--- _id: '11586' abstract: - lang: eng text: Distant luminous Lyman-α emitters are excellent targets for detailed observations of galaxies in the epoch of reionisation. Spatially resolved observations of these galaxies allow us to simultaneously probe the emission from young stars, partially ionised gas in the interstellar medium and to constrain the properties of the surrounding hydrogen in the circumgalactic medium. We review recent results from (spectroscopic) follow-up studies of the rest-frame UV, Lyman-α and [CII] emission in luminous galaxies observed ∼500 Myr after the Big Bang with ALMA, HST/WFC3 and VLT/X-SHOOTER. These galaxies likely reside in early ionised bubbles and are complex systems, consisting of multiple well separated and resolved components where traces of metals are already present. article_processing_charge: No author: - first_name: Jorryt J full_name: Matthee, Jorryt J id: 7439a258-f3c0-11ec-9501-9df22fe06720 last_name: Matthee orcid: 0000-0003-2871-127X - first_name: David full_name: Sobral, David last_name: Sobral citation: ama: 'Matthee JJ, Sobral D. Unveiling the most luminous Lyman-α emitters in the epoch of reionisation. In: Proceedings of the International Astronomical Union. Vol 15. Cambridge University Press; 2020:21-25. doi:10.1017/s1743921319009451' apa: Matthee, J. J., & Sobral, D. (2020). Unveiling the most luminous Lyman-α emitters in the epoch of reionisation. In Proceedings of the International Astronomical Union (Vol. 15, pp. 21–25). Cambridge University Press. https://doi.org/10.1017/s1743921319009451 chicago: Matthee, Jorryt J, and David Sobral. “Unveiling the Most Luminous Lyman-α Emitters in the Epoch of Reionisation.” In Proceedings of the International Astronomical Union, 15:21–25. Cambridge University Press, 2020. https://doi.org/10.1017/s1743921319009451. ieee: J. J. Matthee and D. Sobral, “Unveiling the most luminous Lyman-α emitters in the epoch of reionisation,” in Proceedings of the International Astronomical Union, 2020, vol. 15, no. S352, pp. 21–25. ista: Matthee JJ, Sobral D. 2020. Unveiling the most luminous Lyman-α emitters in the epoch of reionisation. Proceedings of the International Astronomical Union. vol. 15, 21–25. mla: Matthee, Jorryt J., and David Sobral. “Unveiling the Most Luminous Lyman-α Emitters in the Epoch of Reionisation.” Proceedings of the International Astronomical Union, vol. 15, no. S352, Cambridge University Press, 2020, pp. 21–25, doi:10.1017/s1743921319009451. short: J.J. Matthee, D. Sobral, in:, Proceedings of the International Astronomical Union, Cambridge University Press, 2020, pp. 21–25. date_created: 2022-07-14T14:08:41Z date_published: 2020-06-04T00:00:00Z date_updated: 2022-08-19T08:41:12Z day: '04' doi: 10.1017/s1743921319009451 extern: '1' external_id: arxiv: - '1911.04774' intvolume: ' 15' issue: S352 keyword: - Astronomy and Astrophysics - Space and Planetary Science - 'galaxies: formation' - 'galaxies: evolution' - 'galaxies: high-redshift' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1911.04774 month: '06' oa: 1 oa_version: Preprint page: 21-25 publication: Proceedings of the International Astronomical Union publication_identifier: eissn: - 1743-9221 issn: - 1743-9213 publication_status: published publisher: Cambridge University Press quality_controlled: '1' scopus_import: '1' status: public title: Unveiling the most luminous Lyman-α emitters in the epoch of reionisation type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '11610' abstract: - lang: eng text: Studies of Galactic structure and evolution have benefited enormously from Gaia kinematic information, though additional, intrinsic stellar parameters like age are required to best constrain Galactic models. Asteroseismology is the most precise method of providing such information for field star populations en masse, but existing samples for the most part have been limited to a few narrow fields of view by the CoRoT and Kepler missions. In an effort to provide well-characterized stellar parameters across a wide range in Galactic position, we present the second data release of red giant asteroseismic parameters for the K2 Galactic Archaeology Program (GAP). We provide ${\nu }_{\max }$ and ${\rm{\Delta }}\nu $ based on six independent pipeline analyses; first-ascent red giant branch (RGB) and red clump (RC) evolutionary state classifications from machine learning; and ready-to-use radius and mass coefficients, κR and κM, which, when appropriately multiplied by a solar-scaled effective temperature factor, yield physical stellar radii and masses. In total, we report 4395 radius and mass coefficients, with typical uncertainties of 3.3% (stat.) ± 1% (syst.) for κR and 7.7% (stat.) ± 2% (syst.) for κM among RGB stars, and 5.0% (stat.) ± 1% (syst.) for κR and 10.5% (stat.) ± 2% (syst.) for κM among RC stars. We verify that the sample is nearly complete—except for a dearth of stars with ${\nu }_{\max }\lesssim 10\mbox{--}20\,\mu \mathrm{Hz}$—by comparing to Galactic models and visual inspection. Our asteroseismic radii agree with radii derived from Gaia Data Release 2 parallaxes to within 2.2% ± 0.3% for RGB stars and 2.0% ± 0.6% for RC stars. acknowledgement: "We thank the referee for comments that strengthened the manuscript. J. C. Z. and M. H. P. acknowledge support from NASA grants 80NSSC18K0391 and NNX17AJ40G. Y. E. and C. J. acknowledge the support of the UK Science and Technology Facilities Council (STFC). S. M. would like to acknowledge support from the Spanish Ministry with the Ramon y Cajal fellowship number RYC-2015-17697. R. A. G. acknowledges funding received from the PLATO CNES grant. R. S. acknowledges funding via a Royal Society University Research Fellowship. D.H. acknowledges support from the Alfred P. Sloan Foundation and the National Aeronautics and Space Administration (80NSSC19K0108). V.S.A. acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B), and the Carlsberg foundation (grant agreement CF19-0649). This research was supported in part by the National Science Foundation under grant No. NSF PHY-1748958.\r\n\r\nFunding for the Stellar Astrophysics Centre (SAC) is provided by The Danish National Research Foundation (grant agreement No. DNRF106).\r\n\r\nThe K2 Galactic Archaeology Program is supported by the National Aeronautics and Space Administration under grant NNX16AJ17G issued through the K2 Guest Observer Program.\r\n\r\nThis publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.\r\n\r\nThis work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.\r\n\r\nFunding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.sdss.org.\r\n\r\nSDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, the Harvard–Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.\r\n\r\nSoftware: asfgrid (Sharma & Stello 2016), emcee (Foreman-Mackey et al. 2013), NumPy (Walt 2011), pandas (McKinney 2010; Reback et al. 2020), Matplotlib (Hunter 2007), IPython (Pérez & Granger 2007), SciPy (Virtanen et al. 2020)." article_number: '23' article_processing_charge: No article_type: original author: - first_name: Joel C. full_name: Zinn, Joel C. last_name: Zinn - first_name: Dennis full_name: Stello, Dennis last_name: Stello - first_name: Yvonne full_name: Elsworth, Yvonne last_name: Elsworth - first_name: Rafael A. full_name: García, Rafael A. last_name: García - first_name: Thomas full_name: Kallinger, Thomas last_name: Kallinger - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Benoît full_name: Mosser, Benoît last_name: Mosser - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: Caitlin full_name: Jones, Caitlin last_name: Jones - first_name: Marc full_name: Hon, Marc last_name: Hon - first_name: Sanjib full_name: Sharma, Sanjib last_name: Sharma - first_name: Ralph full_name: Schönrich, Ralph last_name: Schönrich - first_name: Jack T. full_name: Warfield, Jack T. last_name: Warfield - first_name: Rodrigo full_name: Luger, Rodrigo last_name: Luger - first_name: Marc H. full_name: Pinsonneault, Marc H. last_name: Pinsonneault - first_name: Jennifer A. full_name: Johnson, Jennifer A. last_name: Johnson - first_name: Daniel full_name: Huber, Daniel last_name: Huber - first_name: Victor Silva full_name: Aguirre, Victor Silva last_name: Aguirre - first_name: William J. full_name: Chaplin, William J. last_name: Chaplin - first_name: Guy R. full_name: Davies, Guy R. last_name: Davies - first_name: Andrea full_name: Miglio, Andrea last_name: Miglio citation: ama: 'Zinn JC, Stello D, Elsworth Y, et al. The K2 galactic archaeology program data release 2: Asteroseismic results from campaigns 4, 6, and 7. The Astrophysical Journal Supplement Series. 2020;251(2). doi:10.3847/1538-4365/abbee3' apa: 'Zinn, J. C., Stello, D., Elsworth, Y., García, R. A., Kallinger, T., Mathur, S., … Miglio, A. (2020). The K2 galactic archaeology program data release 2: Asteroseismic results from campaigns 4, 6, and 7. The Astrophysical Journal Supplement Series. IOP Publishing. https://doi.org/10.3847/1538-4365/abbee3' chicago: 'Zinn, Joel C., Dennis Stello, Yvonne Elsworth, Rafael A. García, Thomas Kallinger, Savita Mathur, Benoît Mosser, et al. “The K2 Galactic Archaeology Program Data Release 2: Asteroseismic Results from Campaigns 4, 6, and 7.” The Astrophysical Journal Supplement Series. IOP Publishing, 2020. https://doi.org/10.3847/1538-4365/abbee3.' ieee: 'J. C. Zinn et al., “The K2 galactic archaeology program data release 2: Asteroseismic results from campaigns 4, 6, and 7,” The Astrophysical Journal Supplement Series, vol. 251, no. 2. IOP Publishing, 2020.' ista: 'Zinn JC, Stello D, Elsworth Y, García RA, Kallinger T, Mathur S, Mosser B, Bugnet LA, Jones C, Hon M, Sharma S, Schönrich R, Warfield JT, Luger R, Pinsonneault MH, Johnson JA, Huber D, Aguirre VS, Chaplin WJ, Davies GR, Miglio A. 2020. The K2 galactic archaeology program data release 2: Asteroseismic results from campaigns 4, 6, and 7. The Astrophysical Journal Supplement Series. 251(2), 23.' mla: 'Zinn, Joel C., et al. “The K2 Galactic Archaeology Program Data Release 2: Asteroseismic Results from Campaigns 4, 6, and 7.” The Astrophysical Journal Supplement Series, vol. 251, no. 2, 23, IOP Publishing, 2020, doi:10.3847/1538-4365/abbee3.' short: J.C. Zinn, D. Stello, Y. Elsworth, R.A. García, T. Kallinger, S. Mathur, B. Mosser, L.A. Bugnet, C. Jones, M. Hon, S. Sharma, R. Schönrich, J.T. Warfield, R. Luger, M.H. Pinsonneault, J.A. Johnson, D. Huber, V.S. Aguirre, W.J. Chaplin, G.R. Davies, A. Miglio, The Astrophysical Journal Supplement Series 251 (2020). date_created: 2022-07-18T13:27:26Z date_published: 2020-12-01T00:00:00Z date_updated: 2022-08-22T07:04:45Z day: '01' doi: 10.3847/1538-4365/abbee3 extern: '1' external_id: arxiv: - '2012.04051' intvolume: ' 251' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2012.04051 month: '12' oa: 1 oa_version: Preprint publication: The Astrophysical Journal Supplement Series publication_identifier: eissn: - 1538-4365 issn: - 0067-0049 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'The K2 galactic archaeology program data release 2: Asteroseismic results from campaigns 4, 6, and 7' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 251 year: '2020' ... --- _id: '11611' abstract: - lang: eng text: Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies1. Although these accreted stellar populations can be forensically identified as kinematically distinct structures within the Galaxy, it is difficult in general to date precisely the age at which any one merger occurred. Recent results have revealed a population of stars that were accreted via the collision of a dwarf galaxy, called Gaia–Enceladus1, leading to substantial pollution of the chemical and dynamical properties of the Milky Way. Here we identify the very bright, naked-eye star ν Indi as an indicator of the age of the early in situ population of the Galaxy. We combine asteroseismic, spectroscopic, astrometric and kinematic observations to show that this metal-poor, alpha-element-rich star was an indigenous member of the halo, and we measure its age to be 11.0±0.7 (stat) ±0.8 (sys) billion years. The star bears hallmarks consistent with having been kinematically heated by the Gaia–Enceladus collision. Its age implies that the earliest the merger could have begun was 11.6 and 13.2 billion years ago, at 68% and 95% confidence, respectively. Computations based on hierarchical cosmological models slightly reduce the above limits. acknowledgement: This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. W.J.C. acknowledges support from the UK Science and Technology Facilities Council (STFC) and UK Space Agency. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (grant agreement number DNRF106). This research was partially conducted during the Exostar19 programme at the Kavli Institute for Theoretical Physics at UC Santa Barbara, which was supported in part by the National Science Foundation under grant number NSF PHY-1748958. A.M., J.T.M., F.V. and J.M. acknowledge support from the ERC Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, grant agreement number 772293). F.V. acknowledges the support of a Fellowship from the Center for Cosmology and AstroParticle Physics at The Ohio State University. W.H.B. and M.B.N. acknowledge support from the UK Space Agency. K.J.B. is supported by the National Science Foundation under award AST-1903828. M.B.N. acknowledges partial support from the NYU Abu Dhabi Center for Space Science under grant number G1502. A.M.S. is partially supported by the Spanish Government (ESP2017-82674-R) and Generalitat de Catalunya (2017-SGR-1131). T.M. acknowledges financial support from Belspo for contract PRODEX PLATO. H.K. acknowledges support from the European Social Fund via the Lithuanian Science Council grant number 09.3.3-LMT-K-712-01-0103. S.B. acknowledges support from NSF grant AST-1514676 and NASA grant 80NSSC19K0374. V.S.A. acknowledges support from the Independent Research Fund Denmark (research grant 7027-00096B). D.H. acknowledges support by the National Aeronautics and Space Administration (80NSSC18K1585, 80NSSC19K0379) awarded through the TESS Guest Investigator Program and by the National Science Foundation (AST-1717000). T.S.M. acknowledges support from a visiting fellowship at the Max Planck Institute for Solar System Research. Computational resources were provided through XSEDE allocation TG-AST090107. D.L.B. acknowledges support from NASA under grant NNX16AB76G. T.L.C. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 792848 (PULSATION). This work was supported by FCT/MCTES through national funds (PIDDAC) by means of grant UID/FIS/04434/2019. K.J.B., S.H., J.S.K. and N.T. are supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number 338251 (StellarAges). E.C. is funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number 664931. L.G.-C. acknowledges support from the MINECO FPI-SO doctoral research project SEV-2015-0548-17-2 and predoctoral contract BES-2017-082610. P.G. is supported by the German space agency (Deutsches Zentrum für Luft- und Raumfahrt) under PLATO data grant 50OO1501. R.K. acknowledges support from the UK Science and Technology Facilities Council (STFC), under consolidated grant ST/L000733/1. M.S.L. is supported by the Carlsberg Foundation (grant agreement number CF17-076). Z.C.O., S.O. and M.Y. acknowledge support from the Scientific and Technological Research Council of Turkey (TÜBİTAK:118F352). S.M. acknowledges support from the Spanish ministry through the Ramon y Cajal fellowship number RYC-2015-17697. T.S.R. acknowledges financial support from Premiale 2015 MITiC (PI B. Garilli). R.Sz. acknowledges the support from NKFIH grant project No. K-115709, and the Lendület program of the Hungarian Academy of Science (project number 2018-7/2019). J.T. acknowledges support was provided by NASA through the NASA Hubble Fellowship grant number 51424 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This work was supported by FEDER through COMPETE2020 (POCI-01-0145-FEDER-030389. A.M.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 749962 (project THOT). A.M. and P.R. acknowledge the support of the Government of India, Department of Atomic Energy, under Project No. 12-R&D-TFR-6.04-0600. K.J.B. is an NSF Astronomy and Astrophysics Postdoctoral Fellow and DIRAC Fellow. article_processing_charge: No article_type: letter_note author: - first_name: William J. full_name: Chaplin, William J. last_name: Chaplin - first_name: Aldo M. full_name: Serenelli, Aldo M. last_name: Serenelli - first_name: Andrea full_name: Miglio, Andrea last_name: Miglio - first_name: Thierry full_name: Morel, Thierry last_name: Morel - first_name: J. Ted full_name: Mackereth, J. Ted last_name: Mackereth - first_name: Fiorenzo full_name: Vincenzo, Fiorenzo last_name: Vincenzo - first_name: Hans full_name: Kjeldsen, Hans last_name: Kjeldsen - first_name: Sarbani full_name: Basu, Sarbani last_name: Basu - first_name: Warrick H. full_name: Ball, Warrick H. last_name: Ball - first_name: Amalie full_name: Stokholm, Amalie last_name: Stokholm - first_name: Kuldeep full_name: Verma, Kuldeep last_name: Verma - first_name: Jakob Rørsted full_name: Mosumgaard, Jakob Rørsted last_name: Mosumgaard - first_name: Victor full_name: Silva Aguirre, Victor last_name: Silva Aguirre - first_name: Anwesh full_name: Mazumdar, Anwesh last_name: Mazumdar - first_name: Pritesh full_name: Ranadive, Pritesh last_name: Ranadive - first_name: H. M. full_name: Antia, H. M. last_name: Antia - first_name: Yveline full_name: Lebreton, Yveline last_name: Lebreton - first_name: Joel full_name: Ong, Joel last_name: Ong - first_name: Thierry full_name: Appourchaux, Thierry last_name: Appourchaux - first_name: Timothy R. full_name: Bedding, Timothy R. last_name: Bedding - first_name: Jørgen full_name: Christensen-Dalsgaard, Jørgen last_name: Christensen-Dalsgaard - first_name: Orlagh full_name: Creevey, Orlagh last_name: Creevey - first_name: Rafael A. full_name: García, Rafael A. last_name: García - first_name: Rasmus full_name: Handberg, Rasmus last_name: Handberg - first_name: Daniel full_name: Huber, Daniel last_name: Huber - first_name: Steven D. full_name: Kawaler, Steven D. last_name: Kawaler - first_name: Mikkel N. full_name: Lund, Mikkel N. last_name: Lund - first_name: Travis S. full_name: Metcalfe, Travis S. last_name: Metcalfe - first_name: Keivan G. full_name: Stassun, Keivan G. last_name: Stassun - first_name: Michäel full_name: Bazot, Michäel last_name: Bazot - first_name: Paul G. full_name: Beck, Paul G. last_name: Beck - first_name: Keaton J. full_name: Bell, Keaton J. last_name: Bell - first_name: Maria full_name: Bergemann, Maria last_name: Bergemann - first_name: Derek L. full_name: Buzasi, Derek L. last_name: Buzasi - first_name: Othman full_name: Benomar, Othman last_name: Benomar - first_name: Diego full_name: Bossini, Diego last_name: Bossini - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: Tiago L. full_name: Campante, Tiago L. last_name: Campante - first_name: Zeynep Çelik full_name: Orhan, Zeynep Çelik last_name: Orhan - first_name: Enrico full_name: Corsaro, Enrico last_name: Corsaro - first_name: Lucía full_name: González-Cuesta, Lucía last_name: González-Cuesta - first_name: Guy R. full_name: Davies, Guy R. last_name: Davies - first_name: Maria Pia full_name: Di Mauro, Maria Pia last_name: Di Mauro - first_name: Ricky full_name: Egeland, Ricky last_name: Egeland - first_name: Yvonne P. full_name: Elsworth, Yvonne P. last_name: Elsworth - first_name: Patrick full_name: Gaulme, Patrick last_name: Gaulme - first_name: Hamed full_name: Ghasemi, Hamed last_name: Ghasemi - first_name: Zhao full_name: Guo, Zhao last_name: Guo - first_name: Oliver J. full_name: Hall, Oliver J. last_name: Hall - first_name: Amir full_name: Hasanzadeh, Amir last_name: Hasanzadeh - first_name: Saskia full_name: Hekker, Saskia last_name: Hekker - first_name: Rachel full_name: Howe, Rachel last_name: Howe - first_name: Jon M. full_name: Jenkins, Jon M. last_name: Jenkins - first_name: Antonio full_name: Jiménez, Antonio last_name: Jiménez - first_name: René full_name: Kiefer, René last_name: Kiefer - first_name: James S. full_name: Kuszlewicz, James S. last_name: Kuszlewicz - first_name: Thomas full_name: Kallinger, Thomas last_name: Kallinger - first_name: David W. full_name: Latham, David W. last_name: Latham - first_name: Mia S. full_name: Lundkvist, Mia S. last_name: Lundkvist - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Josefina full_name: Montalbán, Josefina last_name: Montalbán - first_name: Benoit full_name: Mosser, Benoit last_name: Mosser - first_name: Andres Moya full_name: Bedón, Andres Moya last_name: Bedón - first_name: Martin Bo full_name: Nielsen, Martin Bo last_name: Nielsen - first_name: Sibel full_name: Örtel, Sibel last_name: Örtel - first_name: Ben M. full_name: Rendle, Ben M. last_name: Rendle - first_name: George R. full_name: Ricker, George R. last_name: Ricker - first_name: Thaíse S. full_name: Rodrigues, Thaíse S. last_name: Rodrigues - first_name: Ian W. full_name: Roxburgh, Ian W. last_name: Roxburgh - first_name: Hossein full_name: Safari, Hossein last_name: Safari - first_name: Mathew full_name: Schofield, Mathew last_name: Schofield - first_name: Sara full_name: Seager, Sara last_name: Seager - first_name: Barry full_name: Smalley, Barry last_name: Smalley - first_name: Dennis full_name: Stello, Dennis last_name: Stello - first_name: Róbert full_name: Szabó, Róbert last_name: Szabó - first_name: Jamie full_name: Tayar, Jamie last_name: Tayar - first_name: Nathalie full_name: Themeßl, Nathalie last_name: Themeßl - first_name: Alexandra E. L. full_name: Thomas, Alexandra E. L. last_name: Thomas - first_name: Roland K. full_name: Vanderspek, Roland K. last_name: Vanderspek - first_name: Walter E. full_name: van Rossem, Walter E. last_name: van Rossem - first_name: Mathieu full_name: Vrard, Mathieu last_name: Vrard - first_name: Achim full_name: Weiss, Achim last_name: Weiss - first_name: Timothy R. full_name: White, Timothy R. last_name: White - first_name: Joshua N. full_name: Winn, Joshua N. last_name: Winn - first_name: Mutlu full_name: Yıldız, Mutlu last_name: Yıldız citation: ama: Chaplin WJ, Serenelli AM, Miglio A, et al. Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi. Nature Astronomy. 2020;4(4):382-389. doi:10.1038/s41550-019-0975-9 apa: Chaplin, W. J., Serenelli, A. M., Miglio, A., Morel, T., Mackereth, J. T., Vincenzo, F., … Yıldız, M. (2020). Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi. Nature Astronomy. Springer Nature. https://doi.org/10.1038/s41550-019-0975-9 chicago: Chaplin, William J., Aldo M. Serenelli, Andrea Miglio, Thierry Morel, J. Ted Mackereth, Fiorenzo Vincenzo, Hans Kjeldsen, et al. “Age Dating of an Early Milky Way Merger via Asteroseismology of the Naked-Eye Star ν Indi.” Nature Astronomy. Springer Nature, 2020. https://doi.org/10.1038/s41550-019-0975-9. ieee: W. J. Chaplin et al., “Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi,” Nature Astronomy, vol. 4, no. 4. Springer Nature, pp. 382–389, 2020. ista: Chaplin WJ, Serenelli AM, Miglio A, Morel T, Mackereth JT, Vincenzo F, Kjeldsen H, Basu S, Ball WH, Stokholm A, Verma K, Mosumgaard JR, Silva Aguirre V, Mazumdar A, Ranadive P, Antia HM, Lebreton Y, Ong J, Appourchaux T, Bedding TR, Christensen-Dalsgaard J, Creevey O, García RA, Handberg R, Huber D, Kawaler SD, Lund MN, Metcalfe TS, Stassun KG, Bazot M, Beck PG, Bell KJ, Bergemann M, Buzasi DL, Benomar O, Bossini D, Bugnet LA, Campante TL, Orhan ZÇ, Corsaro E, González-Cuesta L, Davies GR, Di Mauro MP, Egeland R, Elsworth YP, Gaulme P, Ghasemi H, Guo Z, Hall OJ, Hasanzadeh A, Hekker S, Howe R, Jenkins JM, Jiménez A, Kiefer R, Kuszlewicz JS, Kallinger T, Latham DW, Lundkvist MS, Mathur S, Montalbán J, Mosser B, Bedón AM, Nielsen MB, Örtel S, Rendle BM, Ricker GR, Rodrigues TS, Roxburgh IW, Safari H, Schofield M, Seager S, Smalley B, Stello D, Szabó R, Tayar J, Themeßl N, Thomas AEL, Vanderspek RK, van Rossem WE, Vrard M, Weiss A, White TR, Winn JN, Yıldız M. 2020. Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi. Nature Astronomy. 4(4), 382–389. mla: Chaplin, William J., et al. “Age Dating of an Early Milky Way Merger via Asteroseismology of the Naked-Eye Star ν Indi.” Nature Astronomy, vol. 4, no. 4, Springer Nature, 2020, pp. 382–89, doi:10.1038/s41550-019-0975-9. short: W.J. Chaplin, A.M. Serenelli, A. Miglio, T. Morel, J.T. Mackereth, F. Vincenzo, H. Kjeldsen, S. Basu, W.H. Ball, A. Stokholm, K. Verma, J.R. Mosumgaard, V. Silva Aguirre, A. Mazumdar, P. Ranadive, H.M. Antia, Y. Lebreton, J. Ong, T. Appourchaux, T.R. Bedding, J. Christensen-Dalsgaard, O. Creevey, R.A. García, R. Handberg, D. Huber, S.D. Kawaler, M.N. Lund, T.S. Metcalfe, K.G. Stassun, M. Bazot, P.G. Beck, K.J. Bell, M. Bergemann, D.L. Buzasi, O. Benomar, D. Bossini, L.A. Bugnet, T.L. Campante, Z.Ç. Orhan, E. Corsaro, L. González-Cuesta, G.R. Davies, M.P. Di Mauro, R. Egeland, Y.P. Elsworth, P. Gaulme, H. Ghasemi, Z. Guo, O.J. Hall, A. Hasanzadeh, S. Hekker, R. Howe, J.M. Jenkins, A. Jiménez, R. Kiefer, J.S. Kuszlewicz, T. Kallinger, D.W. Latham, M.S. Lundkvist, S. Mathur, J. Montalbán, B. Mosser, A.M. Bedón, M.B. Nielsen, S. Örtel, B.M. Rendle, G.R. Ricker, T.S. Rodrigues, I.W. Roxburgh, H. Safari, M. Schofield, S. Seager, B. Smalley, D. Stello, R. Szabó, J. Tayar, N. Themeßl, A.E.L. Thomas, R.K. Vanderspek, W.E. van Rossem, M. Vrard, A. Weiss, T.R. White, J.N. Winn, M. Yıldız, Nature Astronomy 4 (2020) 382–389. date_created: 2022-07-18T13:36:19Z date_published: 2020-04-01T00:00:00Z date_updated: 2022-08-22T07:08:29Z day: '01' doi: 10.1038/s41550-019-0975-9 extern: '1' external_id: arxiv: - '2001.04653' intvolume: ' 4' issue: '4' keyword: - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2001.04653 month: '04' oa: 1 oa_version: Preprint page: 382-389 publication: Nature Astronomy publication_identifier: eissn: - 2397-3366 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Age dating of an early Milky Way merger via asteroseismology of the naked-eye star ν Indi type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2020' ... --- _id: '11612' abstract: - lang: eng text: Since the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky—providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%–10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data. acknowledgement: 'This Letter includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Funding for the TESS mission is provided by NASA''s Science Mission directorate. Funding for the TESS Asteroseismic Science Operations Centre is provided by the Danish National Research Foundation (grant agreement No. DNRF106), ESA PRODEX (PEA 4000119301), and Stellar Astrophysics Centre (SAC) at Aarhus University. V.S.A. acknowledges support from the Independent Research Fund Denmark (Research grant 7027-00096B). D.B. is supported in the form of work contract FCT/MCTES through national funds and by FEDER through COMPETE2020 in connection to these grants: UID/FIS/04434/2019; PTDC/FIS-AST/30389/2017 & POCI-01-0145-FEDER-030389. L.B., R.A.G., and B.M. acknowledge the support from the CNES/PLATO grant. D.B. acknowledges NASA grant NNX16AB76G. T.L.C. acknowledges support from the European Union''s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 792848 (PULSATION). This work was supported by FCT/MCTES through national funds (UID/FIS/04434/2019). E.C. is funded by the European Union''s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 664931. R.H. and M.N.L. acknowledge the support of the ESA PRODEX programme. T.S.R. acknowledges financial support from Premiale 2015 MITiC (PI B. Garilli). K.J.B. is supported by the National Science Foundation under Award AST-1903828. M.S.L. is supported by the Carlsberg Foundation (grant agreement No. CF17-0760). M.C. is funded by FCT//MCTES through national funds and by FEDER through COMPETE2020 through these grants: UID/FIS/04434/2019, PTDC/FIS-AST/30389/2017 & POCI-01-0145-FEDER-030389, CEECIND/02619/2017. The research leading to the presented results has received funding from the European Research Council under the European Community''s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 338251 (StellarAges). A.M. acknowledges support from the European Research Council Consolidator Grant funding scheme (project ASTEROCHRONOMETRY, grant agreement No. 772293, http://www.asterochronometry.eu). A.M.S. is partially supported by MINECO grant ESP2017-82674-R. J.C.S. acknowledges funding support from Spanish public funds for research under projects ESP2017-87676-2-2, and from project RYC-2012-09913 under the ''Ramón y Cajal'' program of the Spanish Ministry of Science and Education. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products.' article_number: L34 article_processing_charge: No article_type: original author: - first_name: Víctor Silva full_name: Aguirre, Víctor Silva last_name: Aguirre - first_name: Dennis full_name: Stello, Dennis last_name: Stello - first_name: Amalie full_name: Stokholm, Amalie last_name: Stokholm - first_name: Jakob R. full_name: Mosumgaard, Jakob R. last_name: Mosumgaard - first_name: Warrick H. full_name: Ball, Warrick H. last_name: Ball - first_name: Sarbani full_name: Basu, Sarbani last_name: Basu - first_name: Diego full_name: Bossini, Diego last_name: Bossini - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: Derek full_name: Buzasi, Derek last_name: Buzasi - first_name: Tiago L. full_name: Campante, Tiago L. last_name: Campante - first_name: Lindsey full_name: Carboneau, Lindsey last_name: Carboneau - first_name: William J. full_name: Chaplin, William J. last_name: Chaplin - first_name: Enrico full_name: Corsaro, Enrico last_name: Corsaro - first_name: Guy R. full_name: Davies, Guy R. last_name: Davies - first_name: Yvonne full_name: Elsworth, Yvonne last_name: Elsworth - first_name: Rafael A. full_name: García, Rafael A. last_name: García - first_name: Patrick full_name: Gaulme, Patrick last_name: Gaulme - first_name: Oliver J. full_name: Hall, Oliver J. last_name: Hall - first_name: Rasmus full_name: Handberg, Rasmus last_name: Handberg - first_name: Marc full_name: Hon, Marc last_name: Hon - first_name: Thomas full_name: Kallinger, Thomas last_name: Kallinger - first_name: Liu full_name: Kang, Liu last_name: Kang - first_name: Mikkel N. full_name: Lund, Mikkel N. last_name: Lund - first_name: Savita full_name: Mathur, Savita last_name: Mathur - first_name: Alexey full_name: Mints, Alexey last_name: Mints - first_name: Benoit full_name: Mosser, Benoit last_name: Mosser - first_name: Zeynep full_name: Çelik Orhan, Zeynep last_name: Çelik Orhan - first_name: Thaíse S. full_name: Rodrigues, Thaíse S. last_name: Rodrigues - first_name: Mathieu full_name: Vrard, Mathieu last_name: Vrard - first_name: Mutlu full_name: Yıldız, Mutlu last_name: Yıldız - first_name: Joel C. full_name: Zinn, Joel C. last_name: Zinn - first_name: Sibel full_name: Örtel, Sibel last_name: Örtel - first_name: Paul G. full_name: Beck, Paul G. last_name: Beck - first_name: Keaton J. full_name: Bell, Keaton J. last_name: Bell - first_name: Zhao full_name: Guo, Zhao last_name: Guo - first_name: Chen full_name: Jiang, Chen last_name: Jiang - first_name: James S. full_name: Kuszlewicz, James S. last_name: Kuszlewicz - first_name: Charles A. full_name: Kuehn, Charles A. last_name: Kuehn - first_name: Tanda full_name: Li, Tanda last_name: Li - first_name: Mia S. full_name: Lundkvist, Mia S. last_name: Lundkvist - first_name: Marc full_name: Pinsonneault, Marc last_name: Pinsonneault - first_name: Jamie full_name: Tayar, Jamie last_name: Tayar - first_name: Margarida S. full_name: Cunha, Margarida S. last_name: Cunha - first_name: Saskia full_name: Hekker, Saskia last_name: Hekker - first_name: Daniel full_name: Huber, Daniel last_name: Huber - first_name: Andrea full_name: Miglio, Andrea last_name: Miglio - first_name: Mario J. P. full_name: F. G. Monteiro, Mario J. P. last_name: F. G. Monteiro - first_name: Ditte full_name: Slumstrup, Ditte last_name: Slumstrup - first_name: Mark L. full_name: Winther, Mark L. last_name: Winther - first_name: George full_name: Angelou, George last_name: Angelou - first_name: Othman full_name: Benomar, Othman last_name: Benomar - first_name: Attila full_name: Bódi, Attila last_name: Bódi - first_name: Bruno L. full_name: De Moura, Bruno L. last_name: De Moura - first_name: Sébastien full_name: Deheuvels, Sébastien last_name: Deheuvels - first_name: Aliz full_name: Derekas, Aliz last_name: Derekas - first_name: Maria Pia full_name: Di Mauro, Maria Pia last_name: Di Mauro - first_name: Marc-Antoine full_name: Dupret, Marc-Antoine last_name: Dupret - first_name: Antonio full_name: Jiménez, Antonio last_name: Jiménez - first_name: Yveline full_name: Lebreton, Yveline last_name: Lebreton - first_name: Jaymie full_name: Matthews, Jaymie last_name: Matthews - first_name: Nicolas full_name: Nardetto, Nicolas last_name: Nardetto - first_name: Jose D. full_name: do Nascimento, Jose D. last_name: do Nascimento - first_name: Filipe full_name: Pereira, Filipe last_name: Pereira - first_name: Luisa F. full_name: Rodríguez Díaz, Luisa F. last_name: Rodríguez Díaz - first_name: Aldo M. full_name: Serenelli, Aldo M. last_name: Serenelli - first_name: Emanuele full_name: Spitoni, Emanuele last_name: Spitoni - first_name: Edita full_name: Stonkutė, Edita last_name: Stonkutė - first_name: Juan Carlos full_name: Suárez, Juan Carlos last_name: Suárez - first_name: Robert full_name: Szabó, Robert last_name: Szabó - first_name: Vincent full_name: Van Eylen, Vincent last_name: Van Eylen - first_name: Rita full_name: Ventura, Rita last_name: Ventura - first_name: Kuldeep full_name: Verma, Kuldeep last_name: Verma - first_name: Achim full_name: Weiss, Achim last_name: Weiss - first_name: Tao full_name: Wu, Tao last_name: Wu - first_name: Thomas full_name: Barclay, Thomas last_name: Barclay - first_name: Jørgen full_name: Christensen-Dalsgaard, Jørgen last_name: Christensen-Dalsgaard - first_name: Jon M. full_name: Jenkins, Jon M. last_name: Jenkins - first_name: Hans full_name: Kjeldsen, Hans last_name: Kjeldsen - first_name: George R. full_name: Ricker, George R. last_name: Ricker - first_name: Sara full_name: Seager, Sara last_name: Seager - first_name: Roland full_name: Vanderspek, Roland last_name: Vanderspek citation: ama: 'Aguirre VS, Stello D, Stokholm A, et al. Detection and characterization of oscillating red giants: First results from the TESS satellite. The Astrophysical Journal Letters. 2020;889(2). doi:10.3847/2041-8213/ab6443' apa: 'Aguirre, V. S., Stello, D., Stokholm, A., Mosumgaard, J. R., Ball, W. H., Basu, S., … Vanderspek, R. (2020). Detection and characterization of oscillating red giants: First results from the TESS satellite. The Astrophysical Journal Letters. IOP Publishing. https://doi.org/10.3847/2041-8213/ab6443' chicago: 'Aguirre, Víctor Silva, Dennis Stello, Amalie Stokholm, Jakob R. Mosumgaard, Warrick H. Ball, Sarbani Basu, Diego Bossini, et al. “Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite.” The Astrophysical Journal Letters. IOP Publishing, 2020. https://doi.org/10.3847/2041-8213/ab6443.' ieee: 'V. S. Aguirre et al., “Detection and characterization of oscillating red giants: First results from the TESS satellite,” The Astrophysical Journal Letters, vol. 889, no. 2. IOP Publishing, 2020.' ista: 'Aguirre VS, Stello D, Stokholm A, Mosumgaard JR, Ball WH, Basu S, Bossini D, Bugnet LA, Buzasi D, Campante TL, Carboneau L, Chaplin WJ, Corsaro E, Davies GR, Elsworth Y, García RA, Gaulme P, Hall OJ, Handberg R, Hon M, Kallinger T, Kang L, Lund MN, Mathur S, Mints A, Mosser B, Çelik Orhan Z, Rodrigues TS, Vrard M, Yıldız M, Zinn JC, Örtel S, Beck PG, Bell KJ, Guo Z, Jiang C, Kuszlewicz JS, Kuehn CA, Li T, Lundkvist MS, Pinsonneault M, Tayar J, Cunha MS, Hekker S, Huber D, Miglio A, F. G. Monteiro MJP, Slumstrup D, Winther ML, Angelou G, Benomar O, Bódi A, De Moura BL, Deheuvels S, Derekas A, Di Mauro MP, Dupret M-A, Jiménez A, Lebreton Y, Matthews J, Nardetto N, do Nascimento JD, Pereira F, Rodríguez Díaz LF, Serenelli AM, Spitoni E, Stonkutė E, Suárez JC, Szabó R, Van Eylen V, Ventura R, Verma K, Weiss A, Wu T, Barclay T, Christensen-Dalsgaard J, Jenkins JM, Kjeldsen H, Ricker GR, Seager S, Vanderspek R. 2020. Detection and characterization of oscillating red giants: First results from the TESS satellite. The Astrophysical Journal Letters. 889(2), L34.' mla: 'Aguirre, Víctor Silva, et al. “Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite.” The Astrophysical Journal Letters, vol. 889, no. 2, L34, IOP Publishing, 2020, doi:10.3847/2041-8213/ab6443.' short: V.S. Aguirre, D. Stello, A. Stokholm, J.R. Mosumgaard, W.H. Ball, S. Basu, D. Bossini, L.A. Bugnet, D. Buzasi, T.L. Campante, L. Carboneau, W.J. Chaplin, E. Corsaro, G.R. Davies, Y. Elsworth, R.A. García, P. Gaulme, O.J. Hall, R. Handberg, M. Hon, T. Kallinger, L. Kang, M.N. Lund, S. Mathur, A. Mints, B. Mosser, Z. Çelik Orhan, T.S. Rodrigues, M. Vrard, M. Yıldız, J.C. Zinn, S. Örtel, P.G. Beck, K.J. Bell, Z. Guo, C. Jiang, J.S. Kuszlewicz, C.A. Kuehn, T. Li, M.S. Lundkvist, M. Pinsonneault, J. Tayar, M.S. Cunha, S. Hekker, D. Huber, A. Miglio, M.J.P. F. G. Monteiro, D. Slumstrup, M.L. Winther, G. Angelou, O. Benomar, A. Bódi, B.L. De Moura, S. Deheuvels, A. Derekas, M.P. Di Mauro, M.-A. Dupret, A. Jiménez, Y. Lebreton, J. Matthews, N. Nardetto, J.D. do Nascimento, F. Pereira, L.F. Rodríguez Díaz, A.M. Serenelli, E. Spitoni, E. Stonkutė, J.C. Suárez, R. Szabó, V. Van Eylen, R. Ventura, K. Verma, A. Weiss, T. Wu, T. Barclay, J. Christensen-Dalsgaard, J.M. Jenkins, H. Kjeldsen, G.R. Ricker, S. Seager, R. Vanderspek, The Astrophysical Journal Letters 889 (2020). date_created: 2022-07-18T13:52:54Z date_published: 2020-02-01T00:00:00Z date_updated: 2022-08-22T07:25:51Z day: '01' doi: 10.3847/2041-8213/ab6443 extern: '1' external_id: arxiv: - '1912.07604' intvolume: ' 889' issue: '2' keyword: - Space and Planetary Science - Astronomy and Astrophysics language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.07604 month: '02' oa: 1 oa_version: Preprint publication: The Astrophysical Journal Letters publication_identifier: eissn: - 1538-4357 issn: - 0004-637X publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: 'Detection and characterization of oscillating red giants: First results from the TESS satellite' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 889 year: '2020' ... --- _id: '11622' abstract: - lang: eng text: 'The recent discovery of low-amplitude dipolar oscillation mixed modes in massive red giants indicates the presence of a missing physical process inside their cores. Stars more massive than ∼ 1.3 M⊙ are known to develop a convective core during the main-sequence: the dynamo process triggered by this convection could be the origin of a strong magnetic field inside the core of the star, trapped when it becomes stably stratified and for the rest of its evolution. The presence of highly magnetized white dwarfs strengthens the hypothesis of buried fossil magnetic fields inside the core of evolved low-mass stars. If such a fossil field exists, it should affect the mixed modes of red giants as they are sensitive to processes affecting the deepest layers of these stars. The impact of a magnetic field on dipolar oscillations modes was one of Pr. Michael J. Thompson’s research topics during the 90s when preparing the helioseismic SoHO space mission. As the detection of gravity modes in the Sun is still controversial, the investigation of the solar oscillation modes did not provide any hint of the existence of a magnetic field in the solar radiative core. Today we have access to the core of evolved stars thanks to the asteroseismic observation of mixed modes from CoRoT, Kepler, K2 and TESS missions. The idea of applying and generalizing the work done for the Sun came from discussions with Pr. Michael Thompson in early 2018 before we lost him. Following the path we drew together, we theoretically investigate the effect of a stable axisymmetric mixed poloidal and toroidal magnetic field, aligned with the rotation axis of the star, on the mixed modes frequencies of a typical evolved low-mass star. This enables us to estimate the magnetic perturbations to the eigenfrequencies of mixed dipolar modes, depending on the magnetic field strength and the evolutionary state of the star. We conclude that strong magnetic fields of ∼ 1MG should perturb the mixed-mode frequency pattern enough for its effects to be detectable inside current asteroseismic data.' acknowledgement: The authors of this work acknowledge the support received from the PLATO CNES grant, the National Aeronautics and Space Administration under Grant NNX15AF13G, by the National Science Foundation grant AST-1411685, the Ramon y Cajal fellowship number RYC-2015-17697, the ERC SPIRE grant (647383), and the Fundation L’Oréal-Unesco-Académie des sciences. alternative_title: - Astrophysics and Space Science Proceedings article_processing_charge: No author: - first_name: Lisa Annabelle full_name: Bugnet, Lisa Annabelle id: d9edb345-f866-11ec-9b37-d119b5234501 last_name: Bugnet orcid: 0000-0003-0142-4000 - first_name: V. full_name: Prat, V. last_name: Prat - first_name: S. full_name: Mathis, S. last_name: Mathis - first_name: R. A. full_name: García, R. A. last_name: García - first_name: S. full_name: Mathur, S. last_name: Mathur - first_name: K. full_name: Augustson, K. last_name: Augustson - first_name: C. full_name: Neiner, C. last_name: Neiner - first_name: M. J. full_name: Thompson, M. J. last_name: Thompson citation: ama: 'Bugnet LA, Prat V, Mathis S, et al. The impact of a fossil magnetic field on dipolar mixed-mode frequencies in sub- and red-giant stars. In: Monteiro M, Garcia RA, Christensen-Dalsgaard J, McIntosh SW, eds. Dynamics of the Sun and Stars. Vol 57. 1st ed. ASSSP. Cham: Springer Nature; 2020:251-257. doi:10.1007/978-3-030-55336-4_33' apa: 'Bugnet, L. A., Prat, V., Mathis, S., García, R. A., Mathur, S., Augustson, K., … Thompson, M. J. (2020). The impact of a fossil magnetic field on dipolar mixed-mode frequencies in sub- and red-giant stars. In M. Monteiro, R. A. Garcia, J. Christensen-Dalsgaard, & S. W. McIntosh (Eds.), Dynamics of the Sun and Stars (1st ed., Vol. 57, pp. 251–257). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-55336-4_33' chicago: 'Bugnet, Lisa Annabelle, V. Prat, S. Mathis, R. A. García, S. Mathur, K. Augustson, C. Neiner, and M. J. Thompson. “The Impact of a Fossil Magnetic Field on Dipolar Mixed-Mode Frequencies in Sub- and Red-Giant Stars.” In Dynamics of the Sun and Stars, edited by Mario Monteiro, Rafael A Garcia, Jorgen Christensen-Dalsgaard, and Scott W McIntosh, 1st ed., 57:251–57. ASSSP. Cham: Springer Nature, 2020. https://doi.org/10.1007/978-3-030-55336-4_33.' ieee: 'L. A. Bugnet et al., “The impact of a fossil magnetic field on dipolar mixed-mode frequencies in sub- and red-giant stars,” in Dynamics of the Sun and Stars, 1st ed., vol. 57, M. Monteiro, R. A. Garcia, J. Christensen-Dalsgaard, and S. W. McIntosh, Eds. Cham: Springer Nature, 2020, pp. 251–257.' ista: 'Bugnet LA, Prat V, Mathis S, García RA, Mathur S, Augustson K, Neiner C, Thompson MJ. 2020.The impact of a fossil magnetic field on dipolar mixed-mode frequencies in sub- and red-giant stars. In: Dynamics of the Sun and Stars. Astrophysics and Space Science Proceedings, vol. 57, 251–257.' mla: Bugnet, Lisa Annabelle, et al. “The Impact of a Fossil Magnetic Field on Dipolar Mixed-Mode Frequencies in Sub- and Red-Giant Stars.” Dynamics of the Sun and Stars, edited by Mario Monteiro et al., 1st ed., vol. 57, Springer Nature, 2020, pp. 251–57, doi:10.1007/978-3-030-55336-4_33. short: L.A. Bugnet, V. Prat, S. Mathis, R.A. García, S. Mathur, K. Augustson, C. Neiner, M.J. Thompson, in:, M. Monteiro, R.A. Garcia, J. Christensen-Dalsgaard, S.W. McIntosh (Eds.), Dynamics of the Sun and Stars, 1st ed., Springer Nature, Cham, 2020, pp. 251–257. date_created: 2022-07-19T08:25:41Z date_published: 2020-12-19T00:00:00Z date_updated: 2022-08-22T08:07:42Z day: '19' doi: 10.1007/978-3-030-55336-4_33 edition: '1' editor: - first_name: Mario full_name: Monteiro, Mario last_name: Monteiro - first_name: Rafael A full_name: Garcia, Rafael A last_name: Garcia - first_name: Jorgen full_name: Christensen-Dalsgaard, Jorgen last_name: Christensen-Dalsgaard - first_name: Scott W full_name: McIntosh, Scott W last_name: McIntosh extern: '1' external_id: arxiv: - '2012.08684' intvolume: ' 57' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2012.08684 month: '12' oa: 1 oa_version: Preprint page: 251-257 place: Cham publication: Dynamics of the Sun and Stars publication_identifier: eisbn: - 978-3-030-55336-4 eissn: - 1570-6605 isbn: - 978-3-030-55335-7 issn: - 1570-6591 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: ASSSP status: public title: The impact of a fossil magnetic field on dipolar mixed-mode frequencies in sub- and red-giant stars type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2020' ... --- _id: '11675' abstract: - lang: eng text: 'We consider the problems of maintaining an approximate maximum matching and an approximate minimum vertex cover in a dynamic graph undergoing a sequence of edge insertions/deletions. Starting with the seminal work of Onak and Rubinfeld (in: Proceedings of the ACM symposium on theory of computing (STOC), 2010), this problem has received significant attention in recent years. Very recently, extending the framework of Baswana et al. (in: Proceedings of the IEEE symposium on foundations of computer science (FOCS), 2011) , Solomon (in: Proceedings of the IEEE symposium on foundations of computer science (FOCS), 2016) gave a randomized dynamic algorithm for this problem that has an approximation ratio of 2 and an amortized update time of O(1) with high probability. This algorithm requires the assumption of an oblivious adversary, meaning that the future sequence of edge insertions/deletions in the graph cannot depend in any way on the algorithm’s past output. A natural way to remove the assumption on oblivious adversary is to give a deterministic dynamic algorithm for the same problem in O(1) update time. In this paper, we resolve this question. We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate minimum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previously, the best deterministic algorithm for this problem was due to Bhattacharya et al. (in: Proceedings of the ACM-SIAM symposium on discrete algorithms (SODA), 2015); it had an approximation ratio of (2+ε) and an amortized update time of O(logn/ε2). Our result can be generalized to give a fully dynamic O(f3)-approximate algorithm with O(f2) amortized update time for the hypergraph vertex cover and fractional hypergraph matching problem, where every hyperedge has at most f vertices.' article_processing_charge: No article_type: original author: - first_name: Sayan full_name: Bhattacharya, Sayan last_name: Bhattacharya - first_name: Deeparnab full_name: Chakrabarty, Deeparnab last_name: Chakrabarty - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 citation: ama: Bhattacharya S, Chakrabarty D, Henzinger MH. Deterministic dynamic matching in O(1) update time. Algorithmica. 2020;82(4):1057-1080. doi:10.1007/s00453-019-00630-4 apa: Bhattacharya, S., Chakrabarty, D., & Henzinger, M. H. (2020). Deterministic dynamic matching in O(1) update time. Algorithmica. Springer Nature. https://doi.org/10.1007/s00453-019-00630-4 chicago: Bhattacharya, Sayan, Deeparnab Chakrabarty, and Monika H Henzinger. “Deterministic Dynamic Matching in O(1) Update Time.” Algorithmica. Springer Nature, 2020. https://doi.org/10.1007/s00453-019-00630-4. ieee: S. Bhattacharya, D. Chakrabarty, and M. H. Henzinger, “Deterministic dynamic matching in O(1) update time,” Algorithmica, vol. 82, no. 4. Springer Nature, pp. 1057–1080, 2020. ista: Bhattacharya S, Chakrabarty D, Henzinger MH. 2020. Deterministic dynamic matching in O(1) update time. Algorithmica. 82(4), 1057–1080. mla: Bhattacharya, Sayan, et al. “Deterministic Dynamic Matching in O(1) Update Time.” Algorithmica, vol. 82, no. 4, Springer Nature, 2020, pp. 1057–80, doi:10.1007/s00453-019-00630-4. short: S. Bhattacharya, D. Chakrabarty, M.H. Henzinger, Algorithmica 82 (2020) 1057–1080. date_created: 2022-07-27T14:31:06Z date_published: 2020-04-01T00:00:00Z date_updated: 2022-09-12T08:55:46Z day: '01' doi: 10.1007/s00453-019-00630-4 extern: '1' intvolume: ' 82' issue: '4' keyword: - Dynamic algorithms - Data structures - Graph algorithms - Matching - Vertex cover language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s00453-019-00630-4 month: '04' oa: 1 oa_version: Published Version page: 1057-1080 publication: Algorithmica publication_identifier: eissn: - 1432-0541 issn: - 0178-4617 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Deterministic dynamic matching in O(1) update time type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 82 year: '2020' ... --- _id: '11674' abstract: - lang: eng text: In this paper, we study the problem of opening centers to cluster a set of clients in a metric space so as to minimize the sum of the costs of the centers and of the cluster radii, in a dynamic environment where clients arrive and depart, and the solution must be updated efficiently while remaining competitive with respect to the current optimal solution. We call this dynamic sum-of-radii clustering problem. We present a data structure that maintains a solution whose cost is within a constant factor of the cost of an optimal solution in metric spaces with bounded doubling dimension and whose worst-case update time is logarithmic in the parameters of the problem. article_processing_charge: No article_type: original author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Dariusz full_name: Leniowski, Dariusz last_name: Leniowski - first_name: Claire full_name: Mathieu, Claire last_name: Mathieu citation: ama: Henzinger MH, Leniowski D, Mathieu C. Dynamic clustering to minimize the sum of radii. Algorithmica. 2020;82(11):3183-3194. doi:10.1007/s00453-020-00721-7 apa: Henzinger, M. H., Leniowski, D., & Mathieu, C. (2020). Dynamic clustering to minimize the sum of radii. Algorithmica. Springer Nature. https://doi.org/10.1007/s00453-020-00721-7 chicago: Henzinger, Monika H, Dariusz Leniowski, and Claire Mathieu. “Dynamic Clustering to Minimize the Sum of Radii.” Algorithmica. Springer Nature, 2020. https://doi.org/10.1007/s00453-020-00721-7. ieee: M. H. Henzinger, D. Leniowski, and C. Mathieu, “Dynamic clustering to minimize the sum of radii,” Algorithmica, vol. 82, no. 11. Springer Nature, pp. 3183–3194, 2020. ista: Henzinger MH, Leniowski D, Mathieu C. 2020. Dynamic clustering to minimize the sum of radii. Algorithmica. 82(11), 3183–3194. mla: Henzinger, Monika H., et al. “Dynamic Clustering to Minimize the Sum of Radii.” Algorithmica, vol. 82, no. 11, Springer Nature, 2020, pp. 3183–94, doi:10.1007/s00453-020-00721-7. short: M.H. Henzinger, D. Leniowski, C. Mathieu, Algorithmica 82 (2020) 3183–3194. date_created: 2022-07-27T13:58:58Z date_published: 2020-11-01T00:00:00Z date_updated: 2022-09-12T08:50:14Z day: '01' doi: 10.1007/s00453-020-00721-7 extern: '1' external_id: arxiv: - '1707.02577' intvolume: ' 82' issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.1707.02577 month: '11' oa: 1 oa_version: Preprint page: 3183-3194 publication: Algorithmica publication_identifier: eissn: - 1432-0541 issn: - 0178-4617 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Dynamic clustering to minimize the sum of radii type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 82 year: '2020' ... --- _id: '11818' abstract: - lang: eng text: "With input sizes becoming massive, coresets - small yet representative summary of the input - are relevant more than ever. A weighted set C_w that is a subset of the input is an ε-coreset if the cost of any feasible solution S with respect to C_w is within [1±ε] of the cost of S with respect to the original input. We give a very general technique to compute coresets in the fully-dynamic setting where input points can be added or deleted. Given a static (i.e., not dynamic) ε-coreset-construction algorithm that runs in time t(n, ε, λ) and computes a coreset of size s(n, ε, λ), where n is the number of input points and 1-λ is the success probability, we give a fully-dynamic algorithm that computes an ε-coreset with worst-case update time O((log n) ⋅ t(s(n, ε/log n, λ/n), ε/log n, λ/n)) (this bound is stated informally), where the success probability is 1-λ. Our technique is a fully-dynamic analog of the merge-and-reduce technique, which is due to Har-Peled and Mazumdar [Har-Peled and Mazumdar, 2004] and is based on a technique of Bentley and Saxe [Jon Louis Bentley and James B. Saxe, 1980], that applies to the insertion-only setting where points can only be added. Although, our space usage is O(n), our technique works in the presence of an adaptive adversary, and we show that Ω(n) space is required when adversary is adaptive.\r\nAs a concrete implication of our technique, using the result of Braverman et al. [{Braverman} et al., 2016], we get fully-dynamic ε-coreset-construction algorithms for k-median and k-means with worst-case update time O(ε^{-2} k² log⁵ n log³ k) and coreset size O(ε^{-2} k log n log² k) ignoring log log n and log(1/ε) factors and assuming that ε = Ω(1/poly(n)) and λ = Ω(1/poly(n)) (which are very weak assumptions made only to make these bounds easy to parse). This results in the first fully-dynamic constant-approximation algorithms for k-median and k-means with update times O(poly(k, log n, ε^{-1})). Specifically, the dependence on k is only quadratic, and the bounds are worst-case. The best previous bound for both problems was amortized O(nlog n) by Cohen-Addad et al. [Cohen-Addad et al., 2019] via randomized O(1)-coresets in O(n) space.