: Stradal citation: ama: Stahnke S, Döring H, Kusch C, et al. Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Current Biology. 2021;31(10):2051-2064.e8. doi:10.1016/j.cub.2021.02.043 apa: Stahnke, S., Döring, H., Kusch, C., de Gorter, D. J. J., Dütting, S., Guledani, A., … Stradal, T. E. B. (2021). Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2021.02.043 chicago: Stahnke, Stephanie, Hermann Döring, Charly Kusch, David J.J. de Gorter, Sebastian Dütting, Aleks Guledani, Irina Pleines, et al. “Loss of Hem1 Disrupts Macrophage Function and Impacts Migration, Phagocytosis, and Integrin-Mediated Adhesion.” Current Biology. Elsevier, 2021. https://doi.org/10.1016/j.cub.2021.02.043. ieee: S. Stahnke et al., “Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion,” Current Biology, vol. 31, no. 10. Elsevier, p. 2051–2064.e8, 2021. ista: Stahnke S, Döring H, Kusch C, de Gorter DJJ, Dütting S, Guledani A, Pleines I, Schnoor M, Sixt MK, Geffers R, Rohde M, Müsken M, Kage F, Steffen A, Faix J, Nieswandt B, Rottner K, Stradal TEB. 2021. Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Current Biology. 31(10), 2051–2064.e8. mla: Stahnke, Stephanie, et al. “Loss of Hem1 Disrupts Macrophage Function and Impacts Migration, Phagocytosis, and Integrin-Mediated Adhesion.” Current Biology, vol. 31, no. 10, Elsevier, 2021, p. 2051–2064.e8, doi:10.1016/j.cub.2021.02.043. short: S. Stahnke, H. Döring, C. Kusch, D.J.J. de Gorter, S. Dütting, A. Guledani, I. Pleines, M. Schnoor, M.K. Sixt, R. Geffers, M. Rohde, M. Müsken, F. Kage, A. Steffen, J. Faix, B. Nieswandt, K. Rottner, T.E.B. Stradal, Current Biology 31 (2021) 2051–2064.e8. date_created: 2022-03-08T07:51:04Z date_published: 2021-05-24T00:00:00Z date_updated: 2023-08-17T07:01:14Z day: '24' department: - _id: MiSi doi: 10.1016/j.cub.2021.02.043 external_id: isi: - '000654652200002' pmid: - '33711252' intvolume: ' 31' isi: 1 issue: '10' keyword: - General Agricultural and Biological Sciences - General Biochemistry - Genetics and Molecular Biology language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.03.24.005835 month: '05' oa: 1 oa_version: Preprint page: 2051-2064.e8 pmid: 1 publication: Current Biology publication_identifier: issn: - 0960-9822 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 31 year: '2021' ... --- _id: '9935' abstract: - lang: eng text: "We present a deterministic O(log log log n)-round low-space Massively Parallel Computation (MPC) algorithm for the classical problem of (Δ+1)-coloring on n-vertex graphs. In this model, every machine has sublinear local space of size n^φ for any arbitrary constant φ \\in (0,1). Our algorithm works under the relaxed setting where each machine is allowed to perform exponential local computations, while respecting the n^φ space and bandwidth limitations.\r\n\r\nOur key technical contribution is a novel derandomization of the ingenious (Δ+1)-coloring local algorithm by Chang-Li-Pettie (STOC 2018, SIAM J. Comput. 2020). The Chang-Li-Pettie algorithm runs in T_local =poly(loglog n) rounds, which sets the state-of-the-art randomized round complexity for the problem in the local model. Our derandomization employs a combination of tools, notably pseudorandom generators (PRG) and bounded-independence hash functions.\r\n\r\nThe achieved round complexity of O(logloglog n) rounds matches the bound of log(T_local ), which currently serves an upper bound barrier for all known randomized algorithms for locally-checkable problems in this model. Furthermore, no deterministic sublogarithmic low-space MPC algorithms for the (Δ+1)-coloring problem have been known before." acknowledgement: This work is partially supported by a Weizmann-UK Making Connections Grant, the Centre for Discrete Mathematics and its Applications (DIMAP), IBM Faculty Award, EPSRC award EP/V01305X/1, European Research Council (ERC) Grant No. 949083, the Minerva foundation with funding from the Federal German Ministry for Education and Research No. 713238, and the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement No 754411. article_processing_charge: No author: - first_name: Artur full_name: Czumaj, Artur last_name: Czumaj - first_name: Peter full_name: Davies, Peter id: 11396234-BB50-11E9-B24C-90FCE5697425 last_name: Davies orcid: 0000-0002-5646-9524 - first_name: Merav full_name: Parter, Merav last_name: Parter citation: ama: 'Czumaj A, Davies P, Parter M. Improved deterministic (Δ+1) coloring in low-space MPC. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2021:469–479. doi:10.1145/3465084.3467937' apa: 'Czumaj, A., Davies, P., & Parter, M. (2021). Improved deterministic (Δ+1) coloring in low-space MPC. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (pp. 469–479). Virtual, Italy: Association for Computing Machinery. https://doi.org/10.1145/3465084.3467937' chicago: Czumaj, Artur, Peter Davies, and Merav Parter. “Improved Deterministic (Δ+1) Coloring in Low-Space MPC.” In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, 469–479. Association for Computing Machinery, 2021. https://doi.org/10.1145/3465084.3467937. ieee: A. Czumaj, P. Davies, and M. Parter, “Improved deterministic (Δ+1) coloring in low-space MPC,” in Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Virtual, Italy, 2021, pp. 469–479. ista: 'Czumaj A, Davies P, Parter M. 2021. Improved deterministic (Δ+1) coloring in low-space MPC. Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. PODC: Symposium on Principles of Distributed Computing, 469–479.' mla: Czumaj, Artur, et al. “Improved Deterministic (Δ+1) Coloring in Low-Space MPC.” Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 469–479, doi:10.1145/3465084.3467937. short: A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 469–479. conference: end_date: 2021-07-30 location: Virtual, Italy name: 'PODC: Symposium on Principles of Distributed Computing' start_date: 2021-07-26 date_created: 2021-08-17T18:14:15Z date_published: 2021-07-21T00:00:00Z date_updated: 2023-08-17T07:11:03Z day: '21' department: - _id: DaAl doi: 10.1145/3465084.3467937 ec_funded: 1 external_id: isi: - '000744439800048' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://wrap.warwick.ac.uk/153753 month: '07' oa: 1 oa_version: Submitted Version page: 469–479 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing publication_identifier: isbn: - 978-1-4503-8548-0 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Improved deterministic (Δ+1) coloring in low-space MPC type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '10856' abstract: - lang: eng text: "We study the properties of the maximal volume k-dimensional sections of the n-dimensional cube [−1, 1]n. We obtain a first order necessary condition for a k-dimensional subspace to be a local maximizer of the volume of such sections, which we formulate in a geometric way. We estimate the length of the projection of a vector of the standard basis of Rn onto a k-dimensional subspace that maximizes the volume of the intersection. We \x1Cnd the optimal upper bound on the volume of a planar section of the cube [−1, 1]n , n ≥ 2." acknowledgement: "The authors acknowledge the support of the grant of the Russian Government N 075-15-\r\n2019-1926. G.I.was supported also by the SwissNational Science Foundation grant 200021-179133. The authors are very grateful to the anonymous reviewer for valuable remarks." article_processing_charge: No article_type: original author: - first_name: Grigory full_name: Ivanov, Grigory id: 87744F66-5C6F-11EA-AFE0-D16B3DDC885E last_name: Ivanov - first_name: Igor full_name: Tsiutsiurupa, Igor last_name: Tsiutsiurupa citation: ama: Ivanov G, Tsiutsiurupa I. On the volume of sections of the cube. Analysis and Geometry in Metric Spaces. 