\r\nWe also show that under the OMv conjecture [Monika Henzinger et al., 2015], a fully-dynamic (4 - δ)-approximation algorithm for k-means must either have an amortized update time of Ω(k^{1-γ}) or amortized query time of Ω(k^{2 - γ}), where γ > 0 is a constant." alternative_title: - LIPIcs article_number: '57' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Sagar full_name: Kale, Sagar last_name: Kale citation: ama: 'Henzinger MH, Kale S. Fully-dynamic coresets. In: 28th Annual European Symposium on Algorithms. Vol 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.ESA.2020.57' apa: 'Henzinger, M. H., & Kale, S. (2020). Fully-dynamic coresets. In 28th Annual European Symposium on Algorithms (Vol. 173). Pisa, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2020.57' chicago: Henzinger, Monika H, and Sagar Kale. “Fully-Dynamic Coresets.” In 28th Annual European Symposium on Algorithms, Vol. 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ESA.2020.57. ieee: M. H. Henzinger and S. Kale, “Fully-dynamic coresets,” in 28th Annual European Symposium on Algorithms, Pisa, Italy, 2020, vol. 173. ista: 'Henzinger MH, Kale S. 2020. Fully-dynamic coresets. 28th Annual European Symposium on Algorithms. ESA: Annual European Symposium on Algorithms, LIPIcs, vol. 173, 57.' mla: Henzinger, Monika H., and Sagar Kale. “Fully-Dynamic Coresets.” 28th Annual European Symposium on Algorithms, vol. 173, 57, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.ESA.2020.57. short: M.H. Henzinger, S. Kale, in:, 28th Annual European Symposium on Algorithms, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-09 location: Pisa, Italy name: 'ESA: Annual European Symposium on Algorithms' start_date: 2020-09-07 date_created: 2022-08-12T07:22:55Z date_published: 2020-08-26T00:00:00Z date_updated: 2023-02-14T09:29:51Z day: '26' doi: 10.4230/LIPIcs.ESA.2020.57 extern: '1' external_id: arxiv: - '2004.14891' intvolume: ' 173' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.4230/LIPIcs.ESA.2020.57 month: '08' oa: 1 oa_version: Published Version publication: 28th Annual European Symposium on Algorithms publication_identifier: isbn: - '9783959771627' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Fully-dynamic coresets type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 173 year: '2020' ... --- _id: '11816' abstract: - lang: eng text: In recent years, significant advances have been made in the design and analysis of fully dynamic maximal matching algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. In this paper, we attempt to bridge the gap between theory and practice that is currently observed for the fully dynamic maximal matching problem. We engineer several algorithms and empirically study those algorithms on an extensive set of dynamic instances. alternative_title: - LIPIcs article_number: '58' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Khan full_name: Shahbaz, Khan last_name: Shahbaz - first_name: Richard full_name: Paul, Richard last_name: Paul - first_name: Christian full_name: Schulz, Christian last_name: Schulz citation: ama: 'Henzinger MH, Shahbaz K, Paul R, Schulz C. Dynamic matching algorithms in practice. In: 8th Annual European Symposium on Algorithms. Vol 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.ESA.2020.58' apa: 'Henzinger, M. H., Shahbaz, K., Paul, R., & Schulz, C. (2020). Dynamic matching algorithms in practice. In 8th Annual European Symposium on Algorithms (Vol. 173). Pisa, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2020.58' chicago: Henzinger, Monika H, Khan Shahbaz, Richard Paul, and Christian Schulz. “Dynamic Matching Algorithms in Practice.” In 8th Annual European Symposium on Algorithms, Vol. 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ESA.2020.58. ieee: M. H. Henzinger, K. Shahbaz, R. Paul, and C. Schulz, “Dynamic matching algorithms in practice,” in 8th Annual European Symposium on Algorithms, Pisa, Italy, 2020, vol. 173. ista: 'Henzinger MH, Shahbaz K, Paul R, Schulz C. 2020. Dynamic matching algorithms in practice. 8th Annual European Symposium on Algorithms. ESA: Annual European Symposium on Algorithms, LIPIcs, vol. 173, 58.' mla: Henzinger, Monika H., et al. “Dynamic Matching Algorithms in Practice.” 8th Annual European Symposium on Algorithms, vol. 173, 58, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.ESA.2020.58. short: M.H. Henzinger, K. Shahbaz, R. Paul, C. Schulz, in:, 8th Annual European Symposium on Algorithms, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-09 location: Pisa, Italy name: 'ESA: Annual European Symposium on Algorithms' start_date: 2020-09-07 date_created: 2022-08-12T07:13:25Z date_published: 2020-08-26T00:00:00Z date_updated: 2023-02-14T08:57:55Z day: '26' doi: 10.4230/LIPIcs.ESA.2020.58 extern: '1' external_id: arxiv: - '2004.09099' intvolume: ' 173' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.4230/LIPIcs.ESA.2020.58 month: '08' oa: 1 oa_version: Published Version publication: 8th Annual European Symposium on Algorithms publication_identifier: isbn: - '9783959771627' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Dynamic matching algorithms in practice type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 173 year: '2020' ... --- _id: '11824' abstract: - lang: eng text: "Independent set is a fundamental problem in combinatorial optimization. While in general graphs the problem is essentially inapproximable, for many important graph classes there are approximation algorithms known in the offline setting. These graph classes include interval graphs and geometric intersection graphs, where vertices correspond to intervals/geometric objects and an edge indicates that the two corresponding objects intersect.\r\nWe present dynamic approximation algorithms for independent set of intervals, hypercubes and hyperrectangles in d dimensions. They work in the fully dynamic model where each update inserts or deletes a geometric object. All our algorithms are deterministic and have worst-case update times that are polylogarithmic for constant d and ε>0, assuming that the coordinates of all input objects are in [0, N]^d and each of their edges has length at least 1. We obtain the following results:\r\n- For weighted intervals, we maintain a (1+ε)-approximate solution.\r\n- For d-dimensional hypercubes we maintain a (1+ε)2^d-approximate solution in the unweighted case and a O(2^d)-approximate solution in the weighted case. Also, we show that for maintaining an unweighted (1+ε)-approximate solution one needs polynomial update time for d ≥ 2 if the ETH holds.\r\n- For weighted d-dimensional hyperrectangles we present a dynamic algorithm with approximation ratio (1+ε)log^{d-1}N." alternative_title: - LIPIcs article_number: '51' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Stefan full_name: Neumann, Stefan last_name: Neumann - first_name: Andreas full_name: Wiese, Andreas last_name: Wiese citation: ama: 'Henzinger MH, Neumann S, Wiese A. Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.51' apa: 'Henzinger, M. H., Neumann, S., & Wiese, A. (2020). Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles. In 36th International Symposium on Computational Geometry (Vol. 164). Zurich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.51' chicago: Henzinger, Monika H, Stefan Neumann, and Andreas Wiese. “Dynamic Approximate Maximum Independent Set of Intervals, Hypercubes and Hyperrectangles.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.51. ieee: M. H. Henzinger, S. Neumann, and A. Wiese, “Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles,” in 36th International Symposium on Computational Geometry, Zurich, Switzerland, 2020, vol. 164. ista: 'Henzinger MH, Neumann S, Wiese A. 2020. Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 51.' mla: Henzinger, Monika H., et al. “Dynamic Approximate Maximum Independent Set of Intervals, Hypercubes and Hyperrectangles.” 36th International Symposium on Computational Geometry, vol. 164, 51, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.51. short: M.H. Henzinger, S. Neumann, A. Wiese, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zurich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-23 date_created: 2022-08-12T07:46:44Z date_published: 2020-06-08T00:00:00Z date_updated: 2023-02-14T10:00:58Z day: '08' doi: 10.4230/LIPIcs.SoCG.2020.51 extern: '1' external_id: arxiv: - '2003.02605' intvolume: ' 164' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.4230/LIPIcs.SoCG.2020.51 month: '06' oa: 1 oa_version: Published Version publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Dynamic approximate maximum independent set of intervals, hypercubes and hyperrectangles type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '11822' abstract: - lang: eng text: "The fully dynamic transitive closure problem asks to maintain reachability information in a directed graph between arbitrary pairs of vertices, while the graph undergoes a sequence of edge insertions and deletions. The problem has been thoroughly investigated in theory and many specialized algorithms for solving it have been proposed in the last decades. In two large studies [Frigioni ea, 2001; Krommidas and Zaroliagis, 2008], a number of these algorithms have been evaluated experimentally against simple, static algorithms for graph traversal, showing the competitiveness and even superiority of the simple algorithms in practice, except for very dense random graphs or very high ratios of queries. A major drawback of those studies is that only small and mostly randomly generated graphs are considered.\r\nIn this paper, we engineer new algorithms to maintain all-pairs reachability information which are simple and space-efficient. Moreover, we perform an extensive experimental evaluation on both generated and real-world instances that are several orders of magnitude larger than those in the previous studies. Our results indicate that our new algorithms outperform all state-of-the-art algorithms on all types of input considerably in practice." alternative_title: - LIPIcs article_number: '14' article_processing_charge: No author: - first_name: Kathrin full_name: Hanauer, Kathrin last_name: Hanauer - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Christian full_name: Schulz, Christian last_name: Schulz citation: ama: 'Hanauer K, Henzinger MH, Schulz C. Faster fully dynamic transitive closure in practice. In: 18th International Symposium on Experimental Algorithms. Vol 160. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SEA.2020.14' apa: 'Hanauer, K., Henzinger, M. H., & Schulz, C. (2020). Faster fully dynamic transitive closure in practice. In 18th International Symposium on Experimental Algorithms (Vol. 160). Pisa, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SEA.2020.14' chicago: Hanauer, Kathrin, Monika H Henzinger, and Christian Schulz. “Faster Fully Dynamic Transitive Closure in Practice.” In 18th International Symposium on Experimental Algorithms, Vol. 160. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SEA.2020.14. ieee: K. Hanauer, M. H. Henzinger, and C. Schulz, “Faster fully dynamic transitive closure in practice,” in 18th International Symposium on Experimental Algorithms, Pisa, Italy, 2020, vol. 160. ista: 'Hanauer K, Henzinger MH, Schulz C. 2020. Faster fully dynamic transitive closure in practice. 18th International Symposium on Experimental Algorithms. SEA: Symposium on Experimental Algorithms, LIPIcs, vol. 160, 14.' mla: Hanauer, Kathrin, et al. “Faster Fully Dynamic Transitive Closure in Practice.” 18th International Symposium on Experimental Algorithms, vol. 160, 14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SEA.2020.14. short: K. Hanauer, M.H. Henzinger, C. Schulz, in:, 18th International Symposium on Experimental Algorithms, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-09 location: Pisa, Italy name: 'SEA: Symposium on Experimental Algorithms' start_date: 2020-09-07 date_created: 2022-08-12T07:32:53Z date_published: 2020-06-12T00:00:00Z date_updated: 2023-02-14T09:58:42Z day: '12' doi: 10.4230/LIPIcs.SEA.2020.14 extern: '1' external_id: arxiv: - '2002.00813' intvolume: ' 160' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.4230/LIPIcs.SEA.2020.14 month: '06' oa: 1 oa_version: Published Version publication: 18th International Symposium on Experimental Algorithms publication_identifier: isbn: - '9783959771481' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Faster fully dynamic transitive closure in practice type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 160 year: '2020' ... --- _id: '11825' abstract: - lang: eng text: We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per update that maintains a proper (Δ+1)-vertex coloring of a graph with maximum degree at most Δ. This improves upon the previous O(log Δ)-time algorithm by Bhattacharya et al. (SODA 2018). Our algorithm uses an approach based on assigning random ranks to vertices and does not need to maintain a hierarchical graph decomposition. We show that our result does not only have optimal running time, but is also optimal in the sense that already deciding whether a Δ-coloring exists in a dynamically changing graph with maximum degree at most Δ takes Ω(log n) time per operation. alternative_title: - LIPIcs article_number: '53' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Pan full_name: Peng, Pan last_name: Peng citation: ama: 'Henzinger MH, Peng P. Constant-time dynamic (Δ+1)-coloring. In: 37th International Symposium on Theoretical Aspects of Computer Science. Vol 154. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.STACS.2020.53' apa: 'Henzinger, M. H., & Peng, P. (2020). Constant-time dynamic (Δ+1)-coloring. In 37th International Symposium on Theoretical Aspects of Computer Science (Vol. 154). Montpellier, France: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.STACS.2020.53' chicago: Henzinger, Monika H, and Pan Peng. “Constant-Time Dynamic (Δ+1)-Coloring.” In 37th International Symposium on Theoretical Aspects of Computer Science, Vol. 154. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.STACS.2020.53. ieee: M. H. Henzinger and P. Peng, “Constant-time dynamic (Δ+1)-coloring,” in 37th International Symposium on Theoretical Aspects of Computer Science, Montpellier, France, 2020, vol. 154. ista: 'Henzinger MH, Peng P. 2020. Constant-time dynamic (Δ+1)-coloring. 37th International Symposium on Theoretical Aspects of Computer Science. STACS: Symposium on Theoretical Aspects of Computer Science, LIPIcs, vol. 154, 53.' mla: Henzinger, Monika H., and Pan Peng. “Constant-Time Dynamic (Δ+1)-Coloring.” 37th International Symposium on Theoretical Aspects of Computer Science, vol. 154, 53, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.STACS.2020.53. short: M.H. Henzinger, P. Peng, in:, 37th International Symposium on Theoretical Aspects of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-03-13 location: Montpellier, France name: 'STACS: Symposium on Theoretical Aspects of Computer Science' start_date: 2020-03-10 date_created: 2022-08-12T07:53:05Z date_published: 2020-03-04T00:00:00Z date_updated: 2023-02-14T10:03:43Z day: '04' doi: 10.4230/LIPIcs.STACS.2020.53 extern: '1' external_id: arxiv: - '1907.04745' intvolume: ' 154' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.4230/LIPIcs.STACS.2020.53 month: '03' oa: 1 oa_version: Published Version publication: 37th International Symposium on Theoretical Aspects of Computer Science publication_identifier: isbn: - '9783959771405' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Constant-time dynamic (Δ+1)-coloring type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 154 year: '2020' ... --- _id: '11819' abstract: - lang: eng text: We present a practically efficient algorithm that finds all global minimum cuts in huge undirected graphs. Our algorithm uses a multitude of kernelization rules to reduce the graph to a small equivalent instance and then finds all minimum cuts using an optimized version of the algorithm of Nagamochi, Nakao and Ibaraki. In shared memory we are able to find all minimum cuts of graphs with up to billions of edges and millions of minimum cuts in a few minutes. We also give a new linear time algorithm to find the most balanced minimum cuts given as input the representation of all minimum cuts. alternative_title: - LIPIcs article_number: '59' article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Alexander full_name: Noe, Alexander last_name: Noe - first_name: Christian full_name: Schulz, Christian last_name: Schulz - first_name: Darren full_name: Strash, Darren last_name: Strash citation: ama: 'Henzinger MH, Noe A, Schulz C, Strash D. Finding all global minimum cuts in practice. In: 28th Annual European Symposium on Algorithms. Vol 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.ESA.2020.59' apa: 'Henzinger, M. H., Noe, A., Schulz, C., & Strash, D. (2020). Finding all global minimum cuts in practice. In 28th Annual European Symposium on Algorithms (Vol. 173). Pisa, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2020.59' chicago: Henzinger, Monika H, Alexander Noe, Christian Schulz, and Darren Strash. “Finding All Global Minimum Cuts in Practice.” In 28th Annual European Symposium on Algorithms, Vol. 173. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.ESA.2020.59. ieee: M. H. Henzinger, A. Noe, C. Schulz, and D. Strash, “Finding all global minimum cuts in practice,” in 28th Annual European Symposium on Algorithms, Pisa, Italy, 2020, vol. 173. ista: 'Henzinger MH, Noe A, Schulz C, Strash D. 2020. Finding all global minimum cuts in practice. 28th Annual European Symposium on Algorithms. ESA: Annual European Symposium on Algorithms, LIPIcs, vol. 173, 59.' mla: Henzinger, Monika H., et al. “Finding All Global Minimum Cuts in Practice.” 28th Annual European Symposium on Algorithms, vol. 173, 59, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.ESA.2020.59. short: M.H. Henzinger, A. Noe, C. Schulz, D. Strash, in:, 28th Annual European Symposium on Algorithms, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-09 location: Pisa, Italy name: 'ESA: Annual European Symposium on Algorithms' start_date: 2020-09-07 date_created: 2022-08-12T07:27:42Z date_published: 2020-08-26T00:00:00Z date_updated: 2023-02-14T09:39:18Z day: '26' doi: 10.4230/LIPIcs.ESA.2020.59 extern: '1' external_id: arxiv: - '2002.06948' intvolume: ' 173' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.4230/LIPIcs.ESA.2020.59 month: '08' oa: 1 oa_version: Published Version publication: 28th Annual European Symposium on Algorithms publication_identifier: isbn: - '9783959771627' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Finding all global minimum cuts in practice type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 173 year: '2020' ... --- _id: '11852' abstract: - lang: eng text: We present a general framework of designing efficient dynamic approximate algorithms for optimization problems on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1)A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in O~(n2/3) 11The O~(⋅) notation is used in this paper to hide poly-logarithmic factors. amortized time against an oblivious adversary, and O~(m3/4) time against an adaptive adversary. (2)An incremental data structure that maintains O(1) - approximate shortest path in no(1) time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in O~(n2/3+o(1)) amortized time per operation. (3)A fully-dynamic algorithm that approximates all-pair effective resistance up to an (1+ϵ) factor in O~(n2/3+o(1)ϵ−O(1)) amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The O(1)-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM '05]. Result (3) is obtained by invoking the random-walk based spectral vertex sparsifier by [Durfee et al. STOC '19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy. See https://arxiv.org/pdf/2005.02368.pdf for the full version of this paper. article_processing_charge: No author: - first_name: Li full_name: Chen, Li last_name: Chen - first_name: Gramoz full_name: Goranci, Gramoz last_name: Goranci - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Richard full_name: Peng, Richard last_name: Peng - first_name: Thatchaphol full_name: Saranurak, Thatchaphol last_name: Saranurak citation: ama: 'Chen L, Goranci G, Henzinger MH, Peng R, Saranurak T. Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In: 61st Annual Symposium on Foundations of Computer Science. Institute of Electrical and Electronics Engineers; 2020:1135-1146. doi:10.1109/focs46700.2020.00109' apa: 'Chen, L., Goranci, G., Henzinger, M. H., Peng, R., & Saranurak, T. (2020). Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In 61st Annual Symposium on Foundations of Computer Science (pp. 1135–1146). Durham, NC, United States: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/focs46700.2020.00109' chicago: Chen, Li, Gramoz Goranci, Monika H Henzinger, Richard Peng, and Thatchaphol Saranurak. “Fast Dynamic Cuts, Distances and Effective Resistances via Vertex Sparsifiers.” In 61st Annual Symposium on Foundations of Computer Science, 1135–46. Institute of Electrical and Electronics Engineers, 2020. https://doi.org/10.1109/focs46700.2020.00109. ieee: L. Chen, G. Goranci, M. H. Henzinger, R. Peng, and T. Saranurak, “Fast dynamic cuts, distances and effective resistances via vertex sparsifiers,” in 61st Annual Symposium on Foundations of Computer Science, Durham, NC, United States, 2020, pp. 1135–1146. ista: 'Chen L, Goranci G, Henzinger MH, Peng R, Saranurak T. 2020. Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. 61st Annual Symposium on Foundations of Computer Science. FOCS: Annual Symposium on Foundations of Computer Science, 1135–1146.' mla: Chen, Li, et al. “Fast Dynamic Cuts, Distances and Effective Resistances via Vertex Sparsifiers.” 61st Annual Symposium on Foundations of Computer Science, Institute of Electrical and Electronics Engineers, 2020, pp. 1135–46, doi:10.1109/focs46700.2020.00109. short: L. Chen, G. Goranci, M.H. Henzinger, R. Peng, T. Saranurak, in:, 61st Annual Symposium on Foundations of Computer Science, Institute of Electrical and Electronics Engineers, 2020, pp. 1135–1146. conference: end_date: 2020-11-19 location: Durham, NC, United States name: 'FOCS: Annual Symposium on Foundations of Computer Science' start_date: 2020-11-16 date_created: 2022-08-16T07:33:12Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-02-17T09:47:36Z day: '01' doi: 10.1109/focs46700.2020.00109 extern: '1' external_id: arxiv: - '2005.02368' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2005.02368 month: '11' oa: 1 oa_version: Preprint page: 1135-1146 publication: 61st Annual Symposium on Foundations of Computer Science publication_identifier: eisbn: - 978-1-7281-9621-3 eissn: - 2575-8454 isbn: - 978-1-7281-9622-0 publication_status: published publisher: Institute of Electrical and Electronics Engineers quality_controlled: '1' scopus_import: '1' status: public title: Fast dynamic cuts, distances and effective resistances via vertex sparsifiers type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '11880' abstract: - lang: eng text: "Given a directed graph and a source vertex, the fully dynamic single-source reachability problem is to maintain the set of vertices that are reachable from the given vertex, subject to edge deletions and insertions. It is one of the most fundamental problems on graphs and appears directly or indirectly in many and varied applications. While there has been theoretical work on this problem, showing both linear conditional lower bounds for the fully dynamic problem and insertions-only and deletions-only upper bounds beating these conditional lower bounds, there has been no experimental study that compares the performance of fully dynamic reachability algorithms in practice. Previous experimental studies in this area concentrated only on the more general all-pairs reachability or transitive closure problem and did not use real-world dynamic graphs.\r\n\r\nIn this paper, we bridge this gap by empirically studying an extensive set of algorithms for the single-source reachability problem in the fully dynamic setting. In particular, we design several fully dynamic variants of well-known approaches to obtain and maintain reachability information with respect to a distinguished source. Moreover, we extend the existing insertions-only or deletions-only upper bounds into fully dynamic algorithms. Even though the worst-case time per operation of all the fully dynamic algorithms we evaluate is at least linear in the number of edges in the graph (as is to be expected given the conditional lower bounds) we show in our extensive experimental evaluation that their performance differs greatly, both on generated as well as on real-world instances." article_processing_charge: No author: - first_name: Kathrin full_name: Hanauer, Kathrin last_name: Hanauer - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Christian full_name: Schulz, Christian last_name: Schulz citation: ama: 'Hanauer K, Henzinger MH, Schulz C. Fully dynamic single-source reachability in practice: An experimental study. In: 2020 Symposium on Algorithm Engineering and Experiments. Society for Industrial and Applied Mathematics; 2020:106-119. doi:10.1137/1.9781611976007.9' apa: 'Hanauer, K., Henzinger, M. H., & Schulz, C. (2020). Fully dynamic single-source reachability in practice: An experimental study. In 2020 Symposium on Algorithm Engineering and Experiments (pp. 106–119). Salt Lake City, UT, United States: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611976007.9' chicago: 'Hanauer, Kathrin, Monika H Henzinger, and Christian Schulz. “Fully Dynamic Single-Source Reachability in Practice: An Experimental Study.” In 2020 Symposium on Algorithm Engineering and Experiments, 106–19. Society for Industrial and Applied Mathematics, 2020. https://doi.org/10.1137/1.9781611976007.9.' ieee: 'K. Hanauer, M. H. Henzinger, and C. Schulz, “Fully dynamic single-source reachability in practice: An experimental study,” in 2020 Symposium on Algorithm Engineering and Experiments, Salt Lake City, UT, United States, 2020, pp. 106–119.' ista: 'Hanauer K, Henzinger MH, Schulz C. 2020. Fully dynamic single-source reachability in practice: An experimental study. 2020 Symposium on Algorithm Engineering and Experiments. ALENEX: Symposium on Algorithm Engineering and Experiments, 106–119.' mla: 'Hanauer, Kathrin, et al. “Fully Dynamic Single-Source Reachability in Practice: An Experimental Study.” 2020 Symposium on Algorithm Engineering and Experiments, Society for Industrial and Applied Mathematics, 2020, pp. 106–19, doi:10.1137/1.9781611976007.9.' short: K. Hanauer, M.H. Henzinger, C. Schulz, in:, 2020 Symposium on Algorithm Engineering and Experiments, Society for Industrial and Applied Mathematics, 2020, pp. 106–119. conference: end_date: 2020-01-06 location: Salt Lake City, UT, United States name: 'ALENEX: Symposium on Algorithm Engineering and Experiments' start_date: 2020-01-05 date_created: 2022-08-17T06:39:32Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-02-17T14:00:37Z day: '01' doi: 10.1137/1.9781611976007.9 extern: '1' external_id: arxiv: - '1905.01216' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.01216 month: '01' oa: 1 oa_version: Preprint page: 106-119 publication: 2020 Symposium on Algorithm Engineering and Experiments publication_identifier: eisbn: - 978-1-61197-600-7 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: 'Fully dynamic single-source reachability in practice: An experimental study' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '11881' abstract: - lang: eng text: We introduce the fastest known exact algorithm for the multiterminal cut problem with k terminals. In particular, we engineer existing as well as new data reduction rules. We use the rules within a branch-and-reduce framework and to boost the performance of an ILP formulation. Our algorithms achieve improvements in running time of up to multiple orders of magnitudes over the ILP formulation without data reductions, which has been the de facto standard used by practitioners. This allows us to solve instances to optimality that are significantly larger than was previously possible. article_processing_charge: No author: - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Alexander full_name: Noe, Alexander last_name: Noe - first_name: Christian full_name: Schulz, Christian last_name: Schulz citation: ama: 'Henzinger MH, Noe A, Schulz C. Shared-memory branch-and-reduce for multiterminal cuts. In: 2020 Symposium on Algorithm Engineering and Experiments. Society for Industrial and Applied Mathematics; 2020:42-55. doi:10.1137/1.9781611976007.4' apa: 'Henzinger, M. H., Noe, A., & Schulz, C. (2020). Shared-memory branch-and-reduce for multiterminal cuts. In 2020 Symposium on Algorithm Engineering and Experiments (pp. 42–55). Salt Lake City, UT, United States: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611976007.4' chicago: Henzinger, Monika H, Alexander Noe, and Christian Schulz. “Shared-Memory Branch-and-Reduce for Multiterminal Cuts.” In 2020 Symposium on Algorithm Engineering and Experiments, 42–55. Society for Industrial and Applied Mathematics, 2020. https://doi.org/10.1137/1.9781611976007.4. ieee: M. H. Henzinger, A. Noe, and C. Schulz, “Shared-memory branch-and-reduce for multiterminal cuts,” in 2020 Symposium on Algorithm Engineering and Experiments, Salt Lake City, UT, United States, 2020, pp. 42–55. ista: 'Henzinger MH, Noe A, Schulz C. 2020. Shared-memory branch-and-reduce for multiterminal cuts. 2020 Symposium on Algorithm Engineering and Experiments. ALENEX: Symposium on Algorithm Engineering and Experiments, 42–55.' mla: Henzinger, Monika H., et al. “Shared-Memory Branch-and-Reduce for Multiterminal Cuts.” 2020 Symposium on Algorithm Engineering and Experiments, Society for Industrial and Applied Mathematics, 2020, pp. 42–55, doi:10.1137/1.9781611976007.4. short: M.H. Henzinger, A. Noe, C. Schulz, in:, 2020 Symposium on Algorithm Engineering and Experiments, Society for Industrial and Applied Mathematics, 2020, pp. 42–55. conference: end_date: 2020-01-06 location: Salt Lake City, UT, United States name: 'ALENEX: Symposium on Algorithm Engineering and Experiments' start_date: 2020-01-05 date_created: 2022-08-17T06:47:40Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-02-17T14:02:04Z day: '01' doi: 10.1137/1.9781611976007.4 extern: '1' external_id: arxiv: - '1908.04141' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1908.04141 month: '01' oa: 1 oa_version: Preprint page: 42-55 publication: 2020 Symposium on Algorithm Engineering and Experiments publication_identifier: eisbn: - 978-1-61197-600-7 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Shared-memory branch-and-reduce for multiterminal cuts type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '11894' abstract: - lang: eng text: "Graph sparsification aims at compressing large graphs into smaller ones while preserving important characteristics of the input graph. In this work we study vertex sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. We focus on the following notions: (1) Given a digraph \U0001D43A=(\U0001D449,\U0001D438) and terminal vertices \U0001D43E⊂\U0001D449 with |\U0001D43E|=\U0001D458, a (vertex) reachability sparsifier of \U0001D43A is a digraph \U0001D43B=(\U0001D449\U0001D43B,\U0001D438\U0001D43B), \U0001D43E⊂\U0001D449\U0001D43B that preserves all reachability information among terminal pairs. Let |\U0001D449\U0001D43B| denote the size of \U0001D43B. In this work we introduce the notion of reachability-preserving minors (RPMs), i.e., we require \U0001D43B to be a minor of \U0001D43A. We show any directed graph \U0001D43A admits an RPM \U0001D43B of size \U0001D442(\U0001D4583), and if \U0001D43A is planar, then the size of \U0001D43B improves to \U0001D442(\U0001D4582log\U0001D458). We complement our upper bound by showing that there exists an infinite family of grids such that any RPM must have Ω(\U0001D4582) vertices. (2) Given a weighted undirected graph \U0001D43A=(\U0001D449,\U0001D438) and terminal vertices \U0001D43E with |\U0001D43E|=\U0001D458, an exact (vertex) cut sparsifier of \U0001D43A is a graph \U0001D43B with \U0001D43E⊂\U0001D449\U0001D43B that preserves the value of minimum cuts separating any bipartition of \U0001D43E. We show that planar graphs with all the \U0001D458 terminals lying on the same face admit exact cut sparsifiers of size \U0001D442(\U0001D4582) that are also planar. Our result extends to flow and distance sparsifiers. It improves the previous best-known bound of \U0001D442(\U0001D458222\U0001D458) for cut and flow sparsifiers by an exponential factor and matches an Ω(\U0001D4582) lower-bound for this class of graphs." article_processing_charge: No article_type: original author: - first_name: Gramoz full_name: Goranci, Gramoz last_name: Goranci - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Pan full_name: Peng, Pan last_name: Peng citation: ama: Goranci G, Henzinger MH, Peng P. Improved guarantees for vertex sparsification in planar graphs. SIAM Journal on Discrete Mathematics. 2020;34(1):130-162. doi:10.1137/17m1163153 apa: Goranci, G., Henzinger, M. H., & Peng, P. (2020). Improved guarantees for vertex sparsification in planar graphs. SIAM Journal on Discrete Mathematics. Society for Industrial & Applied Mathematics. https://doi.org/10.1137/17m1163153 chicago: Goranci, Gramoz, Monika H Henzinger, and Pan Peng. “Improved Guarantees for Vertex Sparsification in Planar Graphs.” SIAM Journal on Discrete Mathematics. Society for Industrial & Applied Mathematics, 2020. https://doi.org/10.1137/17m1163153. ieee: G. Goranci, M. H. Henzinger, and P. Peng, “Improved guarantees for vertex sparsification in planar graphs,” SIAM Journal on Discrete Mathematics, vol. 34, no. 1. Society for Industrial & Applied Mathematics, pp. 130–162, 2020. ista: Goranci G, Henzinger MH, Peng P. 2020. Improved guarantees for vertex sparsification in planar graphs. SIAM Journal on Discrete Mathematics. 34(1), 130–162. mla: Goranci, Gramoz, et al. “Improved Guarantees for Vertex Sparsification in Planar Graphs.” SIAM Journal on Discrete Mathematics, vol. 34, no. 1, Society for Industrial & Applied Mathematics, 2020, pp. 130–62, doi:10.1137/17m1163153. short: G. Goranci, M.H. Henzinger, P. Peng, SIAM Journal on Discrete Mathematics 34 (2020) 130–162. date_created: 2022-08-17T08:50:24Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-02-21T16:29:44Z day: '01' doi: 10.1137/17m1163153 extern: '1' external_id: arxiv: - '1702.01136' intvolume: ' 34' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.01136 month: '01' oa: 1 oa_version: Preprint page: 130-162 publication: SIAM Journal on Discrete Mathematics publication_identifier: eissn: - 1095-7146 issn: - 0895-4801 publication_status: published publisher: Society for Industrial & Applied Mathematics quality_controlled: '1' related_material: record: - id: '11831' relation: earlier_version status: public scopus_import: '1' status: public title: Improved guarantees for vertex sparsification in planar graphs type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 34 year: '2020' ... --- _id: '11954' abstract: - lang: eng text: The combination of nickel and photocatalysis has unlocked a variety of cross-couplings. These protocols rely on a few photocatalysts that can only convert a small portion of visible light (<500 nm) into chemical energy. The high-energy photons that excite the photocatalyst can result in unwanted side reactions. Dyes that absorb a much broader spectrum of light are not applicable because of their short-lived singlet excited states. Here, we describe a self-assembling catalyst system that overcomes this limitation. Immobilization of a nickel catalyst on dye-sensitized titanium dioxide results in a material that catalyzes carbon–heteroatom and carbon–carbon bond formations. The modular approach of dye-sensitized metallaphotocatalysts accesses the entire visible light spectrum and allows tackling selectivity issues resulting from low wavelengths strategically. The concept overcomes current limitations of metallaphotocatalysis by unlocking the potential of dyes that were previously unsuitable. article_processing_charge: No article_type: original author: - first_name: Susanne full_name: Reischauer, Susanne last_name: Reischauer - first_name: Volker full_name: Strauss, Volker last_name: Strauss - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X citation: ama: Reischauer S, Strauss V, Pieber B. Modular, self-assembling metallaphotocatalyst for cross-couplings using the full visible-light spectrum. ACS Catalysis. 2020;10(22):13269–13274. doi:10.1021/acscatal.0c03950 apa: Reischauer, S., Strauss, V., & Pieber, B. (2020). Modular, self-assembling metallaphotocatalyst for cross-couplings using the full visible-light spectrum. ACS Catalysis. American Chemical Society. https://doi.org/10.1021/acscatal.0c03950 chicago: Reischauer, Susanne, Volker Strauss, and Bartholomäus Pieber. “Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum.” ACS Catalysis. American Chemical Society, 2020. https://doi.org/10.1021/acscatal.0c03950. ieee: S. Reischauer, V. Strauss, and B. Pieber, “Modular, self-assembling metallaphotocatalyst for cross-couplings using the full visible-light spectrum,” ACS Catalysis, vol. 10, no. 22. American Chemical Society, pp. 13269–13274, 2020. ista: Reischauer S, Strauss V, Pieber B. 2020. Modular, self-assembling metallaphotocatalyst for cross-couplings using the full visible-light spectrum. ACS Catalysis. 10(22), 13269–13274. mla: Reischauer, Susanne, et al. “Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum.” ACS Catalysis, vol. 10, no. 22, American Chemical Society, 2020, pp. 13269–13274, doi:10.1021/acscatal.0c03950. short: S. Reischauer, V. Strauss, B. Pieber, ACS Catalysis 10 (2020) 13269–13274. date_created: 2022-08-24T10:40:46Z date_published: 2020-11-02T00:00:00Z date_updated: 2023-02-21T10:09:09Z day: '02' doi: 10.1021/acscatal.0c03950 extern: '1' intvolume: ' 10' issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.26434/chemrxiv.12444908 month: '11' oa: 1 oa_version: Preprint page: 13269–13274 publication: ACS Catalysis publication_identifier: eissn: - 2155-5435 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Modular, self-assembling metallaphotocatalyst for cross-couplings using the full visible-light spectrum type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2020' ... --- _id: '11969' abstract: - lang: eng text: Photochemistry enables new synthetic means to form carbon–heteroatom bonds. Photocatalysts can catalyze carbon–heteroatom cross-couplings by electron or energy transfer either alone or in combination with a second catalyst. Photocatalyst-free methods are possible using photolabile substrates or by generating photoactive electron donor-acceptor complexes. This review summarizes and discusses the strategies used in light-mediated carbon–heteroatom bond formations based on the proposed mechanisms. article_processing_charge: No article_type: review author: - first_name: Cristian full_name: Cavedon, Cristian last_name: Cavedon - first_name: Peter H. full_name: Seeberger, Peter H. last_name: Seeberger - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X citation: ama: Cavedon C, Seeberger PH, Pieber B. Photochemical strategies for carbon–heteroatom bond formation. European Journal of Organic Chemistry. 2020;2020(10):1379-1392. doi:10.1002/ejoc.201901173 apa: Cavedon, C., Seeberger, P. H., & Pieber, B. (2020). Photochemical strategies for carbon–heteroatom bond formation. European Journal of Organic Chemistry. Wiley. https://doi.org/10.1002/ejoc.201901173 chicago: Cavedon, Cristian, Peter H. Seeberger, and Bartholomäus Pieber. “Photochemical Strategies for Carbon–Heteroatom Bond Formation.” European Journal of Organic Chemistry. Wiley, 2020. https://doi.org/10.1002/ejoc.201901173. ieee: C. Cavedon, P. H. Seeberger, and B. Pieber, “Photochemical strategies for carbon–heteroatom bond formation,” European Journal of Organic Chemistry, vol. 2020, no. 10. Wiley, pp. 1379–1392, 2020. ista: Cavedon C, Seeberger PH, Pieber B. 2020. Photochemical strategies for carbon–heteroatom bond formation. European Journal of Organic Chemistry. 2020(10), 1379–1392. mla: Cavedon, Cristian, et al. “Photochemical Strategies for Carbon–Heteroatom Bond Formation.” European Journal of Organic Chemistry, vol. 2020, no. 10, Wiley, 2020, pp. 1379–92, doi:10.1002/ejoc.201901173. short: C. Cavedon, P.H. Seeberger, B. Pieber, European Journal of Organic Chemistry 2020 (2020) 1379–1392. date_created: 2022-08-25T08:49:25Z date_published: 2020-03-15T00:00:00Z date_updated: 2023-02-21T10:09:47Z day: '15' doi: 10.1002/ejoc.201901173 extern: '1' intvolume: ' 2020' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1002/ejoc.201901173 month: '03' oa: 1 oa_version: Published Version page: 1379-1392 publication: European Journal of Organic Chemistry publication_identifier: eissn: - 1099-0690 issn: - 1434-193X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Photochemical strategies for carbon–heteroatom bond formation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2020 year: '2020' ... --- _id: '11978' abstract: - lang: eng text: Dual photocatalysis and nickel catalysis can effect cross-coupling under mild conditions, but little is known about the in situ kinetics of this class of reactions. We report a comprehensive kinetic examination of a model carboxylate O-arylation, comparing a state-of-the-art homogeneous photocatalyst (Ir(ppy)3) with a competitive heterogeneous photocatalyst (graphitic carbon nitride). Experimental conditions were adjusted such that the nickel catalytic cycle is saturated with excited photocatalyst. This approach was designed to remove the role of the photocatalyst, by which only the intrinsic behaviors of the nickel catalytic cycles are observed. The two reactions did not display identical kinetics. Ir(ppy)3 deactivates the nickel catalytic cycle and creates more dehalogenated side product. Kinetic data for the reaction using Ir(ppy)3 supports a turnover-limiting reductive elimination. Graphitic carbon nitride gave higher selectivity, even at high photocatalyst-to-nickel ratios. The heterogeneous reaction also showed a rate dependence on aryl halide, indicating that oxidative addition plays a role in rate determination. The results argue against the current mechanistic hypothesis, which states that the photocatalyst is only involved to trigger reductive elimination. article_processing_charge: No article_type: original author: - first_name: Jamal A. full_name: Malik, Jamal A. last_name: Malik - first_name: Amiera full_name: Madani, Amiera last_name: Madani - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X - first_name: Peter H. full_name: Seeberger, Peter H. last_name: Seeberger citation: ama: Malik JA, Madani A, Pieber B, Seeberger PH. Evidence for photocatalyst involvement in oxidative additions of nickel-catalyzed carboxylate O-arylations. Journal of the American Chemical Society. 2020;142(25):11042-11049. doi:10.1021/jacs.0c02848 apa: Malik, J. A., Madani, A., Pieber, B., & Seeberger, P. H. (2020). Evidence for photocatalyst involvement in oxidative additions of nickel-catalyzed carboxylate O-arylations. Journal of the American Chemical Society. American Chemical Society. https://doi.org/10.1021/jacs.0c02848 chicago: Malik, Jamal A., Amiera Madani, Bartholomäus Pieber, and Peter H. Seeberger. “Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate O-Arylations.” Journal of the American Chemical Society. American Chemical Society, 2020. https://doi.org/10.1021/jacs.0c02848. ieee: J. A. Malik, A. Madani, B. Pieber, and P. H. Seeberger, “Evidence for photocatalyst involvement in oxidative additions of nickel-catalyzed carboxylate O-arylations,” Journal of the American Chemical Society, vol. 142, no. 25. American Chemical Society, pp. 11042–11049, 2020. ista: Malik JA, Madani A, Pieber B, Seeberger PH. 2020. Evidence for photocatalyst involvement in oxidative additions of nickel-catalyzed carboxylate O-arylations. Journal of the American Chemical Society. 142(25), 11042–11049. mla: Malik, Jamal A., et al. “Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate O-Arylations.” Journal of the American Chemical Society, vol. 142, no. 25, American Chemical Society, 2020, pp. 11042–49, doi:10.1021/jacs.0c02848. short: J.A. Malik, A. Madani, B. Pieber, P.H. Seeberger, Journal of the American Chemical Society 142 (2020) 11042–11049. date_created: 2022-08-25T10:57:38Z date_published: 2020-06-24T00:00:00Z date_updated: 2023-02-21T10:10:06Z day: '24' doi: 10.1021/jacs.0c02848 extern: '1' external_id: pmid: - '32469219' intvolume: ' 142' issue: '25' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/jacs.0c02848 month: '06' oa: 1 oa_version: Published Version page: 11042-11049 pmid: 1 publication: Journal of the American Chemical Society publication_identifier: eissn: - 1520-5126 issn: - 0002-7863 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Evidence for photocatalyst involvement in oxidative additions of nickel-catalyzed carboxylate O-arylations type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 142 year: '2020' ... --- _id: '11980' abstract: - lang: eng text: Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic synthesis to install functional groups and to tune electronic properties and pharmacokinetic parameters of the final molecule. Development of new methods to generate small organic radicals with added functionality can further extend the utility of photocatalysis for synthetic needs. Herein, we present a method to generate dichloromethyl radicals from chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst under visible light irradiation for C1-extension of the enone backbone. The method is applied on 15 enones, with γ,γ-dichloroketones yields of 18–89%. Due to negative zeta-potential (−40 mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous flow-photoreactor increasing the productivity by 19 times compared to the batch approach. The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-added organic compounds such as substituted furans and pyrroles. article_number: '1387' article_processing_charge: No article_type: original author: - first_name: Stefano full_name: Mazzanti, Stefano last_name: Mazzanti - first_name: Bogdan full_name: Kurpil, Bogdan last_name: Kurpil - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X - first_name: Markus full_name: Antonietti, Markus last_name: Antonietti - first_name: Aleksandr full_name: Savateev, Aleksandr last_name: Savateev citation: ama: Mazzanti S, Kurpil B, Pieber B, Antonietti M, Savateev A. Dichloromethylation of enones by carbon nitride photocatalysis. Nature Communications. 2020;11. doi:10.1038/s41467-020-15131-0 apa: Mazzanti, S., Kurpil, B., Pieber, B., Antonietti, M., & Savateev, A. (2020). Dichloromethylation of enones by carbon nitride photocatalysis. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-15131-0 chicago: Mazzanti, Stefano, Bogdan Kurpil, Bartholomäus Pieber, Markus Antonietti, and Aleksandr Savateev. “Dichloromethylation of Enones by Carbon Nitride Photocatalysis.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-15131-0. ieee: S. Mazzanti, B. Kurpil, B. Pieber, M. Antonietti, and A. Savateev, “Dichloromethylation of enones by carbon nitride photocatalysis,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Mazzanti S, Kurpil B, Pieber B, Antonietti M, Savateev A. 2020. Dichloromethylation of enones by carbon nitride photocatalysis. Nature Communications. 11, 1387. mla: Mazzanti, Stefano, et al. “Dichloromethylation of Enones by Carbon Nitride Photocatalysis.” Nature Communications, vol. 11, 1387, Springer Nature, 2020, doi:10.1038/s41467-020-15131-0. short: S. Mazzanti, B. Kurpil, B. Pieber, M. Antonietti, A. Savateev, Nature Communications 11 (2020). date_created: 2022-08-25T11:10:15Z date_published: 2020-03-13T00:00:00Z date_updated: 2023-02-21T10:10:14Z day: '13' doi: 10.1038/s41467-020-15131-0 extern: '1' intvolume: ' 11' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41467-020-15131-0 month: '03' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Dichloromethylation of enones by carbon nitride photocatalysis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2020' ... --- _id: '11979' abstract: - lang: eng text: Dual photoredox/nickel-catalysed C–N cross-couplings suffer from low yields for electron-rich aryl halides. The formation of catalytically inactive nickel-black is responsible for this limitation and causes severe reproducibility issues. Here, we demonstrate that catalyst deactivation can be avoided by using a carbon nitride photocatalyst. The broad absorption of the heterogeneous photocatalyst enables wavelength-dependent control of the rate of reductive elimination to prevent nickel-black formation during the coupling of cyclic, secondary amines and aryl halides. A second approach, which is applicable to a broader set of electron-rich aryl halides, is to run the reactions at high concentrations to increase the rate of oxidative addition. Less nucleophilic, primary amines can be coupled with electron-rich aryl halides by stabilizing low-valent nickel intermediates with a suitable additive. The developed protocols enable reproducible, selective C–N cross-couplings of electron-rich aryl bromides and can also be applied for electron-poor aryl chlorides. article_processing_charge: No article_type: original author: - first_name: Sebastian full_name: Gisbertz, Sebastian last_name: Gisbertz - first_name: Susanne full_name: Reischauer, Susanne last_name: Reischauer - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X citation: ama: Gisbertz S, Reischauer S, Pieber B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nature Catalysis. 2020;3(8):611-620. doi:10.1038/s41929-020-0473-6 apa: Gisbertz, S., Reischauer, S., & Pieber, B. (2020). Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nature Catalysis. Springer Nature. https://doi.org/10.1038/s41929-020-0473-6 chicago: Gisbertz, Sebastian, Susanne Reischauer, and Bartholomäus Pieber. “Overcoming Limitations in Dual Photoredox/Nickel-Catalysed C–N Cross-Couplings Due to Catalyst Deactivation.” Nature Catalysis. Springer Nature, 2020. https://doi.org/10.1038/s41929-020-0473-6. ieee: S. Gisbertz, S. Reischauer, and B. Pieber, “Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation,” Nature Catalysis, vol. 3, no. 8. Springer Nature, pp. 611–620, 2020. ista: Gisbertz S, Reischauer S, Pieber B. 2020. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nature Catalysis. 3(8), 611–620. mla: Gisbertz, Sebastian, et al. “Overcoming Limitations in Dual Photoredox/Nickel-Catalysed C–N Cross-Couplings Due to Catalyst Deactivation.” Nature Catalysis, vol. 3, no. 8, Springer Nature, 2020, pp. 611–20, doi:10.1038/s41929-020-0473-6. short: S. Gisbertz, S. Reischauer, B. Pieber, Nature Catalysis 3 (2020) 611–620. date_created: 2022-08-25T11:06:16Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-02-21T10:10:09Z day: '01' doi: 10.1038/s41929-020-0473-6 extern: '1' intvolume: ' 3' issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.26434/chemrxiv.10298735 month: '08' oa: 1 oa_version: Preprint page: 611-620 publication: Nature Catalysis publication_identifier: eissn: - 2520-1158 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2020' ... --- _id: '11986' abstract: - lang: eng text: Carbon nitride materials have emerged as an efficient and sustainable class of heterogeneous photocatalysts, particularly when paired with nickel in dual catalytic cross-coupling reactions. Performing these transformations on larger scales using a continuous process is difficult due to the problems associated with handling solids in flow. By combining an oscillatory pump with a microstructured plug flow photoreactor, a stable suspension of the photocatalyst can be maintained, circumventing clogging of the reactor channels. Through careful tuning of the oscillator properties, the residence time distribution (RTD) was optimized, whilst maintaining a stable catalyst suspension. Short residence times (20 min) were achieved using optimized conditions and the recyclability of the photocatalyst was demonstrated over 10 cycles with no loss of activity. During a stable 4.5 hour scale-out demonstration, the model substrate could be isolated on 12 g scale (90% yield, 2.67 g h−1). Moreover, the method was applied for the gram scale synthesis of an intermediate of the active pharmaceutical ingredient tetracaine. article_processing_charge: No article_type: original author: - first_name: Cristian full_name: Rosso, Cristian last_name: Rosso - first_name: Sebastian full_name: Gisbertz, Sebastian last_name: Gisbertz - first_name: Jason D. full_name: Williams, Jason D. last_name: Williams - first_name: Hannes P. L. full_name: Gemoets, Hannes P. L. last_name: Gemoets - first_name: Wouter full_name: Debrouwer, Wouter last_name: Debrouwer - first_name: Bartholomäus full_name: Pieber, Bartholomäus id: 93e5e5b2-0da6-11ed-8a41-af589a024726 last_name: Pieber orcid: 0000-0001-8689-388X - first_name: C. Oliver full_name: Kappe, C. Oliver last_name: Kappe citation: ama: Rosso C, Gisbertz S, Williams JD, et al. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry and Engineering. 2020;5(3):597-604. doi:10.1039/d0re00036a apa: Rosso, C., Gisbertz, S., Williams, J. D., Gemoets, H. P. L., Debrouwer, W., Pieber, B., & Kappe, C. O. (2020). An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry and Engineering. Royal Society of Chemistry. https://doi.org/10.1039/d0re00036a chicago: Rosso, Cristian, Sebastian Gisbertz, Jason D. Williams, Hannes P. L. Gemoets, Wouter Debrouwer, Bartholomäus Pieber, and C. Oliver Kappe. “An Oscillatory Plug Flow Photoreactor Facilitates Semi-Heterogeneous Dual Nickel/Carbon Nitride Photocatalytic C–N Couplings.” Reaction Chemistry and Engineering. Royal Society of Chemistry, 2020. https://doi.org/10.1039/d0re00036a. ieee: C. Rosso et al., “An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings,” Reaction Chemistry and Engineering, vol. 5, no. 3. Royal Society of Chemistry, pp. 597–604, 2020. ista: Rosso C, Gisbertz S, Williams JD, Gemoets HPL, Debrouwer W, Pieber B, Kappe CO. 2020. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. Reaction Chemistry and Engineering. 5(3), 597–604. mla: Rosso, Cristian, et al. “An Oscillatory Plug Flow Photoreactor Facilitates Semi-Heterogeneous Dual Nickel/Carbon Nitride Photocatalytic C–N Couplings.” Reaction Chemistry and Engineering, vol. 5, no. 3, Royal Society of Chemistry, 2020, pp. 597–604, doi:10.1039/d0re00036a. short: C. Rosso, S. Gisbertz, J.D. Williams, H.P.L. Gemoets, W. Debrouwer, B. Pieber, C.O. Kappe, Reaction Chemistry and Engineering 5 (2020) 597–604. date_created: 2022-08-25T11:45:02Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-02-21T10:10:28Z day: '01' doi: 10.1039/d0re00036a extern: '1' intvolume: ' 5' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1039/D0RE00036A month: '03' oa: 1 oa_version: Published Version page: 597-604 publication: Reaction Chemistry and Engineering publication_identifier: eissn: - 2058-9883 publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '7084' abstract: - lang: eng text: The unusual correlated state that emerges in URu2Si2 below THO = 17.5 K is known as “hidden order” because even basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are “hidden.” We use resonant ultrasound spectroscopy to measure the symmetry-resolved elastic anomalies across THO. We observe no anomalies in the shear elastic moduli, providing strong thermodynamic evidence for a one-component order parameter. We develop a machine learning framework that reaches this conclusion directly from the raw data, even in a crystal that is too small for traditional resonant ultrasound. Our result rules out a broad class of theories of hidden order based on two-component order parameters, and constrains the nature of the fluctuations from which unconventional superconductivity emerges at lower temperature. Our machine learning framework is a powerful new tool for classifying the ubiquitous competing orders in correlated electron systems. article_number: eaaz4074 article_processing_charge: No article_type: original author: - first_name: Sayak full_name: Ghosh, Sayak last_name: Ghosh - first_name: Michael full_name: Matty, Michael last_name: Matty - first_name: Ryan full_name: Baumbach, Ryan last_name: Baumbach - first_name: Eric D. full_name: Bauer, Eric D. last_name: Bauer - first_name: Kimberly A full_name: Modic, Kimberly A id: 13C26AC0-EB69-11E9-87C6-5F3BE6697425 last_name: Modic orcid: 0000-0001-9760-3147 - first_name: Arkady full_name: Shekhter, Arkady last_name: Shekhter - first_name: J. A. full_name: Mydosh, J. A. last_name: Mydosh - first_name: Eun-Ah full_name: Kim, Eun-Ah last_name: Kim - first_name: B. J. full_name: Ramshaw, B. J. last_name: Ramshaw citation: ama: Ghosh S, Matty M, Baumbach R, et al. One-component order parameter in URu2Si2 uncovered by resonant  ultrasound spectroscopy and machine learning. Science Advances. 2020;6(10). doi:10.1126/sciadv.aaz4074 apa: Ghosh, S., Matty, M., Baumbach, R., Bauer, E. D., Modic, K. A., Shekhter, A., … Ramshaw, B. J. (2020). One-component order parameter in URu2Si2 uncovered by resonant  ultrasound spectroscopy and machine learning. Science Advances. American Association for the Advancement of Science. https://doi.org/10.1126/sciadv.aaz4074 chicago: Ghosh, Sayak, Michael Matty, Ryan Baumbach, Eric D. Bauer, Kimberly A Modic, Arkady Shekhter, J. A. Mydosh, Eun-Ah Kim, and B. J. Ramshaw. “One-Component Order Parameter in URu2Si2 Uncovered by Resonant  Ultrasound Spectroscopy and Machine Learning.” Science Advances. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/sciadv.aaz4074. ieee: S. Ghosh et al., “One-component order parameter in URu2Si2 uncovered by resonant  ultrasound spectroscopy and machine learning,” Science Advances, vol. 6, no. 10. American Association for the Advancement of Science, 2020. ista: Ghosh S, Matty M, Baumbach R, Bauer ED, Modic KA, Shekhter A, Mydosh JA, Kim E-A, Ramshaw BJ. 2020. One-component order parameter in URu2Si2 uncovered by resonant  ultrasound spectroscopy and machine learning. Science Advances. 6(10), eaaz4074. mla: Ghosh, Sayak, et al. “One-Component Order Parameter in URu2Si2 Uncovered by Resonant  Ultrasound Spectroscopy and Machine Learning.” Science Advances, vol. 6, no. 10, eaaz4074, American Association for the Advancement of Science, 2020, doi:10.1126/sciadv.aaz4074. short: S. Ghosh, M. Matty, R. Baumbach, E.D. Bauer, K.A. Modic, A. Shekhter, J.A. Mydosh, E.-A. Kim, B.J. Ramshaw, Science Advances 6 (2020). date_created: 2019-11-19T14:01:10Z date_published: 2020-03-06T00:00:00Z date_updated: 2022-08-25T15:08:41Z day: '06' doi: 10.1126/sciadv.aaz4074 extern: '1' external_id: arxiv: - '1903.00552' pmid: - '32181367' intvolume: ' 6' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.00552 month: '03' oa: 1 oa_version: Preprint pmid: 1 publication: Science Advances publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' status: public title: One-component order parameter in URu2Si2 uncovered by resonant ultrasound spectroscopy and machine learning type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2020' ... --- _id: '7272' abstract: - lang: eng text: "Many systems rely on optimistic concurrent search trees for multi-core scalability. In principle, optimistic trees have a simple performance story: searches are read-only and so run in parallel, with writes to shared memory occurring only when modifying the data structure. However, this paper shows that in practice, obtaining the full performance benefits of optimistic search trees is not so simple.\r\n\r\nWe focus on optimistic binary search trees (BSTs) and perform a detailed performance analysis of 10 state-of-the-art BSTs on large scale x86-64 hardware, using both microbenchmarks and an in-memory database system. We find and explain significant unexpected performance differences between BSTs with similar tree structure and search implementations, which we trace to subtle performance-degrading interactions of BSTs with systems software and hardware subsystems. We further derive a prescriptive approach to avoid this performance degradation, as well as algorithmic insights on optimistic BST design. Our work underlines the gap between the theory and practice of multi-core performance, and calls for further research to help bridge this gap." article_processing_charge: No author: - first_name: Maya full_name: Arbel-Raviv, Maya last_name: Arbel-Raviv - first_name: Trevor A full_name: Brown, Trevor A id: 3569F0A0-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Adam full_name: Morrison, Adam last_name: Morrison citation: ama: 'Arbel-Raviv M, Brown TA, Morrison A. Getting to the root of concurrent binary search tree performance. In: Proceedings of the 2018 USENIX Annual Technical Conference. USENIX Association; 2020:295-306.' apa: 'Arbel-Raviv, M., Brown, T. A., & Morrison, A. (2020). Getting to the root of concurrent binary search tree performance. In Proceedings of the 2018 USENIX Annual Technical Conference (pp. 295–306). Boston, MA, United States: USENIX Association.' chicago: Arbel-Raviv, Maya, Trevor A Brown, and Adam Morrison. “Getting to the Root of Concurrent Binary Search Tree Performance.” In Proceedings of the 2018 USENIX Annual Technical Conference, 295–306. USENIX Association, 2020. ieee: M. Arbel-Raviv, T. A. Brown, and A. Morrison, “Getting to the root of concurrent binary search tree performance,” in Proceedings of the 2018 USENIX Annual Technical Conference, Boston, MA, United States, 2020, pp. 295–306. ista: 'Arbel-Raviv M, Brown TA, Morrison A. 2020. Getting to the root of concurrent binary search tree performance. Proceedings of the 2018 USENIX Annual Technical Conference. USENIX: Annual Technical Conference, 295–306.' mla: Arbel-Raviv, Maya, et al. “Getting to the Root of Concurrent Binary Search Tree Performance.” Proceedings of the 2018 USENIX Annual Technical Conference, USENIX Association, 2020, pp. 295–306. short: M. Arbel-Raviv, T.A. Brown, A. Morrison, in:, Proceedings of the 2018 USENIX Annual Technical Conference, USENIX Association, 2020, pp. 295–306. conference: end_date: 2018-07-13 location: Boston, MA, United States name: 'USENIX: Annual Technical Conference' start_date: 2018-07-11 date_created: 2020-01-14T07:27:08Z date_published: 2020-01-01T00:00:00Z date_updated: 2021-01-11T15:25:48Z day: '01' ddc: - '000' department: - _id: DaAl language: - iso: eng main_file_link: - open_access: '1' url: https://www.usenix.org/system/files/conference/atc18/atc18-arbel-raviv.pdf month: '01' oa: 1 oa_version: Published Version page: 295-306 project: - _id: 26450934-B435-11E9-9278-68D0E5697425 name: NSERC Postdoctoral fellowship publication: Proceedings of the 2018 USENIX Annual Technical Conference publication_identifier: isbn: - '9781939133021' publication_status: published publisher: USENIX Association quality_controlled: '1' scopus_import: '1' status: public title: Getting to the root of concurrent binary search tree performance type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7346' abstract: - lang: eng text: 'The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents'' rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature. ' alternative_title: - LIPIcs article_number: '21' article_processing_charge: No author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Schmid L, Chatterjee K, Schmid S. The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. In: Proceedings of the 23rd International Conference on Principles of Distributed Systems. Vol 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.OPODIS.2019.21' apa: 'Schmid, L., Chatterjee, K., & Schmid, S. (2020). The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. In Proceedings of the 23rd International Conference on Principles of Distributed Systems (Vol. 153). Neuchâtel, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2019.21' chicago: 'Schmid, Laura, Krishnendu Chatterjee, and Stefan Schmid. “The Evolutionary Price of Anarchy: Locally Bounded Agents in a Dynamic Virus Game.” In Proceedings of the 23rd International Conference on Principles of Distributed Systems, Vol. 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.OPODIS.2019.21.' ieee: 'L. Schmid, K. Chatterjee, and S. Schmid, “The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game,” in Proceedings of the 23rd International Conference on Principles of Distributed Systems, Neuchâtel, Switzerland, 2020, vol. 153.' ista: 'Schmid L, Chatterjee K, Schmid S. 2020. The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. Proceedings of the 23rd International Conference on Principles of Distributed Systems. OPODIS: International Conference on Principles of Distributed Systems, LIPIcs, vol. 153, 21.' mla: 'Schmid, Laura, et al. “The Evolutionary Price of Anarchy: Locally Bounded Agents in a Dynamic Virus Game.” Proceedings of the 23rd International Conference on Principles of Distributed Systems, vol. 153, 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.OPODIS.2019.21.' short: L. Schmid, K. Chatterjee, S. Schmid, in:, Proceedings of the 23rd International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2019-12-19 location: Neuchâtel, Switzerland name: 'OPODIS: International Conference on Principles of Distributed Systems' start_date: 2019-12-17 date_created: 2020-01-21T16:00:26Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-02-23T13:05:49Z day: '10' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.OPODIS.2019.21 external_id: arxiv: - '1906.00110' file: - access_level: open_access checksum: 9a91916ac2c21ab42458fcda39ef0b8d content_type: application/pdf creator: dernst date_created: 2020-03-23T09:14:06Z date_updated: 2020-07-14T12:47:56Z file_id: '7608' file_name: 2019_LIPIcS_Schmid.pdf file_size: 630752 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 153' language: - iso: eng month: '02' oa: 1 oa_version: Preprint project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Proceedings of the 23rd International Conference on Principles of Distributed Systems publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2020' ... --- _id: '7348' abstract: - lang: eng text: 'The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends, and to deduce or discard hypotheses about the underlying system. For example, the performance of a web server may be monitored based on the ratio of the total count of requests from the least and most active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the above example it would require as many counters as there are clients. In this paper, we propose the efficient probabilistic monitoring of common frequency properties, including the mode (i.e., the most common event) and the median of an event sequence. We define a logic to express composite frequency properties as a combination of atomic frequency properties. Our main contribution is an algorithm that, under suitable probabilistic assumptions, can be used to monitor these important frequency properties with four counters, independent of the number of different events. Our algorithm samples longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of our algorithm by generalizing ergodic theory from increasing-length prefixes to increasing-length subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence. ' alternative_title: - LIPIcs article_number: '20' article_processing_charge: No author: - first_name: Thomas full_name: Ferrere, Thomas id: 40960E6E-F248-11E8-B48F-1D18A9856A87 last_name: Ferrere orcid: 0000-0001-5199-3143 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Bernhard full_name: Kragl, Bernhard id: 320FC952-F248-11E8-B48F-1D18A9856A87 last_name: Kragl orcid: 0000-0001-7745-9117 citation: ama: 'Ferrere T, Henzinger TA, Kragl B. Monitoring event frequencies. In: 28th EACSL Annual Conference on Computer Science Logic. Vol 152. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CSL.2020.20' apa: 'Ferrere, T., Henzinger, T. A., & Kragl, B. (2020). Monitoring event frequencies. In 28th EACSL Annual Conference on Computer Science Logic (Vol. 152). Barcelona, Spain: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2020.20' chicago: Ferrere, Thomas, Thomas A Henzinger, and Bernhard Kragl. “Monitoring Event Frequencies.” In 28th EACSL Annual Conference on Computer Science Logic, Vol. 152. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CSL.2020.20. ieee: T. Ferrere, T. A. Henzinger, and B. Kragl, “Monitoring event frequencies,” in 28th EACSL Annual Conference on Computer Science Logic, Barcelona, Spain, 2020, vol. 152. ista: 'Ferrere T, Henzinger TA, Kragl B. 2020. Monitoring event frequencies. 28th EACSL Annual Conference on Computer Science Logic. CSL: Computer Science Logic, LIPIcs, vol. 152, 20.' mla: Ferrere, Thomas, et al. “Monitoring Event Frequencies.” 28th EACSL Annual Conference on Computer Science Logic, vol. 152, 20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CSL.2020.20. short: T. Ferrere, T.A. Henzinger, B. Kragl, in:, 28th EACSL Annual Conference on Computer Science Logic, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-01-16 location: Barcelona, Spain name: 'CSL: Computer Science Logic' start_date: 2020-01-13 date_created: 2020-01-21T11:22:21Z date_published: 2020-01-15T00:00:00Z date_updated: 2021-01-12T08:13:12Z day: '15' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CSL.2020.20 external_id: arxiv: - '1910.06097' file: - access_level: open_access checksum: b9a691d658d075c6369d3304d17fb818 content_type: application/pdf creator: bkragl date_created: 2020-01-21T11:21:04Z date_updated: 2020-07-14T12:47:56Z file_id: '7349' file_name: main.pdf file_size: 617206 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 152' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 28th EACSL Annual Conference on Computer Science Logic publication_identifier: isbn: - '9783959771320' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Monitoring event frequencies tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 152 year: '2020' ... --- _id: '7477' abstract: - lang: eng text: We present conductance-matrix measurements of a three-terminal superconductor-semiconductor hybrid device consisting of two normal leads and one superconducting lead. Using a symmetry decomposition of the conductance, we find that antisymmetric components of pairs of local and nonlocal conductances qualitatively match at energies below the superconducting gap, and we compare this finding with symmetry relations based on a noninteracting scattering matrix approach. Further, the local charge character of Andreev bound states is extracted from the symmetry-decomposed conductance data and is found to be similar at both ends of the device and tunable with gate voltage. Finally, we measure the conductance matrix as a function of magnetic field and identify correlated splittings in low-energy features, demonstrating how conductance-matrix measurements can complement traditional single-probe measurements in the search for Majorana zero modes. article_number: '036802' article_processing_charge: No article_type: original author: - first_name: G. C. full_name: Ménard, G. C. last_name: Ménard - first_name: G. L. R. full_name: Anselmetti, G. L. R. last_name: Anselmetti - first_name: E. A. full_name: Martinez, E. A. last_name: Martinez - first_name: D. full_name: Puglia, D. last_name: Puglia - first_name: F. K. full_name: Malinowski, F. K. last_name: Malinowski - first_name: J. S. full_name: Lee, J. S. last_name: Lee - first_name: S. full_name: Choi, S. last_name: Choi - first_name: M. full_name: Pendharkar, M. last_name: Pendharkar - first_name: C. J. full_name: Palmstrøm, C. J. last_name: Palmstrøm - first_name: K. full_name: Flensberg, K. last_name: Flensberg - first_name: C. M. full_name: Marcus, C. M. last_name: Marcus - first_name: L. full_name: Casparis, L. last_name: Casparis - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Ménard GC, Anselmetti GLR, Martinez EA, et al. Conductance-matrix symmetries of a three-terminal hybrid device. Physical Review Letters. 2020;124(3). doi:10.1103/physrevlett.124.036802 apa: Ménard, G. C., Anselmetti, G. L. R., Martinez, E. A., Puglia, D., Malinowski, F. K., Lee, J. S., … Higginbotham, A. P. (2020). Conductance-matrix symmetries of a three-terminal hybrid device. Physical Review Letters. APS. https://doi.org/10.1103/physrevlett.124.036802 chicago: Ménard, G. C., G. L. R. Anselmetti, E. A. Martinez, D. Puglia, F. K. Malinowski, J. S. Lee, S. Choi, et al. “Conductance-Matrix Symmetries of a Three-Terminal Hybrid Device.” Physical Review Letters. APS, 2020. https://doi.org/10.1103/physrevlett.124.036802. ieee: G. C. Ménard et al., “Conductance-matrix symmetries of a three-terminal hybrid device,” Physical Review Letters, vol. 124, no. 3. APS, 2020. ista: Ménard GC, Anselmetti GLR, Martinez EA, Puglia D, Malinowski FK, Lee JS, Choi S, Pendharkar M, Palmstrøm CJ, Flensberg K, Marcus CM, Casparis L, Higginbotham AP. 2020. Conductance-matrix symmetries of a three-terminal hybrid device. Physical Review Letters. 124(3), 036802. mla: Ménard, G. C., et al. “Conductance-Matrix Symmetries of a Three-Terminal Hybrid Device.” Physical Review Letters, vol. 124, no. 3, 036802, APS, 2020, doi:10.1103/physrevlett.124.036802. short: G.C. Ménard, G.L.R. Anselmetti, E.A. Martinez, D. Puglia, F.K. Malinowski, J.S. Lee, S. Choi, M. Pendharkar, C.J. Palmstrøm, K. Flensberg, C.M. Marcus, L. Casparis, A.P. Higginbotham, Physical Review Letters 124 (2020). date_created: 2020-02-11T08:50:02Z date_published: 2020-01-24T00:00:00Z date_updated: 2021-01-12T08:13:48Z day: '24' doi: 10.1103/physrevlett.124.036802 extern: '1' external_id: arxiv: - '1905.05505' intvolume: ' 124' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.05505 month: '01' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: issn: - 0031-9007 - 1079-7114 publication_status: published publisher: APS quality_controlled: '1' status: public title: Conductance-matrix symmetries of a three-terminal hybrid device type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 124 year: '2020' ... --- _id: '7478' abstract: - lang: eng text: Two-terminal conductance spectroscopy of superconducting devices is a common tool for probing Andreev and Majorana bound states. Here, we study theoretically a three-terminal setup, with two normal leads coupled to a grounded superconducting terminal. Using a single-electron scattering matrix, we derive the subgap conductance matrix for the normal leads and discuss its symmetries. In particular, we show that the local and the nonlocal elements of the conductance matrix have pairwise identical antisymmetric components. Moreover, we find that the nonlocal elements are directly related to the local BCS charges of the bound states close to the normal probes and we show how the BCS charge of overlapping Majorana bound states can be extracted from experiments. article_number: '036801' article_processing_charge: No article_type: original author: - first_name: Jeroen full_name: Danon, Jeroen last_name: Danon - first_name: Anna Birk full_name: Hellenes, Anna Birk last_name: Hellenes - first_name: Esben Bork full_name: Hansen, Esben Bork last_name: Hansen - first_name: Lucas full_name: Casparis, Lucas last_name: Casparis - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 - first_name: Karsten full_name: Flensberg, Karsten last_name: Flensberg citation: ama: 'Danon J, Hellenes AB, Hansen EB, Casparis L, Higginbotham AP, Flensberg K. Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges. Physical Review Letters. 2020;124(3). doi:10.1103/physrevlett.124.036801' apa: 'Danon, J., Hellenes, A. B., Hansen, E. B., Casparis, L., Higginbotham, A. P., & Flensberg, K. (2020). Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges. Physical Review Letters. APS. https://doi.org/10.1103/physrevlett.124.036801' chicago: 'Danon, Jeroen, Anna Birk Hellenes, Esben Bork Hansen, Lucas Casparis, Andrew P Higginbotham, and Karsten Flensberg. “Nonlocal Conductance Spectroscopy of Andreev Bound States: Symmetry Relations and BCS Charges.” Physical Review Letters. APS, 2020. https://doi.org/10.1103/physrevlett.124.036801.' ieee: 'J. Danon, A. B. Hellenes, E. B. Hansen, L. Casparis, A. P. Higginbotham, and K. Flensberg, “Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges,” Physical Review Letters, vol. 124, no. 3. APS, 2020.' ista: 'Danon J, Hellenes AB, Hansen EB, Casparis L, Higginbotham AP, Flensberg K. 2020. Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges. Physical Review Letters. 124(3), 036801.' mla: 'Danon, Jeroen, et al. “Nonlocal Conductance Spectroscopy of Andreev Bound States: Symmetry Relations and BCS Charges.” Physical Review Letters, vol. 124, no. 3, 036801, APS, 2020, doi:10.1103/physrevlett.124.036801.' short: J. Danon, A.B. Hellenes, E.B. Hansen, L. Casparis, A.P. Higginbotham, K. Flensberg, Physical Review Letters 124 (2020). date_created: 2020-02-11T08:55:40Z date_published: 2020-01-24T00:00:00Z date_updated: 2021-01-12T08:13:48Z day: '24' doi: 10.1103/physrevlett.124.036801 extern: '1' external_id: arxiv: - '1905.05438' intvolume: ' 124' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1905.05438 month: '01' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: issn: - 0031-9007 - 1079-7114 publication_status: published publisher: APS quality_controlled: '1' status: public title: 'Nonlocal conductance spectroscopy of Andreev bound states: Symmetry relations and BCS charges' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 124 year: '2020' ... --- _id: '7530' abstract: - lang: eng text: In developing technologies based on superconducting quantum circuits, the need to control and route heating is a significant challenge in the experimental realisation and operation of these devices. One of the more ubiquitous devices in the current quantum computing toolbox is the transmon-type superconducting quantum bit, embedded in a resonator-based architecture. In the study of heat transport in superconducting circuits, a versatile and sensitive thermometer is based on studying the tunnelling characteristics of superconducting probes weakly coupled to a normal-metal island. Here we show that by integrating superconducting quantum bit coupled to two superconducting resonators at different frequencies, each resonator terminated (and thermally populated) by such a mesoscopic thin film metal island, one can experimentally observe magnetic flux-tunable photonic heat rectification between 0 and 10%. article_number: '40' article_processing_charge: No article_type: original author: - first_name: Jorden L full_name: Senior, Jorden L id: 5479D234-2D30-11EA-89CC-40953DDC885E last_name: Senior - first_name: Azat full_name: Gubaydullin, Azat last_name: Gubaydullin - first_name: Bayan full_name: Karimi, Bayan last_name: Karimi - first_name: Joonas T. full_name: Peltonen, Joonas T. last_name: Peltonen - first_name: Joachim full_name: Ankerhold, Joachim last_name: Ankerhold - first_name: Jukka P. full_name: Pekola, Jukka P. last_name: Pekola citation: ama: Senior JL, Gubaydullin A, Karimi B, Peltonen JT, Ankerhold J, Pekola JP. Heat rectification via a superconducting artificial atom. Communications Physics. 2020;3(1). doi:10.1038/s42005-020-0307-5 apa: Senior, J. L., Gubaydullin, A., Karimi, B., Peltonen, J. T., Ankerhold, J., & Pekola, J. P. (2020). Heat rectification via a superconducting artificial atom. Communications Physics. Springer Nature. https://doi.org/10.1038/s42005-020-0307-5 chicago: Senior, Jorden L, Azat Gubaydullin, Bayan Karimi, Joonas T. Peltonen, Joachim Ankerhold, and Jukka P. Pekola. “Heat Rectification via a Superconducting Artificial Atom.” Communications Physics. Springer Nature, 2020. https://doi.org/10.1038/s42005-020-0307-5. ieee: J. L. Senior, A. Gubaydullin, B. Karimi, J. T. Peltonen, J. Ankerhold, and J. P. Pekola, “Heat rectification via a superconducting artificial atom,” Communications Physics, vol. 3, no. 1. Springer Nature, 2020. ista: Senior JL, Gubaydullin A, Karimi B, Peltonen JT, Ankerhold J, Pekola JP. 2020. Heat rectification via a superconducting artificial atom. Communications Physics. 