2021;9(1):1-18. doi:10.1515/agms-2020-0103 apa: Ivanov, G., & Tsiutsiurupa, I. (2021). On the volume of sections of the cube. Analysis and Geometry in Metric Spaces. De Gruyter. https://doi.org/10.1515/agms-2020-0103 chicago: Ivanov, Grigory, and Igor Tsiutsiurupa. “On the Volume of Sections of the Cube.” Analysis and Geometry in Metric Spaces. De Gruyter, 2021. https://doi.org/10.1515/agms-2020-0103. ieee: G. Ivanov and I. Tsiutsiurupa, “On the volume of sections of the cube,” Analysis and Geometry in Metric Spaces, vol. 9, no. 1. De Gruyter, pp. 1–18, 2021. ista: Ivanov G, Tsiutsiurupa I. 2021. On the volume of sections of the cube. Analysis and Geometry in Metric Spaces. 9(1), 1–18. mla: Ivanov, Grigory, and Igor Tsiutsiurupa. “On the Volume of Sections of the Cube.” Analysis and Geometry in Metric Spaces, vol. 9, no. 1, De Gruyter, 2021, pp. 1–18, doi:10.1515/agms-2020-0103. short: G. Ivanov, I. Tsiutsiurupa, Analysis and Geometry in Metric Spaces 9 (2021) 1–18. date_created: 2022-03-18T09:25:14Z date_published: 2021-01-29T00:00:00Z date_updated: 2023-08-17T07:07:58Z day: '29' ddc: - '510' department: - _id: UlWa doi: 10.1515/agms-2020-0103 external_id: arxiv: - '2004.02674' isi: - '000734286800001' file: - access_level: open_access checksum: 7e615ac8489f5eae580b6517debfdc53 content_type: application/pdf creator: dernst date_created: 2022-03-18T09:31:59Z date_updated: 2022-03-18T09:31:59Z file_id: '10857' file_name: 2021_AnalysisMetricSpaces_Ivanov.pdf file_size: 789801 relation: main_file success: 1 file_date_updated: 2022-03-18T09:31:59Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '1' keyword: - Applied Mathematics - Geometry and Topology - Analysis language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 1-18 publication: Analysis and Geometry in Metric Spaces publication_identifier: issn: - 2299-3274 publication_status: published publisher: De Gruyter quality_controlled: '1' scopus_import: '1' status: public title: On the volume of sections of the cube tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2021' ... --- _id: '9933' abstract: - lang: eng text: "In this paper, we study the power and limitations of component-stable algorithms in the low-space model of Massively Parallel Computation (MPC). Recently Ghaffari, Kuhn and Uitto (FOCS 2019) introduced the class of component-stable low-space MPC algorithms, which are, informally, defined as algorithms for which the outputs reported by the nodes in different connected components are required to be independent. This very natural notion was introduced to capture most (if not all) of the known efficient MPC algorithms to date, and it was the first general class of MPC algorithms for which one can show non-trivial conditional lower bounds. In this paper we enhance the framework of component-stable algorithms and investigate its effect on the complexity of randomized and deterministic low-space MPC. Our key contributions include: 1) We revise and formalize the lifting approach of Ghaffari, Kuhn and Uitto. This requires a very delicate amendment of the notion of component stability, which allows us to fill in gaps in the earlier arguments. 2) We also extend the framework to obtain conditional lower bounds for deterministic algorithms and fine-grained lower bounds that depend on the maximum degree Δ. 3) We demonstrate a collection of natural graph problems for which non-component-stable algorithms break the conditional lower bound obtained for component-stable algorithms. This implies that, for both deterministic and randomized algorithms, component-stable algorithms are conditionally weaker than the non-component-stable ones.\r\n\r\nAltogether our results imply that component-stability might limit the computational power of the low-space MPC model, paving the way for improved upper bounds that escape the conditional lower bound setting of Ghaffari, Kuhn, and Uitto." acknowledgement: This work is partially supported by a Weizmann-UK Making Connections Grant, the Centre for Discrete Mathematics and its Applications (DIMAP), IBM Faculty Award, EPSRC award EP/V01305X/1, European Research Council (ERC) Grant No. 949083, the Minerva foundation with funding from the Federal German Ministry for Education and Research No. 713238, and the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie grant agreement No 754411. article_processing_charge: No author: - first_name: Artur full_name: Czumaj, Artur last_name: Czumaj - first_name: Peter full_name: Davies, Peter id: 11396234-BB50-11E9-B24C-90FCE5697425 last_name: Davies orcid: 0000-0002-5646-9524 - first_name: Merav full_name: Parter, Merav last_name: Parter citation: ama: 'Czumaj A, Davies P, Parter M. Component stability in low-space massively parallel computation. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2021:481–491. doi:10.1145/3465084.3467903' apa: 'Czumaj, A., Davies, P., & Parter, M. (2021). Component stability in low-space massively parallel computation. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (pp. 481–491). Virtual, Italy: Association for Computing Machinery. https://doi.org/10.1145/3465084.3467903' chicago: Czumaj, Artur, Peter Davies, and Merav Parter. “Component Stability in Low-Space Massively Parallel Computation.” In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, 481–491. Association for Computing Machinery, 2021. https://doi.org/10.1145/3465084.3467903. ieee: A. Czumaj, P. Davies, and M. Parter, “Component stability in low-space massively parallel computation,” in Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Virtual, Italy, 2021, pp. 481–491. ista: 'Czumaj A, Davies P, Parter M. 2021. Component stability in low-space massively parallel computation. Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. PODC: Principles of Distributed Computing, 481–491.' mla: Czumaj, Artur, et al. “Component Stability in Low-Space Massively Parallel Computation.” Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 481–491, doi:10.1145/3465084.3467903. short: A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2021, pp. 481–491. conference: end_date: 2021-07-30 location: Virtual, Italy name: 'PODC: Principles of Distributed Computing' start_date: 2021-07-26 date_created: 2021-08-17T18:11:16Z date_published: 2021-07-21T00:00:00Z date_updated: 2023-08-17T07:11:32Z day: '21' department: - _id: DaAl doi: 10.1145/3465084.3467903 ec_funded: 1 external_id: arxiv: - '2106.01880' isi: - '000744439800049' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2106.01880 month: '07' oa: 1 oa_version: Submitted Version page: 481–491 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing publication_identifier: isbn: - '9781450385480' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Component stability in low-space massively parallel computation type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '9627' abstract: - lang: eng text: "We compute the deficiency spaces of operators of the form \U0001D43B\U0001D434⊗̂ \U0001D43C+\U0001D43C⊗̂ \U0001D43B\U0001D435, for symmetric \U0001D43B\U0001D434 and self-adjoint \U0001D43B\U0001D435. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumann's theory. The structure of the deficiency spaces for this case was asserted already in Ibort et al. [Boundary dynamics driven entanglement, J. Phys. A: Math. Theor. 47(38) (2014) 385301], but only proven under the restriction of \U0001D43B\U0001D435 having discrete, non-degenerate spectrum." acknowledgement: M. W. gratefully acknowledges financial support by the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes). T.W. thanks PAO Gazprom Neft, the Euler International Mathematical Institute in Saint Petersburg and ORISA GmbH for their financial support in the form of scholarships during his Master's and Bachelor's studies respectively. The authors want to thank Mark Malamud for pointing out the reference [1] to them. This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement No 075-15-2019-1619. article_processing_charge: No article_type: original author: - first_name: Daniel full_name: Lenz, Daniel last_name: Lenz - first_name: Timon full_name: Weinmann, Timon last_name: Weinmann - first_name: Melchior full_name: Wirth, Melchior id: 88644358-0A0E-11EA-8FA5-49A33DDC885E last_name: Wirth orcid: 0000-0002-0519-4241 citation: ama: Lenz D, Weinmann T, Wirth M. Self-adjoint extensions of bipartite Hamiltonians. Proceedings of the Edinburgh Mathematical Society. 2021;64(3):443-447. doi:10.1017/S0013091521000080 apa: Lenz, D., Weinmann, T., & Wirth, M. (2021). Self-adjoint extensions of bipartite Hamiltonians. Proceedings of the Edinburgh Mathematical Society. Cambridge University Press. https://doi.org/10.1017/S0013091521000080 chicago: Lenz, Daniel, Timon Weinmann, and Melchior Wirth. “Self-Adjoint Extensions of Bipartite Hamiltonians.” Proceedings of the Edinburgh Mathematical Society. Cambridge University Press, 2021. https://doi.org/10.1017/S0013091521000080. ieee: D. Lenz, T. Weinmann, and M. Wirth, “Self-adjoint extensions of bipartite Hamiltonians,” Proceedings of the Edinburgh Mathematical Society, vol. 64, no. 3. Cambridge University Press, pp. 443–447, 2021. ista: Lenz D, Weinmann T, Wirth M. 2021. Self-adjoint extensions of bipartite Hamiltonians. Proceedings of the Edinburgh Mathematical Society. 64(3), 443–447. mla: Lenz, Daniel, et al. “Self-Adjoint Extensions of Bipartite Hamiltonians.” Proceedings of the Edinburgh Mathematical Society, vol. 64, no. 3, Cambridge University Press, 2021, pp. 443–47, doi:10.1017/S0013091521000080. short: D. Lenz, T. Weinmann, M. Wirth, Proceedings of the Edinburgh Mathematical Society 64 (2021) 443–447. date_created: 2021-07-04T22:01:24Z date_published: 2021-08-01T00:00:00Z date_updated: 2023-08-17T07:12:05Z day: '01' department: - _id: JaMa doi: 10.1017/S0013091521000080 external_id: arxiv: - '1912.03670' isi: - '000721363700003' intvolume: ' 64' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1017/S0013091521000080 month: '08' oa: 1 oa_version: Published Version page: 443-447 publication: Proceedings of the Edinburgh Mathematical Society publication_identifier: eissn: - 1464-3839 issn: - 0013-0915 publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Self-adjoint extensions of bipartite Hamiltonians type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 64 year: '2021' ... --- _id: '7901' abstract: - lang: eng text: We derive rigorously the leading order of the correlation energy of a Fermi gas in a scaling regime of high density and weak interaction. The result verifies the prediction of the random-phase approximation. Our proof refines the method of collective bosonization in three dimensions. We approximately diagonalize an effective Hamiltonian describing approximately bosonic collective excitations around the Hartree–Fock state, while showing that gapless and non-collective excitations have only a negligible effect on the ground state energy. acknowledgement: We thank Christian Hainzl for helpful discussions and a referee for very careful reading of the paper and many helpful suggestions. NB and RS were supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 694227). Part of the research of NB was conducted on the RZD18 Nice–Milan–Vienna–Moscow. NB thanks Elliott H. Lieb and Peter Otte for explanations about the Luttinger model. PTN has received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC-2111-390814868). MP acknowledges financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC StG MaMBoQ, grant agreement No. 802901). BS gratefully acknowledges financial support from the NCCR SwissMAP, from the Swiss National Science Foundation through the Grant “Dynamical and energetic properties of Bose-Einstein condensates” and from the European Research Council through the ERC-AdG CLaQS (grant agreement No. 834782). All authors acknowledge support for workshop participation from Mathematisches Forschungsinstitut Oberwolfach (Leibniz Association). NB, PTN, BS, and RS acknowledge support for workshop participation from Fondation des Treilles. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Niels P full_name: Benedikter, Niels P id: 3DE6C32A-F248-11E8-B48F-1D18A9856A87 last_name: Benedikter orcid: 0000-0002-1071-6091 - first_name: Phan Thành full_name: Nam, Phan Thành last_name: Nam - first_name: Marcello full_name: Porta, Marcello last_name: Porta - first_name: Benjamin full_name: Schlein, Benjamin last_name: Schlein - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Benedikter NP, Nam PT, Porta M, Schlein B, Seiringer R. Correlation energy of a weakly interacting Fermi gas. Inventiones Mathematicae. 2021;225:885-979. doi:10.1007/s00222-021-01041-5 apa: Benedikter, N. P., Nam, P. T., Porta, M., Schlein, B., & Seiringer, R. (2021). Correlation energy of a weakly interacting Fermi gas. Inventiones Mathematicae. Springer. https://doi.org/10.1007/s00222-021-01041-5 chicago: Benedikter, Niels P, Phan Thành Nam, Marcello Porta, Benjamin Schlein, and Robert Seiringer. “Correlation Energy of a Weakly Interacting Fermi Gas.” Inventiones Mathematicae. Springer, 2021. https://doi.org/10.1007/s00222-021-01041-5. ieee: N. P. Benedikter, P. T. Nam, M. Porta, B. Schlein, and R. Seiringer, “Correlation energy of a weakly interacting Fermi gas,” Inventiones Mathematicae, vol. 225. Springer, pp. 885–979, 2021. ista: Benedikter NP, Nam PT, Porta M, Schlein B, Seiringer R. 2021. Correlation energy of a weakly interacting Fermi gas. Inventiones Mathematicae. 225, 885–979. mla: Benedikter, Niels P., et al. “Correlation Energy of a Weakly Interacting Fermi Gas.” Inventiones Mathematicae, vol. 225, Springer, 2021, pp. 885–979, doi:10.1007/s00222-021-01041-5. short: N.P. Benedikter, P.T. Nam, M. Porta, B. Schlein, R. Seiringer, Inventiones Mathematicae 225 (2021) 885–979. date_created: 2020-05-28T16:48:20Z date_published: 2021-05-03T00:00:00Z date_updated: 2023-08-21T06:30:30Z day: '03' ddc: - '510' department: - _id: RoSe doi: 10.1007/s00222-021-01041-5 ec_funded: 1 external_id: arxiv: - '2005.08933' isi: - '000646573600001' file: - access_level: open_access checksum: f38c79dfd828cdc7f49a34b37b83d376 content_type: application/pdf creator: dernst date_created: 2022-05-16T12:23:40Z date_updated: 2022-05-16T12:23:40Z file_id: '11386' file_name: 2021_InventMath_Benedikter.pdf file_size: 1089319 relation: main_file success: 1 file_date_updated: 2022-05-16T12:23:40Z has_accepted_license: '1' intvolume: ' 225' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 885-979 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Inventiones Mathematicae publication_identifier: eissn: - 1432-1297 issn: - 0020-9910 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Correlation energy of a weakly interacting Fermi gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 225 year: '2021' ... --- _id: '13456' abstract: - lang: eng text: While most simulations of the epoch of reionization have focused on single-stellar populations in star-forming dwarf galaxies, products of binary evolution are expected to significantly contribute to emissions of hydrogen-ionizing photons. Among these products are stripped stars (or helium stars), which have their envelopes stripped from interactions with binary companions, leaving an exposed helium core. Previous work has suggested these stripped stars can dominate the Lyman Continuum (LyC) photon output of high-redshift, low-luminosity galaxies post-starburst. Other sources of hard radiation in the early universe include zero-metallicity Population iii stars, which may have similar spectral energy distribution (SED) properties to galaxies with radiation dominated by stripped-star emissions. Here, we use four metrics (the power-law exponent over wavelength intervals 240–500 Å, 600–900 Å, and 1200–2000 Å, and the ratio of total luminosity in FUV wavelengths to LyC wavelengths) to compare the SEDs of simulated galaxies with only single-stellar evolution, galaxies containing stripped stars, and galaxies containing Population iii stars, with four different initial mass functions (IMFs). We find that stripped stars significantly alter SEDs in the LyC range of galaxies at the epoch of reionization. SEDs in galaxies with stripped stars have lower power-law indices in the LyC range and lower FUV to LyC luminosity ratios. These differences in SEDs are present at all considered luminosities (${M}_{\mathrm{UV}}\gt -15$, AB system), and are most pronounced for lower-luminosity galaxies. Intrinsic SEDs as well as those with interstellar medium absorption of galaxies with stripped stars and Population iii stars are found to be distinct for all tested Population iii IMFs. article_number: '5' article_processing_charge: No article_type: original author: - first_name: Elizabeth full_name: Berzin, Elizabeth last_name: Berzin - first_name: Amy full_name: Secunda, Amy last_name: Secunda - first_name: Renyue full_name: Cen, Renyue last_name: Cen - first_name: Alexander full_name: Menegas, Alexander last_name: Menegas - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 citation: ama: Berzin E, Secunda A, Cen R, Menegas A, Götberg YLL. Spectral signatures of population III and envelope-stripped stars in galaxies at the epoch of reionization. The Astrophysical Journal. 2021;918(1). doi:10.3847/1538-4357/ac0af6 apa: Berzin, E., Secunda, A., Cen, R., Menegas, A., & Götberg, Y. L. L. (2021). Spectral signatures of population III and envelope-stripped stars in galaxies at the epoch of reionization. The Astrophysical Journal. American Astronomical Society. https://doi.org/10.3847/1538-4357/ac0af6 chicago: Berzin, Elizabeth, Amy Secunda, Renyue Cen, Alexander Menegas, and Ylva Louise Linsdotter Götberg. “Spectral Signatures of Population III and Envelope-Stripped Stars in Galaxies at the Epoch of Reionization.” The Astrophysical Journal. American Astronomical Society, 2021. https://doi.org/10.3847/1538-4357/ac0af6. ieee: E. Berzin, A. Secunda, R. Cen, A. Menegas, and Y. L. L. Götberg, “Spectral signatures of population III and envelope-stripped stars in galaxies at the epoch of reionization,” The Astrophysical Journal, vol. 918, no. 1. American Astronomical Society, 2021. ista: Berzin E, Secunda A, Cen R, Menegas A, Götberg YLL. 2021. Spectral signatures of population III and envelope-stripped stars in galaxies at the epoch of reionization. The Astrophysical Journal. 918(1), 5. mla: Berzin, Elizabeth, et al. “Spectral Signatures of Population III and Envelope-Stripped Stars in Galaxies at the Epoch of Reionization.” The Astrophysical Journal, vol. 918, no. 1, 5, American Astronomical Society, 2021, doi:10.3847/1538-4357/ac0af6. short: E. Berzin, A. Secunda, R. Cen, A. Menegas, Y.L.L. Götberg, The Astrophysical Journal 918 (2021). date_created: 2023-08-03T10:11:24Z date_published: 2021-08-27T00:00:00Z date_updated: 2023-08-21T11:44:50Z day: '27' doi: 10.3847/1538-4357/ac0af6 extern: '1' external_id: arxiv: - '2102.08408' intvolume: ' 918' issue: '1' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.3847/1538-4357/ac0af6 month: '08' oa: 1 oa_version: Published Version publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: American Astronomical Society quality_controlled: '1' scopus_import: '1' status: public title: Spectral signatures of population III and envelope-stripped stars in galaxies at the epoch of reionization type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 918 year: '2021' ... --- _id: '13458' abstract: - lang: eng text: Most massive stars experience binary interactions in their lifetimes that can alter both the surface and core structure of the stripped star with significant effects on their ultimate fate as core-collapse supernovae. However, core-collapse supernovae simulations to date have focused almost exclusively on the evolution of single stars. We present a systematic simulation study of single and binary-stripped stars with the same initial mass as candidates for core-collapse supernovae (11–21 M⊙). Generally, we find that binary-stripped stars core tend to have a smaller compactness parameter, with a more prominent, deeper silicon/oxygen interface, and explode preferentially to the corresponding single stars of the same initial mass. Such a dichotomy of behavior between these two modes of evolution would have important implications for supernovae statistics, including the final neutron star masses, explosion energies, and nucleosynthetic yields. Binary-stripped remnants are also well poised to populate the possible mass gap between the heaviest neutron stars and the lightest black holes. Our work presents an improvement along two fronts, as we self-consistently account for the pre-collapse stellar evolution and the subsequent explosion outcome. Even so, our results emphasize the need for more detailed stellar evolutionary models to capture the sensitive nature of explosion outcome. article_number: L5 article_processing_charge: No article_type: original author: - first_name: David full_name: Vartanyan, David last_name: Vartanyan - first_name: Eva full_name: Laplace, Eva last_name: Laplace - first_name: Mathieu full_name: Renzo, Mathieu last_name: Renzo - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 - first_name: Adam full_name: Burrows, Adam last_name: Burrows - first_name: Selma E. full_name: de Mink, Selma E. last_name: de Mink citation: ama: Vartanyan D, Laplace E, Renzo M, Götberg YLL, Burrows A, de Mink SE. Binary-stripped stars as core-collapse supernovae progenitors. The Astrophysical Journal Letters. 