3(1), 40. mla: Senior, Jorden L., et al. “Heat Rectification via a Superconducting Artificial Atom.” Communications Physics, vol. 3, no. 1, 40, Springer Nature, 2020, doi:10.1038/s42005-020-0307-5. short: J.L. Senior, A. Gubaydullin, B. Karimi, J.T. Peltonen, J. Ankerhold, J.P. Pekola, Communications Physics 3 (2020). date_created: 2020-02-26T13:51:14Z date_published: 2020-02-25T00:00:00Z date_updated: 2021-01-12T08:14:03Z day: '25' ddc: - '536' doi: 10.1038/s42005-020-0307-5 extern: '1' file: - access_level: open_access checksum: 59255f51d9f113c40e3047e9ac83d367 content_type: application/pdf creator: dernst date_created: 2020-03-03T10:41:13Z date_updated: 2020-07-14T12:48:00Z file_id: '7559' file_name: s42005-020-0307-5.pdf file_size: 1590721 relation: main_file - access_level: open_access checksum: 8325ae7b3c869d9aa6ed84823da4000a content_type: application/pdf creator: dernst date_created: 2020-03-03T10:41:13Z date_updated: 2020-07-14T12:48:00Z file_id: '7560' file_name: 42005_2020_307_MOESM1_ESM.pdf file_size: 1007249 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 3' issue: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Communications Physics publication_identifier: issn: - 2399-3650 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Heat rectification via a superconducting artificial atom tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2020' ... --- _id: '7545' abstract: - lang: eng text: Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system. article_processing_charge: No article_type: original author: - first_name: Jesse A. full_name: Cohn, Jesse A. last_name: Cohn - first_name: Elizabeth R. full_name: Cebul, Elizabeth R. last_name: Cebul - first_name: Giulio full_name: Valperga, Giulio last_name: Valperga - first_name: Lotti full_name: Brose, Lotti last_name: Brose - first_name: Mario full_name: de Bono, Mario id: 4E3FF80E-F248-11E8-B48F-1D18A9856A87 last_name: de Bono orcid: 0000-0001-8347-0443 - first_name: Maxwell G. full_name: Heiman, Maxwell G. last_name: Heiman - first_name: Jonathan T. full_name: Pierce, Jonathan T. last_name: Pierce citation: ama: Cohn JA, Cebul ER, Valperga G, et al. Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron. Developmental Biology. 2020;461(1):66-74. doi:10.1016/j.ydbio.2020.01.005 apa: Cohn, J. A., Cebul, E. R., Valperga, G., Brose, L., de Bono, M., Heiman, M. G., & Pierce, J. T. (2020). Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron. Developmental Biology. Elsevier. https://doi.org/10.1016/j.ydbio.2020.01.005 chicago: Cohn, Jesse A., Elizabeth R. Cebul, Giulio Valperga, Lotti Brose, Mario de Bono, Maxwell G. Heiman, and Jonathan T. Pierce. “Long-Term Activity Drives Dendritic Branch Elaboration of a C. Elegans Sensory Neuron.” Developmental Biology. Elsevier, 2020. https://doi.org/10.1016/j.ydbio.2020.01.005. ieee: J. A. Cohn et al., “Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron,” Developmental Biology, vol. 461, no. 1. Elsevier, pp. 66–74, 2020. ista: Cohn JA, Cebul ER, Valperga G, Brose L, de Bono M, Heiman MG, Pierce JT. 2020. Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron. Developmental Biology. 461(1), 66–74. mla: Cohn, Jesse A., et al. “Long-Term Activity Drives Dendritic Branch Elaboration of a C. Elegans Sensory Neuron.” Developmental Biology, vol. 461, no. 1, Elsevier, 2020, pp. 66–74, doi:10.1016/j.ydbio.2020.01.005. short: J.A. Cohn, E.R. Cebul, G. Valperga, L. Brose, M. de Bono, M.G. Heiman, J.T. Pierce, Developmental Biology 461 (2020) 66–74. date_created: 2020-02-28T10:38:32Z date_published: 2020-05-01T00:00:00Z date_updated: 2021-01-12T08:14:06Z day: '01' doi: 10.1016/j.ydbio.2020.01.005 extern: '1' intvolume: ' 461' issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/685339 month: '05' oa: 1 oa_version: Preprint page: 66-74 publication: Developmental Biology publication_identifier: issn: - 0012-1606 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Long-term activity drives dendritic branch elaboration of a C. elegans sensory neuron type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 461 year: '2020' ... --- _id: '7567' abstract: - lang: eng text: Coxeter triangulations are triangulations of Euclidean space based on a single simplex. By this we mean that given an individual simplex we can recover the entire triangulation of Euclidean space by inductively reflecting in the faces of the simplex. In this paper we establish that the quality of the simplices in all Coxeter triangulations is O(1/d−−√) of the quality of regular simplex. We further investigate the Delaunay property for these triangulations. Moreover, we consider an extension of the Delaunay property, namely protection, which is a measure of non-degeneracy of a Delaunay triangulation. In particular, one family of Coxeter triangulations achieves the protection O(1/d2). We conjecture that both bounds are optimal for triangulations in Euclidean space. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Aruni full_name: Choudhary, Aruni last_name: Choudhary - first_name: Siargey full_name: Kachanovich, Siargey last_name: Kachanovich - first_name: Mathijs full_name: Wintraecken, Mathijs id: 307CFBC8-F248-11E8-B48F-1D18A9856A87 last_name: Wintraecken orcid: 0000-0002-7472-2220 citation: ama: Choudhary A, Kachanovich S, Wintraecken M. Coxeter triangulations have good quality. Mathematics in Computer Science. 2020;14:141-176. doi:10.1007/s11786-020-00461-5 apa: Choudhary, A., Kachanovich, S., & Wintraecken, M. (2020). Coxeter triangulations have good quality. Mathematics in Computer Science. Springer Nature. https://doi.org/10.1007/s11786-020-00461-5 chicago: Choudhary, Aruni, Siargey Kachanovich, and Mathijs Wintraecken. “Coxeter Triangulations Have Good Quality.” Mathematics in Computer Science. Springer Nature, 2020. https://doi.org/10.1007/s11786-020-00461-5. ieee: A. Choudhary, S. Kachanovich, and M. Wintraecken, “Coxeter triangulations have good quality,” Mathematics in Computer Science, vol. 14. Springer Nature, pp. 141–176, 2020. ista: Choudhary A, Kachanovich S, Wintraecken M. 2020. Coxeter triangulations have good quality. Mathematics in Computer Science. 14, 141–176. mla: Choudhary, Aruni, et al. “Coxeter Triangulations Have Good Quality.” Mathematics in Computer Science, vol. 14, Springer Nature, 2020, pp. 141–76, doi:10.1007/s11786-020-00461-5. short: A. Choudhary, S. Kachanovich, M. Wintraecken, Mathematics in Computer Science 14 (2020) 141–176. date_created: 2020-03-05T13:30:18Z date_published: 2020-03-01T00:00:00Z date_updated: 2021-01-12T08:14:13Z day: '01' ddc: - '510' department: - _id: HeEd doi: 10.1007/s11786-020-00461-5 ec_funded: 1 file: - access_level: open_access checksum: 1d145f3ab50ccee735983cb89236e609 content_type: application/pdf creator: dernst date_created: 2020-11-20T10:18:02Z date_updated: 2020-11-20T10:18:02Z file_id: '8783' file_name: 2020_MathCompScie_Choudhary.pdf file_size: 872275 relation: main_file success: 1 file_date_updated: 2020-11-20T10:18:02Z has_accepted_license: '1' intvolume: ' 14' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 141-176 project: - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Mathematics in Computer Science publication_identifier: eissn: - 1661-8289 issn: - 1661-8270 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Coxeter triangulations have good quality tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2020' ... --- _id: '7594' abstract: - lang: eng text: The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in our understanding of various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We investigate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a one-dimensional spin-orbital model with Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling with regard to the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement or evolve to a highly spin-orbitally-entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising type, such as, e.g., the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected. article_number: '013353' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Jiri full_name: Chaloupka, Jiri last_name: Chaloupka - first_name: Andrzej M. full_name: Oles, Andrzej M. last_name: Oles - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld citation: ama: Gotfryd D, Paerschke E, Chaloupka J, Oles AM, Wohlfeld K. How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. 2020;2(1). doi:10.1103/PhysRevResearch.2.013353 apa: Gotfryd, D., Paerschke, E., Chaloupka, J., Oles, A. M., & Wohlfeld, K. (2020). How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.2.013353 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Jiri Chaloupka, Andrzej M. Oles, and Krzysztof Wohlfeld. “How Spin-Orbital Entanglement Depends on the Spin-Orbit Coupling in a Mott Insulator.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/PhysRevResearch.2.013353. ieee: D. Gotfryd, E. Paerschke, J. Chaloupka, A. M. Oles, and K. Wohlfeld, “How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator,” Physical Review Research, vol. 2, no. 1. American Physical Society, 2020. ista: Gotfryd D, Paerschke E, Chaloupka J, Oles AM, Wohlfeld K. 2020. How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. 2(1), 013353. mla: Gotfryd, Dorota, et al. “How Spin-Orbital Entanglement Depends on the Spin-Orbit Coupling in a Mott Insulator.” Physical Review Research, vol. 2, no. 1, 013353, American Physical Society, 2020, doi:10.1103/PhysRevResearch.2.013353. short: D. Gotfryd, E. Paerschke, J. Chaloupka, A.M. Oles, K. Wohlfeld, Physical Review Research 2 (2020). date_created: 2020-03-20T15:21:10Z date_published: 2020-03-20T00:00:00Z date_updated: 2021-01-12T08:14:23Z day: '20' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.2.013353 ec_funded: 1 file: - access_level: open_access checksum: 1be551fd5f5583635076017d7391ffdc content_type: application/pdf creator: dernst date_created: 2020-03-23T10:18:38Z date_updated: 2020-07-14T12:48:00Z file_id: '7610' file_name: 2020_PhysRevResearch_Gotfryd.pdf file_size: 1436735 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 2' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7605' abstract: - lang: eng text: 'Union-Find (or Disjoint-Set Union) is one of the fundamental problems in computer science; it has been well-studied from both theoretical and practical perspectives in the sequential case. Recently, there has been mounting interest in analyzing this problem in the concurrent scenario, and several asymptotically-efficient algorithms have been proposed. Yet, to date, there is very little known about the practical performance of concurrent Union-Find. This work addresses this gap. We evaluate and analyze the performance of several concurrent Union-Find algorithms and optimization strategies across a wide range of platforms (Intel, AMD, and ARM) and workloads (social, random, and road networks, as well as integrations into more complex algorithms). We first observe that, due to the limited computational cost, the number of induced cache misses is the critical determining factor for the performance of existing algorithms. We introduce new techniques to reduce this cost by storing node priorities implicitly and by using plain reads and writes in a way that does not affect the correctness of the algorithms. Finally, we show that Union-Find implementations are an interesting application for Transactional Memory (TM): one of the fastest algorithm variants we discovered is a sequential one that uses coarse-grained locking with the lock elision optimization to reduce synchronization cost and increase scalability. ' alternative_title: - LIPIcs article_processing_charge: No author: - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Alexander full_name: Fedorov, Alexander last_name: Fedorov - first_name: Nikita full_name: Koval, Nikita id: 2F4DB10C-F248-11E8-B48F-1D18A9856A87 last_name: Koval citation: ama: 'Alistarh D-A, Fedorov A, Koval N. In search of the fastest concurrent union-find algorithm. In: 23rd International Conference on Principles of Distributed Systems. Vol 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020:15:1-15:16. doi:10.4230/LIPIcs.OPODIS.2019.15' apa: 'Alistarh, D.-A., Fedorov, A., & Koval, N. (2020). In search of the fastest concurrent union-find algorithm. In 23rd International Conference on Principles of Distributed Systems (Vol. 153, p. 15:1-15:16). Neuchatal, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2019.15' chicago: Alistarh, Dan-Adrian, Alexander Fedorov, and Nikita Koval. “In Search of the Fastest Concurrent Union-Find Algorithm.” In 23rd International Conference on Principles of Distributed Systems, 153:15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.OPODIS.2019.15. ieee: D.-A. Alistarh, A. Fedorov, and N. Koval, “In search of the fastest concurrent union-find algorithm,” in 23rd International Conference on Principles of Distributed Systems, Neuchatal, Switzerland, 2020, vol. 153, p. 15:1-15:16. ista: 'Alistarh D-A, Fedorov A, Koval N. 2020. In search of the fastest concurrent union-find algorithm. 23rd International Conference on Principles of Distributed Systems. OPODIS: International Conference on Principles of Distributed Systems, LIPIcs, vol. 153, 15:1-15:16.' mla: Alistarh, Dan-Adrian, et al. “In Search of the Fastest Concurrent Union-Find Algorithm.” 23rd International Conference on Principles of Distributed Systems, vol. 153, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 15:1-15:16, doi:10.4230/LIPIcs.OPODIS.2019.15. short: D.-A. Alistarh, A. Fedorov, N. Koval, in:, 23rd International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 15:1-15:16. conference: end_date: 2019-12-19 location: Neuchatal, Switzerland name: 'OPODIS: International Conference on Principles of Distributed Systems' start_date: 2019-12-17 date_created: 2020-03-22T23:00:46Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-02-23T13:12:12Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.4230/LIPIcs.OPODIS.2019.15 external_id: arxiv: - '1911.06347' file: - access_level: open_access checksum: d66f07ecb609d9f02433e39f80a447e9 content_type: application/pdf creator: dernst date_created: 2020-03-23T09:22:48Z date_updated: 2020-07-14T12:48:01Z file_id: '7609' file_name: 2019_LIPIcs_Alistarh.pdf file_size: 13074131 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 153' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '02' oa: 1 oa_version: Published Version page: 15:1-15:16 publication: 23rd International Conference on Principles of Distributed Systems publication_identifier: isbn: - '9783959771337' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: In search of the fastest concurrent union-find algorithm tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2020' ... --- _id: '7601' abstract: - lang: eng text: Plasmodesmata (PD) are crucial structures for intercellular communication in multicellular plants with remorins being their crucial plant-specific structural and functional constituents. The PD biogenesis is an intriguing but poorly understood process. By expressing an Arabidopsis remorin protein in mammalian cells, we have reconstituted a PD-like filamentous structure, termed remorin filament (RF), connecting neighboring cells physically and physiologically. Notably, RFs are capable of transporting macromolecules intercellularly, in a way similar to plant PD. With further super-resolution microscopic analysis and biochemical characterization, we found that RFs are also composed of actin filaments, forming the core skeleton structure, aligned with the remorin protein. This unique heterologous filamentous structure might explain the molecular mechanism for remorin function as well as PD construction. Furthermore, remorin protein exhibits a specific distribution manner in the plasma membrane in mammalian cells, representing a lipid nanodomain, depending on its lipid modification status. Our studies not only provide crucial insights into the mechanism of PD biogenesis, but also uncovers unsuspected fundamental mechanistic and evolutionary links between intercellular communication systems of plants and animals. article_processing_charge: No author: - first_name: Zhuang full_name: Wei, Zhuang last_name: Wei - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Tao full_name: Liu, Tao last_name: Liu - first_name: Yuan full_name: Wu, Yuan last_name: Wu - first_name: Ji-Gang full_name: Lei, Ji-Gang last_name: Lei - first_name: ZhengJun full_name: Chen, ZhengJun last_name: Chen - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Hong-Wei full_name: Xue, Hong-Wei last_name: Xue - first_name: Kan full_name: Liao, Kan last_name: Liao citation: ama: Wei Z, Tan S, Liu T, et al. Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv. 2020. doi:10.1101/791137 apa: Wei, Z., Tan, S., Liu, T., Wu, Y., Lei, J.-G., Chen, Z., … Liao, K. (2020). Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/791137 chicago: Wei, Zhuang, Shutang Tan, Tao Liu, Yuan Wu, Ji-Gang Lei, ZhengJun Chen, Jiří Friml, Hong-Wei Xue, and Kan Liao. “Plasmodesmata-like Intercellular Connections by Plant Remorin in Animal Cells.” BioRxiv. Cold Spring Harbor Laboratory, 2020. https://doi.org/10.1101/791137. ieee: Z. Wei et al., “Plasmodesmata-like intercellular connections by plant remorin in animal cells,” bioRxiv. Cold Spring Harbor Laboratory, 2020. ista: Wei Z, Tan S, Liu T, Wu Y, Lei J-G, Chen Z, Friml J, Xue H-W, Liao K. 2020. Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv, 10.1101/791137. mla: Wei, Zhuang, et al. “Plasmodesmata-like Intercellular Connections by Plant Remorin in Animal Cells.” BioRxiv, Cold Spring Harbor Laboratory, 2020, doi:10.1101/791137. short: Z. Wei, S. Tan, T. Liu, Y. Wu, J.-G. Lei, Z. Chen, J. Friml, H.-W. Xue, K. Liao, BioRxiv (2020). date_created: 2020-03-21T16:34:42Z date_published: 2020-02-19T00:00:00Z date_updated: 2021-01-12T08:14:26Z day: '19' department: - _id: JiFr doi: 10.1101/791137 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/791137 month: '02' oa: 1 oa_version: Preprint page: '22' publication: bioRxiv publication_status: published publisher: Cold Spring Harbor Laboratory status: public title: Plasmodesmata-like intercellular connections by plant remorin in animal cells type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7651' abstract: - lang: eng text: The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods. article_number: '20190721' article_processing_charge: No article_type: original author: - first_name: J. full_name: Larsson, J. last_name: Larsson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: S. full_name: Bengmark, S. last_name: Bengmark - first_name: T. full_name: Lundh, T. last_name: Lundh - first_name: R. K. full_name: Butlin, R. K. last_name: Butlin citation: ama: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 2020;17(163). doi:10.1098/rsif.2019.0721 apa: Larsson, J., Westram, A. M., Bengmark, S., Lundh, T., & Butlin, R. K. (2020). A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. The Royal Society. https://doi.org/10.1098/rsif.2019.0721 chicago: Larsson, J., Anja M Westram, S. Bengmark, T. Lundh, and R. K. Butlin. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface. The Royal Society, 2020. https://doi.org/10.1098/rsif.2019.0721. ieee: J. Larsson, A. M. Westram, S. Bengmark, T. Lundh, and R. K. Butlin, “A developmentally descriptive method for quantifying shape in gastropod shells,” Journal of The Royal Society Interface, vol. 17, no. 163. The Royal Society, 2020. ista: Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. 2020. A developmentally descriptive method for quantifying shape in gastropod shells. Journal of The Royal Society Interface. 17(163), 20190721. mla: Larsson, J., et al. “A Developmentally Descriptive Method for Quantifying Shape in Gastropod Shells.” Journal of The Royal Society Interface, vol. 17, no. 163, 20190721, The Royal Society, 2020, doi:10.1098/rsif.2019.0721. short: J. Larsson, A.M. Westram, S. Bengmark, T. Lundh, R.K. Butlin, Journal of The Royal Society Interface 17 (2020). date_created: 2020-04-08T15:19:17Z date_published: 2020-02-01T00:00:00Z date_updated: 2021-01-12T08:14:41Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1098/rsif.2019.0721 file: - access_level: open_access checksum: 4eb102304402f5c56432516b84df86d6 content_type: application/pdf creator: dernst date_created: 2020-04-14T12:31:16Z date_updated: 2020-07-14T12:48:01Z file_id: '7660' file_name: 2020_JournRoyalSociety_Larsson.pdf file_size: 1556190 relation: main_file file_date_updated: 2020-07-14T12:48:01Z has_accepted_license: '1' intvolume: ' 17' issue: '163' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Journal of The Royal Society Interface publication_identifier: eissn: - 1742-5662 issn: - 1742-5689 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: 1 status: public title: A developmentally descriptive method for quantifying shape in gastropod shells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2020' ... --- _id: '7708' abstract: - lang: eng text: We conducted DNA methylation association analyses using Illumina 450K data from whole blood for an Australian amyotrophic lateral sclerosis (ALS) case–control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the OSCA software. We found a significantly higher proportion of neutrophils in cases compared to controls which replicated in an independent cohort from the Netherlands (1159 cases and 637 controls). The OSCA MOMENT linear mixed model has been shown in simulations to best account for confounders. When combined in a methylation profile score, the 25 most-associated probes identified by MOMENT significantly classified case–control status in the Netherlands sample (area under the curve, AUC = 0.65, CI95% = [0.62–0.68], p = 8.3 × 10−22). The maximum AUC achieved was 0.69 (CI95% = [0.66–0.71], p = 4.3 × 10−34) when cell-type proportion was included in the predictor. article_number: '10' article_processing_charge: No article_type: original author: - first_name: Marta F. full_name: Nabais, Marta F. last_name: Nabais - first_name: Tian full_name: Lin, Tian last_name: Lin - first_name: Beben full_name: Benyamin, Beben last_name: Benyamin - first_name: Kelly L. full_name: Williams, Kelly L. last_name: Williams - first_name: Fleur C. full_name: Garton, Fleur C. last_name: Garton - first_name: Anna A. E. full_name: Vinkhuyzen, Anna A. E. last_name: Vinkhuyzen - first_name: Futao full_name: Zhang, Futao last_name: Zhang - first_name: Costanza L. full_name: Vallerga, Costanza L. last_name: Vallerga - first_name: Restuadi full_name: Restuadi, Restuadi last_name: Restuadi - first_name: Anna full_name: Freydenzon, Anna last_name: Freydenzon - first_name: Ramona A. J. full_name: Zwamborn, Ramona A. J. last_name: Zwamborn - first_name: Paul J. full_name: Hop, Paul J. last_name: Hop - first_name: Matthew Richard full_name: Robinson, Matthew Richard id: E5D42276-F5DA-11E9-8E24-6303E6697425 last_name: Robinson orcid: 0000-0001-8982-8813 - first_name: Jacob full_name: Gratten, Jacob last_name: Gratten - first_name: Peter M. full_name: Visscher, Peter M. last_name: Visscher - first_name: Eilis full_name: Hannon, Eilis last_name: Hannon - first_name: Jonathan full_name: Mill, Jonathan last_name: Mill - first_name: Matthew A. full_name: Brown, Matthew A. last_name: Brown - first_name: Nigel G. full_name: Laing, Nigel G. last_name: Laing - first_name: Karen A. full_name: Mather, Karen A. last_name: Mather - first_name: Perminder S. full_name: Sachdev, Perminder S. last_name: Sachdev - first_name: Shyuan T. full_name: Ngo, Shyuan T. last_name: Ngo - first_name: Frederik J. full_name: Steyn, Frederik J. last_name: Steyn - first_name: Leanne full_name: Wallace, Leanne last_name: Wallace - first_name: Anjali K. full_name: Henders, Anjali K. last_name: Henders - first_name: Merrilee full_name: Needham, Merrilee last_name: Needham - first_name: Jan H. full_name: Veldink, Jan H. last_name: Veldink - first_name: Susan full_name: Mathers, Susan last_name: Mathers - first_name: Garth full_name: Nicholson, Garth last_name: Nicholson - first_name: Dominic B. full_name: Rowe, Dominic B. last_name: Rowe - first_name: Robert D. full_name: Henderson, Robert D. last_name: Henderson - first_name: Pamela A. full_name: McCombe, Pamela A. last_name: McCombe - first_name: Roger full_name: Pamphlett, Roger last_name: Pamphlett - first_name: Jian full_name: Yang, Jian last_name: Yang - first_name: Ian P. full_name: Blair, Ian P. last_name: Blair - first_name: Allan F. full_name: McRae, Allan F. last_name: McRae - first_name: Naomi R. full_name: Wray, Naomi R. last_name: Wray citation: ama: Nabais MF, Lin T, Benyamin B, et al. Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. npj Genomic Medicine. 2020;5. doi:10.1038/s41525-020-0118-3 apa: Nabais, M. F., Lin, T., Benyamin, B., Williams, K. L., Garton, F. C., Vinkhuyzen, A. A. E., … Wray, N. R. (2020). Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. Npj Genomic Medicine. Springer Nature. https://doi.org/10.1038/s41525-020-0118-3 chicago: Nabais, Marta F., Tian Lin, Beben Benyamin, Kelly L. Williams, Fleur C. Garton, Anna A. E. Vinkhuyzen, Futao Zhang, et al. “Significant Out-of-Sample Classification from Methylation Profile Scoring for Amyotrophic Lateral Sclerosis.” Npj Genomic Medicine. Springer Nature, 2020. https://doi.org/10.1038/s41525-020-0118-3. ieee: M. F. Nabais et al., “Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis,” npj Genomic Medicine, vol. 5. Springer Nature, 2020. ista: Nabais MF, Lin T, Benyamin B, Williams KL, Garton FC, Vinkhuyzen AAE, Zhang F, Vallerga CL, Restuadi R, Freydenzon A, Zwamborn RAJ, Hop PJ, Robinson MR, Gratten J, Visscher PM, Hannon E, Mill J, Brown MA, Laing NG, Mather KA, Sachdev PS, Ngo ST, Steyn FJ, Wallace L, Henders AK, Needham M, Veldink JH, Mathers S, Nicholson G, Rowe DB, Henderson RD, McCombe PA, Pamphlett R, Yang J, Blair IP, McRae AF, Wray NR. 2020. Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis. npj Genomic Medicine. 5, 10. mla: Nabais, Marta F., et al. “Significant Out-of-Sample Classification from Methylation Profile Scoring for Amyotrophic Lateral Sclerosis.” Npj Genomic Medicine, vol. 5, 10, Springer Nature, 2020, doi:10.1038/s41525-020-0118-3. short: M.F. Nabais, T. Lin, B. Benyamin, K.L. Williams, F.C. Garton, A.A.E. Vinkhuyzen, F. Zhang, C.L. Vallerga, R. Restuadi, A. Freydenzon, R.A.J. Zwamborn, P.J. Hop, M.R. Robinson, J. Gratten, P.M. Visscher, E. Hannon, J. Mill, M.A. Brown, N.G. Laing, K.A. Mather, P.S. Sachdev, S.T. Ngo, F.J. Steyn, L. Wallace, A.K. Henders, M. Needham, J.H. Veldink, S. Mathers, G. Nicholson, D.B. Rowe, R.D. Henderson, P.A. McCombe, R. Pamphlett, J. Yang, I.P. Blair, A.F. McRae, N.R. Wray, Npj Genomic Medicine 5 (2020). date_created: 2020-04-30T10:39:54Z date_published: 2020-02-27T00:00:00Z date_updated: 2021-01-12T08:14:59Z day: '27' doi: 10.1038/s41525-020-0118-3 extern: '1' intvolume: ' 5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41525-020-0118-3 month: '02' oa: 1 oa_version: Published Version publication: npj Genomic Medicine publication_identifier: issn: - 2056-7944 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '7707' abstract: - lang: eng text: The growing sample size of genome-wide association studies has facilitated the discovery of gene-environment interactions (GxE). Here we propose a maximum likelihood method to estimate the contribution of GxE to continuous traits taking into account all interacting environmental variables, without the need to measure any. Extensive simulations demonstrate that our method provides unbiased interaction estimates and excellent coverage. We also offer strategies to distinguish specific GxE from general scale effects. Applying our method to 32 traits in the UK Biobank reveals that while the genetic risk score (GRS) of 376 variants explains 5.2% of body mass index (BMI) variance, GRSxE explains an additional 1.9%. Nevertheless, this interaction holds for any variable with identical correlation to BMI as the GRS, hence may not be GRS-specific. Still, we observe that the global contribution of specific GRSxE to complex traits is substantial for nine obesity-related measures (including leg impedance and trunk fat-free mass). article_number: '1385' article_processing_charge: No article_type: original author: - first_name: Jonathan full_name: Sulc, Jonathan last_name: Sulc - first_name: Ninon full_name: Mounier, Ninon last_name: Mounier - first_name: Felix full_name: Günther, Felix last_name: Günther - first_name: Thomas full_name: Winkler, Thomas last_name: Winkler - first_name: Andrew R. full_name: Wood, Andrew R. last_name: Wood - first_name: Timothy M. full_name: Frayling, Timothy M. last_name: Frayling - first_name: Iris M. full_name: Heid, Iris M. last_name: Heid - first_name: Matthew Richard full_name: Robinson, Matthew Richard id: E5D42276-F5DA-11E9-8E24-6303E6697425 last_name: Robinson orcid: 0000-0001-8982-8813 - first_name: Zoltán full_name: Kutalik, Zoltán last_name: Kutalik citation: ama: Sulc J, Mounier N, Günther F, et al. Quantification of the overall contribution of gene-environment interaction for obesity-related traits. Nature Communications. 