2021;916(1). doi:10.3847/2041-8213/ac0b42 apa: Vartanyan, D., Laplace, E., Renzo, M., Götberg, Y. L. L., Burrows, A., & de Mink, S. E. (2021). Binary-stripped stars as core-collapse supernovae progenitors. The Astrophysical Journal Letters. American Astronomical Society. https://doi.org/10.3847/2041-8213/ac0b42 chicago: Vartanyan, David, Eva Laplace, Mathieu Renzo, Ylva Louise Linsdotter Götberg, Adam Burrows, and Selma E. de Mink. “Binary-Stripped Stars as Core-Collapse Supernovae Progenitors.” The Astrophysical Journal Letters. American Astronomical Society, 2021. https://doi.org/10.3847/2041-8213/ac0b42. ieee: D. Vartanyan, E. Laplace, M. Renzo, Y. L. L. Götberg, A. Burrows, and S. E. de Mink, “Binary-stripped stars as core-collapse supernovae progenitors,” The Astrophysical Journal Letters, vol. 916, no. 1. American Astronomical Society, 2021. ista: Vartanyan D, Laplace E, Renzo M, Götberg YLL, Burrows A, de Mink SE. 2021. Binary-stripped stars as core-collapse supernovae progenitors. The Astrophysical Journal Letters. 916(1), L5. mla: Vartanyan, David, et al. “Binary-Stripped Stars as Core-Collapse Supernovae Progenitors.” The Astrophysical Journal Letters, vol. 916, no. 1, L5, American Astronomical Society, 2021, doi:10.3847/2041-8213/ac0b42. short: D. Vartanyan, E. Laplace, M. Renzo, Y.L.L. Götberg, A. Burrows, S.E. de Mink, The Astrophysical Journal Letters 916 (2021). date_created: 2023-08-03T10:11:45Z date_published: 2021-07-23T00:00:00Z date_updated: 2023-08-21T11:37:48Z day: '23' doi: 10.3847/2041-8213/ac0b42 extern: '1' external_id: arxiv: - '2104.03317' intvolume: ' 916' issue: '1' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2104.03317 month: '07' oa: 1 oa_version: Preprint publication: The Astrophysical Journal Letters publication_identifier: eissn: - 2041-8213 issn: - 2041-8205 publication_status: published publisher: American Astronomical Society quality_controlled: '1' scopus_import: '1' status: public title: Binary-stripped stars as core-collapse supernovae progenitors type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 916 year: '2021' ... --- _id: '13459' abstract: - lang: eng text: The B emission-line stars are rapid rotators that were probably spun up by mass and angular momentum accretion through mass transfer in an interacting binary. Mass transfer will strip the donor star of its envelope to create a small and hot subdwarf remnant. Here we report on Hubble Space Telescope/STIS far-ultraviolet spectroscopy of a sample of Be stars that reveals the presence of the hot sdO companion through the calculation of cross-correlation functions of the observed and model spectra. We clearly detect the spectral signature of the sdO star in 10 of the 13 stars in the sample, and the spectral signals indicate that the sdO stars are hot, relatively faint, and slowly rotating as predicted by models. A comparison of their temperatures and radii with evolutionary tracks indicates that the sdO stars occupy the relatively long-lived, He-core burning stage. Only 1 of the 10 detections was a known binary prior to this investigation, which emphasizes the difficulty of finding such Be+sdO binaries through optical spectroscopy. However, these results and others indicate that many Be stars probably host hot subdwarf companions. article_number: '248' article_processing_charge: No article_type: original author: - first_name: Luqian full_name: Wang, Luqian last_name: Wang - first_name: Douglas R. full_name: Gies, Douglas R. last_name: Gies - first_name: Geraldine J. full_name: Peters, Geraldine J. last_name: Peters - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 - first_name: S. Drew full_name: Chojnowski, S. Drew last_name: Chojnowski - first_name: Kathryn V. full_name: Lester, Kathryn V. last_name: Lester - first_name: Steve B. full_name: Howell, Steve B. last_name: Howell citation: ama: Wang L, Gies DR, Peters GJ, et al. The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. 2021;161(5). doi:10.3847/1538-3881/abf144 apa: Wang, L., Gies, D. R., Peters, G. J., Götberg, Y. L. L., Chojnowski, S. D., Lester, K. V., & Howell, S. B. (2021). The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. American Astronomical Society. https://doi.org/10.3847/1538-3881/abf144 chicago: Wang, Luqian, Douglas R. Gies, Geraldine J. Peters, Ylva Louise Linsdotter Götberg, S. Drew Chojnowski, Kathryn V. Lester, and Steve B. Howell. “The Detection and Characterization of Be+sdO Binaries from HST/STIS FUV Spectroscopy.” The Astronomical Journal. American Astronomical Society, 2021. https://doi.org/10.3847/1538-3881/abf144. ieee: L. Wang et al., “The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy,” The Astronomical Journal, vol. 161, no. 5. American Astronomical Society, 2021. ista: Wang L, Gies DR, Peters GJ, Götberg YLL, Chojnowski SD, Lester KV, Howell SB. 2021. The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy. The Astronomical Journal. 161(5), 248. mla: Wang, Luqian, et al. “The Detection and Characterization of Be+sdO Binaries from HST/STIS FUV Spectroscopy.” The Astronomical Journal, vol. 161, no. 5, 248, American Astronomical Society, 2021, doi:10.3847/1538-3881/abf144. short: L. Wang, D.R. Gies, G.J. Peters, Y.L.L. Götberg, S.D. Chojnowski, K.V. Lester, S.B. Howell, The Astronomical Journal 161 (2021). date_created: 2023-08-03T10:11:57Z date_published: 2021-05-04T00:00:00Z date_updated: 2023-08-21T11:35:50Z day: '04' doi: 10.3847/1538-3881/abf144 extern: '1' external_id: arxiv: - '2103.13642' intvolume: ' 161' issue: '5' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2103.13642 month: '05' oa: 1 oa_version: Preprint publication: The Astronomical Journal publication_identifier: eissn: - 1538-3881 issn: - 0004-6256 publication_status: published publisher: American Astronomical Society quality_controlled: '1' scopus_import: '1' status: public title: The detection and characterization of Be+sdO binaries from HST/STIS FUV spectroscopy type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 161 year: '2021' ... --- _id: '13457' abstract: - lang: eng text: "Context. Observations of massive stars in open clusters younger than ∼8 Myr have shown that a majority of them are in binary systems, most of which will interact during their life. While these can be used as a proxy of the initial multiplicity properties, studying populations of massive stars older than ∼20 Myr allows us to probe the outcome of these interactions after a significant number of systems have experienced mass and angular momentum transfer and may even have merged.\r\n\r\nAims. Using multi-epoch integral-field spectroscopy, we aim to investigate the multiplicity properties of the massive-star population in the dense core of the ∼40 Myr old cluster NGC 330 in the Small Magellanic Cloud in order to search for possible imprints of stellar evolution on the multiplicity properties.\r\n\r\nMethods. We obtained six epochs of VLT/MUSE observations operated in wide-field mode with the extended wavelength setup and supported by adaptive optics. We extracted spectra and measured radial velocities for stars brighter than mF814W = 19. We identified single-lined spectroscopic binaries through significant RV variability with a peak-to-peak amplitude larger than 20 km s−1. We also identified double-lined spectroscopic binaries, and quantified the observational biases for binary detection. In particular, we took into account that binary systems with similar line strengths are difficult to detect in our data set.\r\n\r\nResults. The observed spectroscopic binary fraction among stars brighter than mF814W = 19 (approximately 5.5 M⊙ on the main sequence) is fSBobs = 13.2 ± 2.0%. Considering period and mass ratio ranges from log(P) = 0.15−3.5 (about 1.4 to 3160 d), q = 0.1−1.0, and a representative set of orbital parameter distributions, we find a bias-corrected close binary fraction of fcl = 34−7+8%. This fraction seems to decline for the fainter stars, which indicates either that the close binary fraction drops in the B-type domain, or that the period distribution becomes more heavily weighted toward longer orbital periods. We further find that both fractions vary strongly in different regions of the color-magnitude diagram, which corresponds to different evolutionary stages. This probably reveals the imprint of the binary history of different groups of stars. In particular, we find that the observed spectroscopic binary fraction of Be stars (fSBobs = 2 ± 2%) is significantly lower than that of B-type stars (fSBobs = 9 ± 2%).\r\n\r\nConclusions. We provide the first homogeneous radial velocity study of a large sample of B-type stars at a low metallicity ([Fe/H] ≲ −1.0). The overall bias-corrected close binary fraction (log(P) < 3.5 d) of the B-star population in NGC 330 is lower than the fraction reported for younger Galactic and Large Magellanic Cloud clusters in previous works. More data are needed, however, to establish whether the observed differences are caused by an age or a metallicity effect." article_number: A70 article_processing_charge: No article_type: original author: - first_name: J. full_name: Bodensteiner, J. last_name: Bodensteiner - first_name: H. full_name: Sana, H. last_name: Sana - first_name: C. full_name: Wang, C. last_name: Wang - first_name: N. full_name: Langer, N. last_name: Langer - first_name: L. full_name: Mahy, L. last_name: Mahy - first_name: G. full_name: Banyard, G. last_name: Banyard - first_name: A. full_name: de Koter, A. last_name: de Koter - first_name: S. E. full_name: de Mink, S. E. last_name: de Mink - first_name: C. J. full_name: Evans, C. J. last_name: Evans - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 - first_name: L. R. full_name: Patrick, L. R. last_name: Patrick - first_name: F. R. N. full_name: Schneider, F. R. N. last_name: Schneider - first_name: F. full_name: Tramper, F. last_name: Tramper citation: ama: Bodensteiner J, Sana H, Wang C, et al. The young massive SMC cluster NGC 330 seen by MUSE. II. Multiplicity properties of the massive-star population. Astronomy & Astrophysics. 2021;652. doi:10.1051/0004-6361/202140507 apa: Bodensteiner, J., Sana, H., Wang, C., Langer, N., Mahy, L., Banyard, G., … Tramper, F. (2021). The young massive SMC cluster NGC 330 seen by MUSE. II. Multiplicity properties of the massive-star population. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/202140507 chicago: Bodensteiner, J., H. Sana, C. Wang, N. Langer, L. Mahy, G. Banyard, A. de Koter, et al. “The Young Massive SMC Cluster NGC 330 Seen by MUSE. II. Multiplicity Properties of the Massive-Star Population.” Astronomy & Astrophysics. EDP Sciences, 2021. https://doi.org/10.1051/0004-6361/202140507. ieee: J. Bodensteiner et al., “The young massive SMC cluster NGC 330 seen by MUSE. II. Multiplicity properties of the massive-star population,” Astronomy & Astrophysics, vol. 652. EDP Sciences, 2021. ista: Bodensteiner J, Sana H, Wang C, Langer N, Mahy L, Banyard G, de Koter A, de Mink SE, Evans CJ, Götberg YLL, Patrick LR, Schneider FRN, Tramper F. 2021. The young massive SMC cluster NGC 330 seen by MUSE. II. Multiplicity properties of the massive-star population. Astronomy & Astrophysics. 652, A70. mla: Bodensteiner, J., et al. “The Young Massive SMC Cluster NGC 330 Seen by MUSE. II. Multiplicity Properties of the Massive-Star Population.” Astronomy & Astrophysics, vol. 652, A70, EDP Sciences, 2021, doi:10.1051/0004-6361/202140507. short: J. Bodensteiner, H. Sana, C. Wang, N. Langer, L. Mahy, G. Banyard, A. de Koter, S.E. de Mink, C.J. Evans, Y.L.L. Götberg, L.R. Patrick, F.R.N. Schneider, F. Tramper, Astronomy & Astrophysics 652 (2021). date_created: 2023-08-03T10:11:34Z date_published: 2021-08-12T00:00:00Z date_updated: 2023-08-21T11:49:36Z day: '12' doi: 10.1051/0004-6361/202140507 extern: '1' external_id: arxiv: - '2104.13409' intvolume: ' 652' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1051/0004-6361/202140507 month: '08' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: The young massive SMC cluster NGC 330 seen by MUSE. II. Multiplicity properties of the massive-star population type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 652 year: '2021' ... --- _id: '13455' abstract: - lang: eng text: The majority of massive stars live in binary or multiple systems and will interact with a companion during their lifetimes, which helps to explain the observed diversity of core-collapse supernovae. Donor stars in binary systems can lose most of their hydrogen-rich envelopes through mass transfer. As a result, not only are the surface properties affected, but so is the core structure. However, most calculations of the core-collapse properties of massive stars rely on single-star models. We present a systematic study of the difference between the pre-supernova structures of single stars and stars of the same initial mass (11–21 M⊙) that have been stripped due to stable post-main-sequence mass transfer at solar metallicity. We present the pre-supernova core composition with novel diagrams that give an intuitive representation of the isotope distribution. As shown in previous studies, at the edge of the carbon-oxygen core, the binary-stripped star models contain an extended gradient of carbon, oxygen, and neon. This layer remains until core collapse and is more extended in mass for higher initial stellar masses. It originates from the receding of the convective helium core during core helium burning in binary-stripped stars, which does not occur in single-star models. We find that this same evolutionary phase leads to systematic differences in the final density and nuclear energy generation profiles. Binary-stripped star models have systematically higher total masses of carbon at the moment of core collapse compared to single-star models, which likely results in systematically different supernova yields. In about half of our models, the silicon-burning and oxygen-rich layers merge after core silicon burning. We discuss the implications of our findings for the “explodability”, supernova observations, and nucleosynthesis of these stars. Our models are publicly available and can be readily used as input for detailed supernova simulations. article_number: A58 article_processing_charge: No article_type: original author: - first_name: E. full_name: Laplace, E. last_name: Laplace - first_name: S. full_name: Justham, S. last_name: Justham - first_name: M. full_name: Renzo, M. last_name: Renzo - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 - first_name: R. full_name: Farmer, R. last_name: Farmer - first_name: D. full_name: Vartanyan, D. last_name: Vartanyan - first_name: S. E. full_name: de Mink, S. E. last_name: de Mink citation: ama: 'Laplace E, Justham S, Renzo M, et al. Different to the core: The pre-supernova structures of massive single and binary-stripped stars. Astronomy & Astrophysics. 2021;656. doi:10.1051/0004-6361/202140506' apa: 'Laplace, E., Justham, S., Renzo, M., Götberg, Y. L. L., Farmer, R., Vartanyan, D., & de Mink, S. E. (2021). Different to the core: The pre-supernova structures of massive single and binary-stripped stars. Astronomy & Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/202140506' chicago: 'Laplace, E., S. Justham, M. Renzo, Ylva Louise Linsdotter Götberg, R. Farmer, D. Vartanyan, and S. E. de Mink. “Different to the Core: The Pre-Supernova Structures of Massive Single and Binary-Stripped Stars.” Astronomy & Astrophysics. EDP Sciences, 2021. https://doi.org/10.1051/0004-6361/202140506.' ieee: 'E. Laplace et al., “Different to the core: The pre-supernova structures of massive single and binary-stripped stars,” Astronomy & Astrophysics, vol. 656. EDP Sciences, 2021.' ista: 'Laplace E, Justham S, Renzo M, Götberg YLL, Farmer R, Vartanyan D, de Mink SE. 2021. Different to the core: The pre-supernova structures of massive single and binary-stripped stars. Astronomy & Astrophysics. 656, A58.' mla: 'Laplace, E., et al. “Different to the Core: The Pre-Supernova Structures of Massive Single and Binary-Stripped Stars.” Astronomy & Astrophysics, vol. 656, A58, EDP Sciences, 2021, doi:10.1051/0004-6361/202140506.' short: E. Laplace, S. Justham, M. Renzo, Y.L.L. Götberg, R. Farmer, D. Vartanyan, S.E. de Mink, Astronomy & Astrophysics 656 (2021). date_created: 2023-08-03T10:11:09Z date_published: 2021-12-02T00:00:00Z date_updated: 2023-08-21T11:49:15Z day: '02' doi: 10.1051/0004-6361/202140506 external_id: arxiv: - '2102.05036' intvolume: ' 656' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1051/0004-6361/202140506 month: '12' oa: 1 oa_version: Published Version publication: Astronomy & Astrophysics publication_identifier: eissn: - 1432-0746 issn: - 0004-6361 publication_status: published publisher: EDP Sciences quality_controlled: '1' scopus_import: '1' status: public title: 'Different to the core: The pre-supernova structures of massive single and binary-stripped stars' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 656 year: '2021' ... --- _id: '13454' abstract: - lang: eng text: Helium star–carbon-oxygen white dwarf (CO WD) binaries are potential single-degenerate progenitor systems of thermonuclear supernovae. Revisiting a set of binary evolution calculations using the stellar evolution code MESA, we refine our previous predictions about which systems can lead to a thermonuclear supernova and then characterize the properties of the helium star donor at the time of explosion. We convert these model properties to near-UV/optical magnitudes assuming a blackbody spectrum and support this approach using a matched stellar atmosphere model. These models will be valuable to compare with pre-explosion imaging for future supernovae, though we emphasize the observational difficulty of detecting extremely blue companions. The pre-explosion source detected in association with SN 2012Z has been interpreted as a helium star binary containing an initially ultra-massive WD in a multiday orbit. However, extending our binary models to initial CO WD masses of up to 1.2 M⊙, we find that these systems undergo off-center carbon ignitions and thus are not expected to produce thermonuclear supernovae. This tension suggests that, if SN 2012Z is associated with a helium star–WD binary, then the pre-explosion optical light from the system must be significantly modified by the binary environment and/or the WD does not have a carbon-rich interior composition. article_number: '241' article_processing_charge: No article_type: original author: - first_name: Tin Long Sunny full_name: Wong, Tin Long Sunny last_name: Wong - first_name: Josiah full_name: Schwab, Josiah last_name: Schwab - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 citation: ama: Wong TLS, Schwab J, Götberg YLL. Pre-explosion properties of Helium star donors to thermonuclear supernovae. The Astrophysical Journal. 2021;922(2). doi:10.3847/1538-4357/ac27ae apa: Wong, T. L. S., Schwab, J., & Götberg, Y. L. L. (2021). Pre-explosion properties of Helium star donors to thermonuclear supernovae. The Astrophysical Journal. American Astronomical Society. https://doi.org/10.3847/1538-4357/ac27ae chicago: Wong, Tin Long Sunny, Josiah Schwab, and Ylva Louise Linsdotter Götberg. “Pre-Explosion Properties of Helium Star Donors to Thermonuclear Supernovae.” The Astrophysical Journal. American Astronomical Society, 2021. https://doi.org/10.3847/1538-4357/ac27ae. ieee: T. L. S. Wong, J. Schwab, and Y. L. L. Götberg, “Pre-explosion properties of Helium star donors to thermonuclear supernovae,” The Astrophysical Journal, vol. 922, no. 2. American Astronomical Society, 2021. ista: Wong TLS, Schwab J, Götberg YLL. 2021. Pre-explosion properties of Helium star donors to thermonuclear supernovae. The Astrophysical Journal. 922(2), 241. mla: Wong, Tin Long Sunny, et al. “Pre-Explosion Properties of Helium Star Donors to Thermonuclear Supernovae.” The Astrophysical Journal, vol. 922, no. 2, 241, American Astronomical Society, 2021, doi:10.3847/1538-4357/ac27ae. short: T.L.S. Wong, J. Schwab, Y.L.L. Götberg, The Astrophysical Journal 922 (2021). date_created: 2023-08-03T10:10:58Z date_published: 2021-12-03T00:00:00Z date_updated: 2023-08-21T11:52:05Z day: '03' doi: 10.3847/1538-4357/ac27ae extern: '1' external_id: arxiv: - '2109.14817' intvolume: ' 922' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2109.14817 month: '12' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: American Astronomical Society quality_controlled: '1' scopus_import: '1' status: public title: Pre-explosion properties of Helium star donors to thermonuclear supernovae type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 922 year: '2021' ... --- _id: '13453' abstract: - lang: eng text: Most massive stars are born in binaries close enough for mass transfer episodes. These modify the appearance, structure, and future evolution of both stars. We compute the evolution of a 100-day-period binary, consisting initially of a 25 M⊙ star and a 17 M⊙ star, which experiences stable mass transfer. We focus on the impact of mass accretion on the surface composition, internal rotation, and structure of the accretor. To anchor our models, we show that our accretor broadly reproduces the properties of ζ Ophiuchi, which has long been proposed to have accreted mass before being ejected as a runaway star when the companion exploded. We compare our accretor to models of single rotating stars and find that the later and stronger spin-up provided by mass accretion produces significant differences. Specifically, the core of the accretor retains higher spin at the end of the main sequence, and a convective layer develops that changes its density profile. Moreover, the surface of the accretor star is polluted by CNO-processed material donated by the companion. Our models show effects of mass accretion in binaries that are not captured in single rotating stellar models. This possibly impacts the further evolution (either in a binary or as single stars), the final collapse, and the resulting spin of the compact object. article_number: '277' article_processing_charge: No article_type: original author: - first_name: M. full_name: Renzo, M. last_name: Renzo - first_name: Ylva Louise Linsdotter full_name: Götberg, Ylva Louise Linsdotter id: d0648d0c-0f64-11ee-a2e0-dd0faa2e4f7d last_name: Götberg orcid: 0000-0002-6960-6911 citation: ama: 'Renzo M, Götberg YLL. Evolution of accretor stars in massive binaries: Broader implications from modeling ζ Ophiuchi. The Astrophysical Journal. 2021;923(2). doi:10.3847/1538-4357/ac29c5' apa: 'Renzo, M., & Götberg, Y. L. L. (2021). Evolution of accretor stars in massive binaries: Broader implications from modeling ζ Ophiuchi. The Astrophysical Journal. American Astronomical Society. https://doi.org/10.3847/1538-4357/ac29c5' chicago: 'Renzo, M., and Ylva Louise Linsdotter Götberg. “Evolution of Accretor Stars in Massive Binaries: Broader Implications from Modeling ζ Ophiuchi.” The Astrophysical Journal. American Astronomical Society, 2021. https://doi.org/10.3847/1538-4357/ac29c5.' ieee: 'M. Renzo and Y. L. L. Götberg, “Evolution of accretor stars in massive binaries: Broader implications from modeling ζ Ophiuchi,” The Astrophysical Journal, vol. 923, no. 2. American Astronomical Society, 2021.' ista: 'Renzo M, Götberg YLL. 2021. Evolution of accretor stars in massive binaries: Broader implications from modeling ζ Ophiuchi. The Astrophysical Journal. 923(2), 277.' mla: 'Renzo, M., and Ylva Louise Linsdotter Götberg. “Evolution of Accretor Stars in Massive Binaries: Broader Implications from Modeling ζ Ophiuchi.” The Astrophysical Journal, vol. 923, no. 2, 277, American Astronomical Society, 2021, doi:10.3847/1538-4357/ac29c5.' short: M. Renzo, Y.L.L. Götberg, The Astrophysical Journal 923 (2021). date_created: 2023-08-03T10:10:48Z date_published: 2021-12-29T00:00:00Z date_updated: 2023-08-21T11:59:34Z day: '29' doi: 10.3847/1538-4357/ac29c5 extern: '1' external_id: arxiv: - '2107.10933' intvolume: ' 923' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2107.10933 month: '12' oa: 1 oa_version: Preprint publication: The Astrophysical Journal publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: American Astronomical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Evolution of accretor stars in massive binaries: Broader implications from modeling ζ Ophiuchi' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 923 year: '2021' ... --- _id: '13996' abstract: - lang: eng text: We report the observation of an anomalous nonlinear optical response of the prototypical three-dimensional topological insulator bismuth selenide through the process of high-order harmonic generation. We find that the generation efficiency increases as the laser polarization is changed from linear to elliptical, and it becomes maximum for circular polarization. With the aid of a microscopic theory and a detailed analysis of the measured spectra, we reveal that such anomalous enhancement encodes the characteristic topology of the band structure that originates from the interplay of strong spin–orbit coupling and time-reversal symmetry protection. The implications are in ultrafast probing of topological phase transitions, light-field driven dissipationless electronics, and quantum computation. article_processing_charge: No article_type: original author: - first_name: Denitsa Rangelova full_name: Baykusheva, Denitsa Rangelova id: 71b4d059-2a03-11ee-914d-dfa3beed6530 last_name: Baykusheva - first_name: Alexis full_name: Chacón, Alexis last_name: Chacón - first_name: Jian full_name: Lu, Jian last_name: Lu - first_name: Trevor P. full_name: Bailey, Trevor P. last_name: Bailey - first_name: Jonathan A. full_name: Sobota, Jonathan A. last_name: Sobota - first_name: Hadas full_name: Soifer, Hadas last_name: Soifer - first_name: Patrick S. full_name: Kirchmann, Patrick S. last_name: Kirchmann - first_name: Costel full_name: Rotundu, Costel last_name: Rotundu - first_name: Ctirad full_name: Uher, Ctirad last_name: Uher - first_name: Tony F. full_name: Heinz, Tony F. last_name: Heinz - first_name: David A. full_name: Reis, David A. last_name: Reis - first_name: Shambhu full_name: Ghimire, Shambhu last_name: Ghimire citation: ama: Baykusheva DR, Chacón A, Lu J, et al. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Letters. 2021;21(21):8970-8978. doi:10.1021/acs.nanolett.1c02145 apa: Baykusheva, D. R., Chacón, A., Lu, J., Bailey, T. P., Sobota, J. A., Soifer, H., … Ghimire, S. (2021). All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Letters. American Chemical Society. https://doi.org/10.1021/acs.nanolett.1c02145 chicago: Baykusheva, Denitsa Rangelova, Alexis Chacón, Jian Lu, Trevor P. Bailey, Jonathan A. Sobota, Hadas Soifer, Patrick S. Kirchmann, et al. “All-Optical Probe of Three-Dimensional Topological Insulators Based on High-Harmonic Generation by Circularly Polarized Laser Fields.” Nano Letters. American Chemical Society, 2021. https://doi.org/10.1021/acs.nanolett.1c02145. ieee: D. R. Baykusheva et al., “All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields,” Nano Letters, vol. 21, no. 21. American Chemical Society, pp. 8970–8978, 2021. ista: Baykusheva DR, Chacón A, Lu J, Bailey TP, Sobota JA, Soifer H, Kirchmann PS, Rotundu C, Uher C, Heinz TF, Reis DA, Ghimire S. 2021. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Letters. 21(21), 8970–8978. mla: Baykusheva, Denitsa Rangelova, et al. “All-Optical Probe of Three-Dimensional Topological Insulators Based on High-Harmonic Generation by Circularly Polarized Laser Fields.” Nano Letters, vol. 21, no. 21, American Chemical Society, 2021, pp. 8970–78, doi:10.1021/acs.nanolett.1c02145. short: D.R. Baykusheva, A. Chacón, J. Lu, T.P. Bailey, J.A. Sobota, H. Soifer, P.S. Kirchmann, C. Rotundu, C. Uher, T.F. Heinz, D.A. Reis, S. Ghimire, Nano Letters 21 (2021) 8970–8978. date_created: 2023-08-09T13:09:15Z date_published: 2021-10-22T00:00:00Z date_updated: 2023-08-22T07:32:00Z day: '22' doi: 10.1021/acs.nanolett.1c02145 extern: '1' external_id: arxiv: - '2109.15291' pmid: - '34676752' intvolume: ' 21' issue: '21' keyword: - Mechanical Engineering - Condensed Matter Physics - General Materials Science - General Chemistry - Bioengineering language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acs.nanolett.1c02145 month: '10' oa: 1 oa_version: Published Version page: 8970-8978 pmid: 1 publication: Nano Letters publication_identifier: eissn: - 1530-6992 issn: - 1530-6984 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 21 year: '2021' ...