2020;11. doi:10.1038/s41467-020-15107-0 apa: Sulc, J., Mounier, N., Günther, F., Winkler, T., Wood, A. R., Frayling, T. M., … Kutalik, Z. (2020). Quantification of the overall contribution of gene-environment interaction for obesity-related traits. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-15107-0 chicago: Sulc, Jonathan, Ninon Mounier, Felix Günther, Thomas Winkler, Andrew R. Wood, Timothy M. Frayling, Iris M. Heid, Matthew Richard Robinson, and Zoltán Kutalik. “Quantification of the Overall Contribution of Gene-Environment Interaction for Obesity-Related Traits.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-15107-0. ieee: J. Sulc et al., “Quantification of the overall contribution of gene-environment interaction for obesity-related traits,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Sulc J, Mounier N, Günther F, Winkler T, Wood AR, Frayling TM, Heid IM, Robinson MR, Kutalik Z. 2020. Quantification of the overall contribution of gene-environment interaction for obesity-related traits. Nature Communications. 11, 1385. mla: Sulc, Jonathan, et al. “Quantification of the Overall Contribution of Gene-Environment Interaction for Obesity-Related Traits.” Nature Communications, vol. 11, 1385, Springer Nature, 2020, doi:10.1038/s41467-020-15107-0. short: J. Sulc, N. Mounier, F. Günther, T. Winkler, A.R. Wood, T.M. Frayling, I.M. Heid, M.R. Robinson, Z. Kutalik, Nature Communications 11 (2020). date_created: 2020-04-30T10:39:33Z date_published: 2020-03-20T00:00:00Z date_updated: 2021-01-12T08:14:59Z day: '20' doi: 10.1038/s41467-020-15107-0 extern: '1' intvolume: ' 11' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41467-020-15107-0 month: '03' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Quantification of the overall contribution of gene-environment interaction for obesity-related traits type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2020' ... --- _id: '7778' abstract: - lang: eng text: Recent advances in synthetic posttranslational protein circuits are substantially impacting the landscape of cellular engineering and offer several advantages compared to traditional gene circuits. However, engineering dynamic phenomena such as oscillations in protein-level circuits remains an outstanding challenge. Few examples of biological posttranslational oscillators are known, necessitating theoretical progress to determine realizable oscillators. We construct mathematical models for two posttranslational oscillators, using few components that interact only through reversible binding and phosphorylation/dephosphorylation reactions. Our designed oscillators rely on the self-assembly of two protein species into multimeric functional enzymes that respectively inhibit and enhance this self-assembly. We limit our analysis to within experimental constraints, finding (i) significant portions of the restricted parameter space yielding oscillations and (ii) that oscillation periods can be tuned by several orders of magnitude using recent advances in computational protein design. Our work paves the way for the rational design and realization of protein-based dynamic systems. article_number: eabc1939 article_processing_charge: No article_type: original author: - first_name: Ofer full_name: Kimchi, Ofer last_name: Kimchi - first_name: Carl Peter full_name: Goodrich, Carl Peter id: EB352CD2-F68A-11E9-89C5-A432E6697425 last_name: Goodrich orcid: 0000-0002-1307-5074 - first_name: Alexis full_name: Courbet, Alexis last_name: Courbet - first_name: Agnese I. full_name: Curatolo, Agnese I. last_name: Curatolo - first_name: Nicholas B. full_name: Woodall, Nicholas B. last_name: Woodall - first_name: David full_name: Baker, David last_name: Baker - first_name: Michael P. full_name: Brenner, Michael P. last_name: Brenner citation: ama: Kimchi O, Goodrich CP, Courbet A, et al. Self-assembly-based posttranslational protein oscillators. Science Advances. 2020;6(51). doi:10.1126/sciadv.abc1939 apa: Kimchi, O., Goodrich, C. P., Courbet, A., Curatolo, A. I., Woodall, N. B., Baker, D., & Brenner, M. P. (2020). Self-assembly-based posttranslational protein oscillators. Science Advances. https://doi.org/10.1126/sciadv.abc1939 chicago: Kimchi, Ofer, Carl Peter Goodrich, Alexis Courbet, Agnese I. Curatolo, Nicholas B. Woodall, David Baker, and Michael P. Brenner. “Self-Assembly-Based Posttranslational Protein Oscillators.” Science Advances, 2020. https://doi.org/10.1126/sciadv.abc1939. ieee: O. Kimchi et al., “Self-assembly-based posttranslational protein oscillators,” Science Advances, vol. 6, no. 51. 2020. ista: Kimchi O, Goodrich CP, Courbet A, Curatolo AI, Woodall NB, Baker D, Brenner MP. 2020. Self-assembly-based posttranslational protein oscillators. Science Advances. 6(51), eabc1939. mla: Kimchi, Ofer, et al. “Self-Assembly-Based Posttranslational Protein Oscillators.” Science Advances, vol. 6, no. 51, eabc1939, 2020, doi:10.1126/sciadv.abc1939. short: O. Kimchi, C.P. Goodrich, A. Courbet, A.I. Curatolo, N.B. Woodall, D. Baker, M.P. Brenner, Science Advances 6 (2020). date_created: 2020-04-30T12:07:55Z date_published: 2020-12-16T00:00:00Z date_updated: 2021-04-12T08:35:19Z day: '16' ddc: - '570' doi: 10.1126/sciadv.abc1939 extern: '1' file: - access_level: open_access checksum: eb6d950b6a68ddc4a2fb31ec80a2a1bd content_type: application/pdf creator: dernst date_created: 2021-04-12T08:33:23Z date_updated: 2021-04-12T08:33:23Z file_id: '9320' file_name: 2020_ScienceAdv_Kimchi.pdf file_size: 1259758 relation: main_file success: 1 file_date_updated: 2021-04-12T08:33:23Z has_accepted_license: '1' intvolume: ' 6' issue: '51' language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: Science Advances publication_status: published quality_controlled: '1' status: public title: Self-assembly-based posttranslational protein oscillators tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2020' ... --- _id: '7803' abstract: - lang: eng text: "We settle the complexity of the (Δ+1)-coloring and (Δ+1)-list coloring problems in the CONGESTED CLIQUE model by presenting a simple deterministic algorithm for both problems running in a constant number of rounds. This matches the complexity of the recent breakthrough randomized constant-round (Δ+1)-list coloring algorithm due to Chang et al. (PODC'19), and significantly improves upon the state-of-the-art O(logΔ)-round deterministic (Δ+1)-coloring bound of Parter (ICALP'18).\r\nA remarkable property of our algorithm is its simplicity. Whereas the state-of-the-art randomized algorithms for this problem are based on the quite involved local coloring algorithm of Chang et al. (STOC'18), our algorithm can be described in just a few lines. At a high level, it applies a careful derandomization of a recursive procedure which partitions the nodes and their respective palettes into separate bins. We show that after O(1) recursion steps, the remaining uncolored subgraph within each bin has linear size, and thus can be solved locally by collecting it to a single node. This algorithm can also be implemented in the Massively Parallel Computation (MPC) model provided that each machine has linear (in n, the number of nodes in the input graph) space.\r\nWe also show an extension of our algorithm to the MPC regime in which machines have sublinear space: we present the first deterministic (Δ+1)-list coloring algorithm designed for sublinear-space MPC, which runs in O(logΔ+loglogn) rounds." article_processing_charge: No author: - first_name: Artur full_name: Czumaj, Artur last_name: Czumaj orcid: 0000-0002-5646-9524 - first_name: Peter full_name: Davies, Peter id: 11396234-BB50-11E9-B24C-90FCE5697425 last_name: Davies orcid: 0000-0002-5646-9524 - first_name: Merav full_name: Parter, Merav last_name: Parter citation: ama: 'Czumaj A, Davies P, Parter M. Simple, deterministic, constant-round coloring in the congested clique. In: Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2020:309-318. doi:10.1145/3382734.3405751' apa: 'Czumaj, A., Davies, P., & Parter, M. (2020). Simple, deterministic, constant-round coloring in the congested clique. In Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing (pp. 309–318). Salerno, Italy: Association for Computing Machinery. https://doi.org/10.1145/3382734.3405751' chicago: Czumaj, Artur, Peter Davies, and Merav Parter. “Simple, Deterministic, Constant-Round Coloring in the Congested Clique.” In Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, 309–18. Association for Computing Machinery, 2020. https://doi.org/10.1145/3382734.3405751. ieee: A. Czumaj, P. Davies, and M. Parter, “Simple, deterministic, constant-round coloring in the congested clique,” in Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, Salerno, Italy, 2020, pp. 309–318. ista: 'Czumaj A, Davies P, Parter M. 2020. Simple, deterministic, constant-round coloring in the congested clique. Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing. PODC: Symposium on Principles of Distributed Computing, 309–318.' mla: Czumaj, Artur, et al. “Simple, Deterministic, Constant-Round Coloring in the Congested Clique.” Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2020, pp. 309–18, doi:10.1145/3382734.3405751. short: A. Czumaj, P. Davies, M. Parter, in:, Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2020, pp. 309–318. conference: end_date: 2020-08-07 location: Salerno, Italy name: 'PODC: Symposium on Principles of Distributed Computing' start_date: 2020-08-03 date_created: 2020-05-06T09:02:14Z date_published: 2020-07-01T00:00:00Z date_updated: 2021-01-12T08:15:37Z day: '01' ddc: - '000' department: - _id: DaAl doi: 10.1145/3382734.3405751 ec_funded: 1 external_id: arxiv: - '2009.06043' file: - access_level: open_access checksum: 46fe4fc58a64eb04068115573f631d4c content_type: application/pdf creator: pdavies date_created: 2020-10-08T08:17:36Z date_updated: 2020-10-08T08:17:36Z file_id: '8624' file_name: ColoringArxiv.pdf file_size: 520051 relation: main_file success: 1 file_date_updated: 2020-10-08T08:17:36Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 309-318 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the 2020 ACM Symposium on Principles of Distributed Computing publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' status: public title: Simple, deterministic, constant-round coloring in the congested clique type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7806' abstract: - lang: eng text: "We consider the following decision problem EMBEDk→d in computational topology (where k ≤ d are fixed positive integers): Given a finite simplicial complex K of dimension k, does there exist a (piecewise-linear) embedding of K into ℝd?\r\nThe special case EMBED1→2 is graph planarity, which is decidable in linear time, as shown by Hopcroft and Tarjan. In higher dimensions, EMBED2→3 and EMBED3→3 are known to be decidable (as well as NP-hard), and recent results of Čadek et al. in computational homotopy theory, in combination with the classical Haefliger–Weber theorem in geometric topology, imply that EMBEDk→d can be solved in polynomial time for any fixed pair (k, d) of dimensions in the so-called metastable range .\r\nHere, by contrast, we prove that EMBEDk→d is algorithmically undecidable for almost all pairs of dimensions outside the metastable range, namely for . This almost completely resolves the decidability vs. undecidability of EMBEDk→d in higher dimensions and establishes a sharp dichotomy between polynomial-time solvability and undecidability.\r\nOur result complements (and in a wide range of dimensions strengthens) earlier results of Matoušek, Tancer, and the second author, who showed that EMBEDk→d is undecidable for 4 ≤ k ϵ {d – 1, d}, and NP-hard for all remaining pairs (k, d) outside the metastable range and satisfying d ≥ 4." article_processing_charge: No author: - first_name: Marek full_name: Filakovský, Marek id: 3E8AF77E-F248-11E8-B48F-1D18A9856A87 last_name: Filakovský - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 - first_name: Stephan Y full_name: Zhechev, Stephan Y id: 3AA52972-F248-11E8-B48F-1D18A9856A87 last_name: Zhechev citation: ama: 'Filakovský M, Wagner U, Zhechev SY. Embeddability of simplicial complexes is undecidable. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. Vol 2020-January. SIAM; 2020:767-785. doi:10.1137/1.9781611975994.47' apa: 'Filakovský, M., Wagner, U., & Zhechev, S. Y. (2020). Embeddability of simplicial complexes is undecidable. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (Vol. 2020–January, pp. 767–785). Salt Lake City, UT, United States: SIAM. https://doi.org/10.1137/1.9781611975994.47' chicago: Filakovský, Marek, Uli Wagner, and Stephan Y Zhechev. “Embeddability of Simplicial Complexes Is Undecidable.” In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2020–January:767–85. SIAM, 2020. https://doi.org/10.1137/1.9781611975994.47. ieee: M. Filakovský, U. Wagner, and S. Y. Zhechev, “Embeddability of simplicial complexes is undecidable,” in Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, Salt Lake City, UT, United States, 2020, vol. 2020–January, pp. 767–785. ista: 'Filakovský M, Wagner U, Zhechev SY. 2020. Embeddability of simplicial complexes is undecidable. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms vol. 2020–January, 767–785.' mla: Filakovský, Marek, et al. “Embeddability of Simplicial Complexes Is Undecidable.” Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 2020–January, SIAM, 2020, pp. 767–85, doi:10.1137/1.9781611975994.47. short: M. Filakovský, U. Wagner, S.Y. Zhechev, in:, Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2020, pp. 767–785. conference: end_date: 2020-01-08 location: Salt Lake City, UT, United States name: 'SODA: Symposium on Discrete Algorithms' start_date: 2020-01-05 date_created: 2020-05-10T22:00:48Z date_published: 2020-01-01T00:00:00Z date_updated: 2021-01-12T08:15:38Z day: '01' department: - _id: UlWa doi: 10.1137/1.9781611975994.47 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1137/1.9781611975994.47 month: '01' oa: 1 oa_version: Published Version page: 767-785 project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory publication: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms publication_identifier: isbn: - '9781611975994' publication_status: published publisher: SIAM quality_controlled: '1' scopus_import: 1 status: public title: Embeddability of simplicial complexes is undecidable type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2020-January year: '2020' ... --- _id: '7814' abstract: - lang: eng text: 'Scientific research is to date largely restricted to wealthy laboratories in developed nations due to the necessity of complex and expensive equipment. This inequality limits the capacity of science to be used as a diplomatic channel. Maker movements use open-source technologies including additive manufacturing (3D printing) and laser cutting, together with low-cost computers for developing novel products. This movement is setting the groundwork for a revolution, allowing scientific equipment to be sourced at a fraction of the cost and has the potential to increase the availability of equipment for scientists around the world. Science education is increasingly recognized as another channel for science diplomacy. In this perspective, we introduce the idea that the Maker movement and open-source technologies have the potential to revolutionize science, technology, engineering and mathematics (STEM) education worldwide. We present an open-source STEM didactic tool called SCOPES (Sparking Curiosity through Open-source Platforms in Education and Science). SCOPES is self-contained, independent of local resources, and cost-effective. SCOPES can be adapted to communicate complex subjects from genetics to neurobiology, perform real-world biological experiments and explore digitized scientific samples. We envision such platforms will enhance science diplomacy by providing a means for scientists to share their findings with classrooms and for educators to incorporate didactic concepts into STEM lessons. By providing students the opportunity to design, perform, and share scientific experiments, students also experience firsthand the benefits of a multinational scientific community. We provide instructions on how to build and use SCOPES on our webpage: http://scopeseducation.org.' acknowledged_ssus: - _id: Bio - _id: LifeSc - _id: PreCl - _id: EM-Fac article_number: '48' article_processing_charge: No article_type: original author: - first_name: Robert J full_name: Beattie, Robert J id: 2E26DF60-F248-11E8-B48F-1D18A9856A87 last_name: Beattie orcid: 0000-0002-8483-8753 - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler citation: ama: 'Beattie RJ, Hippenmeyer S, Pauler F. SCOPES: Sparking curiosity through Open-Source platforms in education and science. Frontiers in Education. 2020;5. doi:10.3389/feduc.2020.00048' apa: 'Beattie, R. J., Hippenmeyer, S., & Pauler, F. (2020). SCOPES: Sparking curiosity through Open-Source platforms in education and science. Frontiers in Education. Frontiers Media. https://doi.org/10.3389/feduc.2020.00048' chicago: 'Beattie, Robert J, Simon Hippenmeyer, and Florian Pauler. “SCOPES: Sparking Curiosity through Open-Source Platforms in Education and Science.” Frontiers in Education. Frontiers Media, 2020. https://doi.org/10.3389/feduc.2020.00048.' ieee: 'R. J. Beattie, S. Hippenmeyer, and F. Pauler, “SCOPES: Sparking curiosity through Open-Source platforms in education and science,” Frontiers in Education, vol. 5. Frontiers Media, 2020.' ista: 'Beattie RJ, Hippenmeyer S, Pauler F. 2020. SCOPES: Sparking curiosity through Open-Source platforms in education and science. Frontiers in Education. 5, 48.' mla: 'Beattie, Robert J., et al. “SCOPES: Sparking Curiosity through Open-Source Platforms in Education and Science.” Frontiers in Education, vol. 5, 48, Frontiers Media, 2020, doi:10.3389/feduc.2020.00048.' short: R.J. Beattie, S. Hippenmeyer, F. Pauler, Frontiers in Education 5 (2020). date_created: 2020-05-11T08:18:48Z date_published: 2020-05-08T00:00:00Z date_updated: 2021-01-12T08:15:42Z day: '08' ddc: - '570' department: - _id: SiHi doi: 10.3389/feduc.2020.00048 ec_funded: 1 file: - access_level: open_access checksum: a24ec24e38d843341ae620ec76c53688 content_type: application/pdf creator: dernst date_created: 2020-05-11T11:34:08Z date_updated: 2020-07-14T12:48:03Z file_id: '7818' file_name: 2020_FrontiersEduc_Beattie.pdf file_size: 1402146 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 264E56E2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02416 name: Molecular Mechanisms Regulating Gliogenesis in the Cerebral Cortex - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: Frontiers in Education publication_identifier: issn: - 2504-284X publication_status: published publisher: Frontiers Media quality_controlled: '1' status: public title: 'SCOPES: Sparking curiosity through Open-Source platforms in education and science' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '7866' abstract: - lang: eng text: In this paper, we establish convergence to equilibrium for a drift–diffusion–recombination system modelling the charge transport within certain semiconductor devices. More precisely, we consider a two-level system for electrons and holes which is augmented by an intermediate energy level for electrons in so-called trapped states. The recombination dynamics use the mass action principle by taking into account this additional trap level. The main part of the paper is concerned with the derivation of an entropy–entropy production inequality, which entails exponential convergence to the equilibrium via the so-called entropy method. The novelty of our approach lies in the fact that the entropy method is applied uniformly in a fast-reaction parameter which governs the lifetime of electrons on the trap level. Thus, the resulting decay estimate for the densities of electrons and holes extends to the corresponding quasi-steady-state approximation. acknowledgement: Open access funding provided by Austrian Science Fund (FWF). The second author has been supported by the International Research Training Group IGDK 1754 “Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth Structures”, funded by the German Research Council (DFG) and the Austrian Science Fund (FWF) under grant number [W 1244-N18]. article_processing_charge: No article_type: original author: - first_name: Klemens full_name: Fellner, Klemens last_name: Fellner - first_name: Michael full_name: Kniely, Michael id: 2CA2C08C-F248-11E8-B48F-1D18A9856A87 last_name: Kniely orcid: 0000-0001-5645-4333 citation: ama: Fellner K, Kniely M. Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model. Journal of Elliptic and Parabolic Equations. 2020;6:529-598. doi:10.1007/s41808-020-00068-8 apa: Fellner, K., & Kniely, M. (2020). Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model. Journal of Elliptic and Parabolic Equations. Springer Nature. https://doi.org/10.1007/s41808-020-00068-8 chicago: Fellner, Klemens, and Michael Kniely. “Uniform Convergence to Equilibrium for a Family of Drift–Diffusion Models with Trap-Assisted Recombination and the Limiting Shockley–Read–Hall Model.” Journal of Elliptic and Parabolic Equations. Springer Nature, 2020. https://doi.org/10.1007/s41808-020-00068-8. ieee: K. Fellner and M. Kniely, “Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model,” Journal of Elliptic and Parabolic Equations, vol. 6. Springer Nature, pp. 529–598, 2020. ista: Fellner K, Kniely M. 2020. Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model. Journal of Elliptic and Parabolic Equations. 6, 529–598. mla: Fellner, Klemens, and Michael Kniely. “Uniform Convergence to Equilibrium for a Family of Drift–Diffusion Models with Trap-Assisted Recombination and the Limiting Shockley–Read–Hall Model.” Journal of Elliptic and Parabolic Equations, vol. 6, Springer Nature, 2020, pp. 529–98, doi:10.1007/s41808-020-00068-8. short: K. Fellner, M. Kniely, Journal of Elliptic and Parabolic Equations 6 (2020) 529–598. date_created: 2020-05-17T22:00:45Z date_published: 2020-12-01T00:00:00Z date_updated: 2021-01-12T08:15:47Z day: '01' ddc: - '510' department: - _id: JuFi doi: 10.1007/s41808-020-00068-8 file: - access_level: open_access checksum: 6bc6832caacddceee1471291e93dcf1d content_type: application/pdf creator: dernst date_created: 2020-11-25T08:59:59Z date_updated: 2020-11-25T08:59:59Z file_id: '8802' file_name: 2020_JourEllipticParabEquat_Fellner.pdf file_size: 8408694 relation: main_file success: 1 file_date_updated: 2020-11-25T08:59:59Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 529-598 project: - _id: 3AC91DDA-15DF-11EA-824D-93A3E7B544D1 call_identifier: FWF name: FWF Open Access Fund publication: Journal of Elliptic and Parabolic Equations publication_identifier: eissn: - '22969039' issn: - '22969020' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2020' ... --- _id: '7919' abstract: - lang: eng text: We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations. article_number: '023154 ' article_processing_charge: No article_type: original author: - first_name: S. I. full_name: Mistakidis, S. I. last_name: Mistakidis - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher citation: ama: Mistakidis SI, Volosniev A, Schmelcher P. Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. 2020;2. doi:10.1103/physrevresearch.2.023154 apa: Mistakidis, S. I., Volosniev, A., & Schmelcher, P. (2020). Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.023154 chicago: Mistakidis, S. I., Artem Volosniev, and P. Schmelcher. “Induced Correlations between Impurities in a One-Dimensional Quenched Bose Gas.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.023154. ieee: S. I. Mistakidis, A. Volosniev, and P. Schmelcher, “Induced correlations between impurities in a one-dimensional quenched Bose gas,” Physical Review Research, vol. 2. American Physical Society, 2020. ista: Mistakidis SI, Volosniev A, Schmelcher P. 2020. Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. 2, 023154. mla: Mistakidis, S. I., et al. “Induced Correlations between Impurities in a One-Dimensional Quenched Bose Gas.” Physical Review Research, vol. 2, 023154, American Physical Society, 2020, doi:10.1103/physrevresearch.2.023154. short: S.I. Mistakidis, A. Volosniev, P. Schmelcher, Physical Review Research 2 (2020). date_created: 2020-06-03T11:30:10Z date_published: 2020-05-11T00:00:00Z date_updated: 2023-02-23T13:20:16Z day: '11' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.2.023154 ec_funded: 1 file: - access_level: open_access checksum: e1c362fe094d6b246b3cd4a49722e78b content_type: application/pdf creator: dernst date_created: 2020-06-04T13:51:59Z date_updated: 2020-07-14T12:48:05Z file_id: '7926' file_name: 2020_PhysRevResearch_Mistakidis.pdf file_size: 1741098 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Induced correlations between impurities in a one-dimensional quenched Bose gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7991' abstract: - lang: eng text: 'We define and study a discrete process that generalizes the convex-layer decomposition of a planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve (which might self-intersect) in the presence of a set P⊂ ℝ² of point obstacles, and evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the curve to its shortest homotopic equivalent. We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between "grid peeling" and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves, and which was studied only for regular grids. We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant under affine transformations, preserves convexity, and does not increase the total absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections between two curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of inflection points (appropriately defined) does not increase.' alternative_title: - LIPIcs article_number: 12:1 - 12:15 article_processing_charge: No author: - first_name: Sergey full_name: Avvakumov, Sergey id: 3827DAC8-F248-11E8-B48F-1D18A9856A87 last_name: Avvakumov - first_name: Gabriel full_name: Nivasch, Gabriel last_name: Nivasch citation: ama: 'Avvakumov S, Nivasch G. Homotopic curve shortening and the affine curve-shortening flow. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.12' apa: 'Avvakumov, S., & Nivasch, G. (2020). Homotopic curve shortening and the affine curve-shortening flow. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.12' chicago: Avvakumov, Sergey, and Gabriel Nivasch. “Homotopic Curve Shortening and the Affine Curve-Shortening Flow.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.12. ieee: S. Avvakumov and G. Nivasch, “Homotopic curve shortening and the affine curve-shortening flow,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Avvakumov S, Nivasch G. 2020. Homotopic curve shortening and the affine curve-shortening flow. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 12:1-12:15.' mla: Avvakumov, Sergey, and Gabriel Nivasch. “Homotopic Curve Shortening and the Affine Curve-Shortening Flow.” 36th International Symposium on Computational Geometry, vol. 164, 12:1-12:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.12. short: S. Avvakumov, G. Nivasch, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:19Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:23Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.12 external_id: arxiv: - '1909.00263' file: - access_level: open_access checksum: 6872df6549142f709fb6354a1b2f2c06 content_type: application/pdf creator: dernst date_created: 2020-06-23T11:13:49Z date_updated: 2020-07-14T12:48:06Z file_id: '8007' file_name: 2020_LIPIcsSoCG_Avvakumov.pdf file_size: 575896 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 26611F5C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P31312 name: Algorithms for Embeddings and Homotopy Theory publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Homotopic curve shortening and the affine curve-shortening flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7989' abstract: - lang: eng text: 'We prove general topological Radon-type theorems for sets in ℝ^d, smooth real manifolds or finite dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p,q)-theorem. More precisely: Let X be either ℝ^d, smooth real d-manifold, or a finite d-dimensional simplicial complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti number (with ℤ₂ coefficients) of any set in F is at most b for every non-negative integer i less or equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest integer larger or equal to d/2 - 1 if X = ℝ^d; k=d-1 if X is a smooth real d-manifold and not a surface, k=0 if X is a surface and k=d if X is a d-dimensional simplicial complex. Using the recent result of the author and Kalai, we manage to prove the following optimal bound on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets in a surface S such that the intersection of any subfamily of F is either empty, or path-connected. Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen, Kim, and Lee about an existence of a (p,q)-theorem for open subsets of a surface.' alternative_title: - LIPIcs article_number: 61:1-61:13 article_processing_charge: No author: - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 citation: ama: 'Patakova Z. Bounding radon number via Betti numbers. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.61' apa: 'Patakova, Z. (2020). Bounding radon number via Betti numbers. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.61' chicago: Patakova, Zuzana. “Bounding Radon Number via Betti Numbers.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.61. ieee: Z. Patakova, “Bounding radon number via Betti numbers,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Patakova Z. 2020. Bounding radon number via Betti numbers. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 61:1-61:13.' mla: Patakova, Zuzana. “Bounding Radon Number via Betti Numbers.” 36th International Symposium on Computational Geometry, vol. 164, 61:1-61:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.61. short: Z. Patakova, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:18Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:22Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.61 external_id: arxiv: - '1908.01677' file: - access_level: open_access checksum: d0996ca5f6eb32ce955ce782b4f2afbe content_type: application/pdf creator: dernst date_created: 2020-06-23T06:56:23Z date_updated: 2020-07-14T12:48:06Z file_id: '8005' file_name: 2020_LIPIcsSoCG_Patakova_61.pdf file_size: 645421 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Bounding radon number via Betti numbers tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7992' abstract: - lang: eng text: 'Let K be a convex body in ℝⁿ (i.e., a compact convex set with nonempty interior). Given a point p in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p through which there are at least n+1 distinct barycentric hyperplanes. Two years later, this was seemingly resolved affirmatively by showing that this is the case if p=p₀ is the point of maximal depth in K. However, while working on a related question, we noticed that one of the auxiliary claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s question. It follows from known results that for n ≥ 2, there are always at least three distinct barycentric cuts through the point p₀ ∈ K of maximal depth. Using tools related to Morse theory we are able to improve this bound: four distinct barycentric cuts through p₀ are guaranteed if n ≥ 3.' alternative_title: - LIPIcs article_number: 62:1 - 62:16 article_processing_charge: No author: - first_name: Zuzana full_name: Patakova, Zuzana id: 48B57058-F248-11E8-B48F-1D18A9856A87 last_name: Patakova orcid: 0000-0002-3975-1683 - first_name: Martin full_name: Tancer, Martin id: 38AC689C-F248-11E8-B48F-1D18A9856A87 last_name: Tancer orcid: 0000-0002-1191-6714 - first_name: Uli full_name: Wagner, Uli id: 36690CA2-F248-11E8-B48F-1D18A9856A87 last_name: Wagner orcid: 0000-0002-1494-0568 citation: ama: 'Patakova Z, Tancer M, Wagner U. Barycentric cuts through a convex body. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.62' apa: 'Patakova, Z., Tancer, M., & Wagner, U. (2020). Barycentric cuts through a convex body. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.62' chicago: Patakova, Zuzana, Martin Tancer, and Uli Wagner. “Barycentric Cuts through a Convex Body.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.62. ieee: Z. Patakova, M. Tancer, and U. Wagner, “Barycentric cuts through a convex body,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Patakova Z, Tancer M, Wagner U. 2020. Barycentric cuts through a convex body. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 62:1-62:16.' mla: Patakova, Zuzana, et al. “Barycentric Cuts through a Convex Body.” 36th International Symposium on Computational Geometry, vol. 164, 62:1-62:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.62. short: Z. Patakova, M. Tancer, U. Wagner, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:20Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-01-12T08:16:23Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.62 external_id: arxiv: - '2003.13536' file: - access_level: open_access checksum: ce1c9194139a664fb59d1efdfc88eaae content_type: application/pdf creator: dernst date_created: 2020-06-23T06:45:52Z date_updated: 2020-07-14T12:48:06Z file_id: '8004' file_name: 2020_LIPIcsSoCG_Patakova.pdf file_size: 750318 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: 1 status: public title: Barycentric cuts through a convex body tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '7994' abstract: - lang: eng text: In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of K_n was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible. alternative_title: - LIPIcs article_number: 9:1 - 9:14 article_processing_charge: No author: - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Julien full_name: Bensmail, Julien last_name: Bensmail - first_name: R. full_name: Bruce Richter, R. last_name: Bruce Richter citation: ama: 'Arroyo Guevara AM, Bensmail J, Bruce Richter R. Extending drawings of graphs to arrangements of pseudolines. In: 36th International Symposium on Computational Geometry. Vol 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.SoCG.2020.9' apa: 'Arroyo Guevara, A. M., Bensmail, J., & Bruce Richter, R. (2020). Extending drawings of graphs to arrangements of pseudolines. In 36th International Symposium on Computational Geometry (Vol. 164). Zürich, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2020.9' chicago: Arroyo Guevara, Alan M, Julien Bensmail, and R. Bruce Richter. “Extending Drawings of Graphs to Arrangements of Pseudolines.” In 36th International Symposium on Computational Geometry, Vol. 164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.9. ieee: A. M. Arroyo Guevara, J. Bensmail, and R. Bruce Richter, “Extending drawings of graphs to arrangements of pseudolines,” in 36th International Symposium on Computational Geometry, Zürich, Switzerland, 2020, vol. 164. ista: 'Arroyo Guevara AM, Bensmail J, Bruce Richter R. 2020. Extending drawings of graphs to arrangements of pseudolines. 36th International Symposium on Computational Geometry. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 164, 9:1-9:14.' mla: Arroyo Guevara, Alan M., et al. “Extending Drawings of Graphs to Arrangements of Pseudolines.” 36th International Symposium on Computational Geometry, vol. 164, 9:1-9:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.SoCG.2020.9. short: A.M. Arroyo Guevara, J. Bensmail, R. Bruce Richter, in:, 36th International Symposium on Computational Geometry, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-06-26 location: Zürich, Switzerland name: 'SoCG: Symposium on Computational Geometry' start_date: 2020-06-22 date_created: 2020-06-22T09:14:21Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-02-23T13:22:12Z day: '01' ddc: - '510' department: - _id: UlWa doi: 10.4230/LIPIcs.SoCG.2020.9 ec_funded: 1 external_id: arxiv: - '1804.09317' file: - access_level: open_access checksum: 93571b76cf97d5b7c8aabaeaa694dd7e content_type: application/pdf creator: dernst date_created: 2020-06-23T11:06:23Z date_updated: 2020-07-14T12:48:06Z file_id: '8006' file_name: 2020_LIPIcsSoCG_Arroyo.pdf file_size: 592661 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 164' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 36th International Symposium on Computational Geometry publication_identifier: isbn: - '9783959771436' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Extending drawings of graphs to arrangements of pseudolines tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 164 year: '2020' ... --- _id: '8011' abstract: - lang: eng text: 'Relaxation to a thermal state is the inevitable fate of nonequilibrium interacting quantum systems without special conservation laws. While thermalization in one-dimensional systems can often be suppressed by integrability mechanisms, in two spatial dimensions thermalization is expected to be far more effective due to the increased phase space. In this work we propose a general framework for escaping or delaying the emergence of the thermal state in two-dimensional arrays of Rydberg atoms via the mechanism of quantum scars, i.e., initial states that fail to thermalize. The suppression of thermalization is achieved in two complementary ways: by adding local perturbations or by adjusting the driving Rabi frequency according to the local connectivity of the lattice. We demonstrate that these mechanisms allow us to realize robust quantum scars in various two-dimensional lattices, including decorated lattices with nonconstant connectivity. In particular, we show that a small decrease of the Rabi frequency at the corners of the lattice is crucial for mitigating the strong boundary effects in two-dimensional systems. Our results identify synchronization as an important tool for future experiments on two-dimensional quantum scars.' article_number: '022065' article_processing_charge: No article_type: original author: - first_name: Alexios full_name: Michailidis, Alexios id: 36EBAD38-F248-11E8-B48F-1D18A9856A87 last_name: Michailidis - first_name: C. J. full_name: Turner, C. J. last_name: Turner - first_name: Z. full_name: Papić, Z. last_name: Papić - first_name: D. A. full_name: Abanin, D. A. last_name: Abanin - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2020;2(2). doi:10.1103/physrevresearch.2.022065 apa: Michailidis, A., Turner, C. J., Papić, Z., Abanin, D. A., & Serbyn, M. (2020). Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.022065 chicago: Michailidis, Alexios, C. J. Turner, Z. Papić, D. A. Abanin, and Maksym Serbyn. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.022065. ieee: A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M. Serbyn, “Stabilizing two-dimensional quantum scars by deformation and synchronization,” Physical Review Research, vol. 2, no. 2. American Physical Society, 2020. ista: Michailidis A, Turner CJ, Papić Z, Abanin DA, Serbyn M. 2020. Stabilizing two-dimensional quantum scars by deformation and synchronization. Physical Review Research. 2(2), 022065. mla: Michailidis, Alexios, et al. “Stabilizing Two-Dimensional Quantum Scars by Deformation and Synchronization.” Physical Review Research, vol. 2, no. 2, 022065, American Physical Society, 2020, doi:10.1103/physrevresearch.2.022065. short: A. Michailidis, C.J. Turner, Z. Papić, D.A. Abanin, M. Serbyn, Physical Review Research 2 (2020). date_created: 2020-06-23T12:00:19Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:16:30Z day: '22' ddc: - '530' department: - _id: MaSe doi: 10.1103/physrevresearch.2.022065 ec_funded: 1 file: - access_level: open_access checksum: e6959dc8220f14a008d1933858795e6d content_type: application/pdf creator: dernst date_created: 2020-06-29T14:41:27Z date_updated: 2020-07-14T12:48:08Z file_id: '8050' file_name: 2020_PhysicalReviewResearch_Michailidis.pdf file_size: 2066011 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 2' issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 23841C26-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '850899' name: 'Non-Ergodic Quantum Matter: Universality, Dynamics and Control' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Stabilizing two-dimensional quantum scars by deformation and synchronization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '8063' abstract: - lang: eng text: "We present a generative model of images that explicitly reasons over the set\r\nof objects they show. Our model learns a structured latent representation that\r\nseparates objects from each other and from the background; unlike prior works,\r\nit explicitly represents the 2D position and depth of each object, as well as\r\nan embedding of its segmentation mask and appearance. The model can be trained\r\nfrom images alone in a purely unsupervised fashion without the need for object\r\nmasks or depth information. Moreover, it always generates complete objects,\r\neven though a significant fraction of training images contain occlusions.\r\nFinally, we show that our model can infer decompositions of novel images into\r\ntheir constituent objects, including accurate prediction of depth ordering and\r\nsegmentation of occluded parts." article_number: '2004.00642' article_processing_charge: No author: - first_name: Titas full_name: Anciukevicius, Titas last_name: Anciukevicius - first_name: Christoph full_name: Lampert, Christoph id: 40C20FD2-F248-11E8-B48F-1D18A9856A87 last_name: Lampert orcid: 0000-0001-8622-7887 - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 citation: ama: Anciukevicius T, Lampert C, Henderson PM. Object-centric image generation with factored depths, locations, and appearances. arXiv. apa: Anciukevicius, T., Lampert, C., & Henderson, P. M. (n.d.). Object-centric image generation with factored depths, locations, and appearances. arXiv. chicago: Anciukevicius, Titas, Christoph Lampert, and Paul M Henderson. “Object-Centric Image Generation with Factored Depths, Locations, and Appearances.” ArXiv, n.d. ieee: T. Anciukevicius, C. Lampert, and P. M. Henderson, “Object-centric image generation with factored depths, locations, and appearances,” arXiv. . ista: Anciukevicius T, Lampert C, Henderson PM. Object-centric image generation with factored depths, locations, and appearances. arXiv, 2004.00642. mla: Anciukevicius, Titas, et al. “Object-Centric Image Generation with Factored Depths, Locations, and Appearances.” ArXiv, 2004.00642. short: T. Anciukevicius, C. Lampert, P.M. Henderson, ArXiv (n.d.). date_created: 2020-06-29T23:55:23Z date_published: 2020-04-01T00:00:00Z date_updated: 2021-01-12T08:16:44Z day: '01' ddc: - '004' department: - _id: ChLa external_id: arxiv: - '2004.00642' language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.00642 month: '04' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: Object-centric image generation with factored depths, locations, and appearances tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8081' abstract: - lang: eng text: "Here, we employ micro- and nanosized cellulose particles, namely paper fines and cellulose\r\nnanocrystals, to induce hierarchical organization over a wide length scale. After processing\r\nthem into carbonaceous materials, we demonstrate that these hierarchically organized materials\r\noutperform the best materials for supercapacitors operating with organic electrolytes reported\r\nin literature in terms of specific energy/power (Ragone plot) while showing hardly any capacity\r\nfade over 4,000 cycles. The highly porous materials feature a specific surface area as high as\r\n2500 m2ˑg-1 and exhibit pore sizes in the range of 0.5 to 200 nm as proven by scanning electron\r\nmicroscopy and N2 physisorption. The carbonaceous materials have been further investigated\r\nby X-ray photoelectron spectroscopy and RAMAN spectroscopy. Since paper fines are an\r\nunderutilized side stream in any paper production process, they are a cheap and highly available\r\nfeedstock to prepare carbonaceous materials with outstanding performance in electrochemical\r\napplications. " acknowledgement: 'The authors M.A.H., S.S., R.E., and W.B. acknowledge the industrial partners Sappi Gratkorn, Zellstoff Pöls and Mondi Frantschach, the Austrian Research Promotion Agency (FFG), COMET, BMVIT, BMWFJ, the Province of Styria and Carinthia for their financial support of the K-project Flippr²-Process Integration. E.M. and S.A.F. are indebted to the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 636069). W. T. and S. E. thank FWO (G.0C60.13N) and the European Union’s European Fund for Regional Development and Flanders Innovation & Entrepreneurship (Accelerate3 project, Interreg Vlaanderen-Nederland program) for financial support. W. T. also thanks the Provincie West-Vlaanderen (Belgium) for his Provincial Chair in Advanced Materials. S. B. thanks the European Regional Development Fund (EFRE) and the province of Upper Austria for financial support through the program IWB 2014-2020 (project BioCarb-K). AMR gratefully acknowledges funding support through the SC EPSCoR/IDeAProgram under Award #18-SR03, and the NASA EPSCoR Program under Award #NNH17ZHA002C. Icons in Scheme 1 were provided by Good Ware, monkik, photo3idea_studio, and OCHA from www.flaticon.com.' article_processing_charge: No author: - first_name: 'Mathias A. ' full_name: 'Hobisch, Mathias A. ' last_name: Hobisch - first_name: 'Eléonore ' full_name: 'Mourad, Eléonore ' last_name: Mourad - first_name: 'Wolfgang J. ' full_name: 'Fischer, Wolfgang J. ' last_name: Fischer - first_name: 'Christian ' full_name: 'Prehal, Christian ' last_name: Prehal - first_name: 'Samuel ' full_name: 'Eyley, Samuel ' last_name: Eyley - first_name: 'Anthony ' full_name: 'Childress, Anthony ' last_name: Childress - first_name: 'Armin ' full_name: 'Zankel, Armin ' last_name: Zankel - first_name: 'Andreas ' full_name: 'Mautner, Andreas ' last_name: Mautner - first_name: 'Stefan ' full_name: 'Breitenbach, Stefan ' last_name: Breitenbach - first_name: 'Apparao M. ' full_name: 'Rao, Apparao M. ' last_name: Rao - first_name: 'Wim ' full_name: 'Thielemans, Wim ' last_name: Thielemans - first_name: Stefan Alexander full_name: Freunberger, Stefan Alexander id: A8CA28E6-CE23-11E9-AD2D-EC27E6697425 last_name: Freunberger orcid: 0000-0003-2902-5319 - first_name: 'Rene ' full_name: 'Eckhart, Rene ' last_name: Eckhart - first_name: 'Wolfgang ' full_name: 'Bauer, Wolfgang ' last_name: Bauer - first_name: 'Stefan ' full_name: 'Spirk, Stefan ' last_name: Spirk citation: ama: Hobisch MA, Mourad E, Fischer WJ, et al. High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. apa: Hobisch, M. A., Mourad, E., Fischer, W. J., Prehal, C., Eyley, S., Childress, A., … Spirk, S. (n.d.). High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. chicago: Hobisch, Mathias A. , Eléonore Mourad, Wolfgang J. Fischer, Christian Prehal, Samuel Eyley, Anthony Childress, Armin Zankel, et al. “High Specific Capacitance Supercapacitors from Hierarchically Organized All-Cellulose Composites,” n.d. ieee: M. A. Hobisch et al., “High specific capacitance supercapacitors from hierarchically organized all-cellulose composites.” . ista: Hobisch MA, Mourad E, Fischer WJ, Prehal C, Eyley S, Childress A, Zankel A, Mautner A, Breitenbach S, Rao AM, Thielemans W, Freunberger SA, Eckhart R, Bauer W, Spirk S. High specific capacitance supercapacitors from hierarchically organized all-cellulose composites. mla: Hobisch, Mathias A., et al. High Specific Capacitance Supercapacitors from Hierarchically Organized All-Cellulose Composites. short: M.A. Hobisch, E. Mourad, W.J. Fischer, C. Prehal, S. Eyley, A. Childress, A. Zankel, A. Mautner, S. Breitenbach, A.M. Rao, W. Thielemans, S.A. Freunberger, R. Eckhart, W. Bauer, S. Spirk, (n.d.). date_created: 2020-07-02T20:24:42Z date_published: 2020-07-13T00:00:00Z date_updated: 2022-06-17T08:39:49Z day: '13' ddc: - '540' department: - _id: StFr file: - access_level: open_access checksum: 6970d621984c03ebc2eee71adfe706dd content_type: application/pdf creator: sfreunbe date_created: 2020-07-02T20:21:59Z date_updated: 2020-07-14T12:48:09Z file_id: '8082' file_name: AM.pdf file_size: 1129852 relation: main_file - access_level: open_access checksum: cd74c7bd47d6e7163d54d67f074dcc36 content_type: application/pdf creator: cziletti date_created: 2020-07-08T12:14:04Z date_updated: 2020-07-14T12:48:09Z file_id: '8102' file_name: Supporting_Information.pdf file_size: 945565 relation: supplementary_material file_date_updated: 2020-07-14T12:48:09Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version publication_status: submitted status: public title: High specific capacitance supercapacitors from hierarchically organized all-cellulose composites type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8105' abstract: - lang: eng text: Physical and biological systems often exhibit intermittent dynamics with bursts or avalanches (active states) characterized by power-law size and duration distributions. These emergent features are typical of systems at the critical point of continuous phase transitions, and have led to the hypothesis that such systems may self-organize at criticality, i.e. without any fine tuning of parameters. Since the introduction of the Bak-Tang-Wiesenfeld (BTW) model, the paradigm of self-organized criticality (SOC) has been very fruitful for the analysis of emergent collective behaviors in a number of systems, including the brain. Although considerable effort has been devoted in identifying and modeling scaling features of burst and avalanche statistics, dynamical aspects related to the temporal organization of bursts remain often poorly understood or controversial. Of crucial importance to understand the mechanisms responsible for emergent behaviors is the relationship between active and quiet periods, and the nature of the correlations. Here we investigate the dynamics of active (θ-bursts) and quiet states (δ-bursts) in brain activity during the sleep-wake cycle. We show the duality of power-law (θ, active phase) and exponential-like (δ, quiescent phase) duration distributions, typical of SOC, jointly emerge with power-law temporal correlations and anti-correlated coupling between active and quiet states. Importantly, we demonstrate that such temporal organization shares important similarities with earthquake dynamics, and propose that specific power-law correlations and coupling between active and quiet states are distinctive characteristics of a class of systems with self-organization at criticality. article_number: '00005' article_processing_charge: No article_type: original author: - first_name: Fabrizio full_name: Lombardi, Fabrizio id: A057D288-3E88-11E9-986D-0CF4E5697425 last_name: Lombardi orcid: 0000-0003-2623-5249 - first_name: Jilin W.J.L. full_name: Wang, Jilin W.J.L. last_name: Wang - first_name: Xiyun full_name: Zhang, Xiyun last_name: Zhang - first_name: Plamen Ch full_name: Ivanov, Plamen Ch last_name: Ivanov citation: ama: Lombardi F, Wang JWJL, Zhang X, Ivanov PC. Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. 2020;230. doi:10.1051/epjconf/202023000005 apa: Lombardi, F., Wang, J. W. J. L., Zhang, X., & Ivanov, P. C. (2020). Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. EDP Sciences. https://doi.org/10.1051/epjconf/202023000005 chicago: Lombardi, Fabrizio, Jilin W.J.L. Wang, Xiyun Zhang, and Plamen Ch Ivanov. “Power-Law Correlations and Coupling of Active and Quiet States Underlie a Class of Complex Systems with Self-Organization at Criticality.” EPJ Web of Conferences. EDP Sciences, 2020. https://doi.org/10.1051/epjconf/202023000005. ieee: F. Lombardi, J. W. J. L. Wang, X. Zhang, and P. C. Ivanov, “Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality,” EPJ Web of Conferences, vol. 230. EDP Sciences, 2020. ista: Lombardi F, Wang JWJL, Zhang X, Ivanov PC. 2020. Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality. EPJ Web of Conferences. 230, 00005. mla: Lombardi, Fabrizio, et al. “Power-Law Correlations and Coupling of Active and Quiet States Underlie a Class of Complex Systems with Self-Organization at Criticality.” EPJ Web of Conferences, vol. 230, 00005, EDP Sciences, 2020, doi:10.1051/epjconf/202023000005. short: F. Lombardi, J.W.J.L. Wang, X. Zhang, P.C. Ivanov, EPJ Web of Conferences 230 (2020). date_created: 2020-07-12T16:20:33Z date_published: 2020-03-11T00:00:00Z date_updated: 2021-01-12T08:16:55Z day: '11' ddc: - '530' department: - _id: GaTk doi: 10.1051/epjconf/202023000005 file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-07-22T06:17:11Z date_updated: 2020-07-22T06:17:11Z file_id: '8144' file_name: 2020_EPJWebConf_Lombardi.pdf file_size: 2197543 relation: main_file success: 1 file_date_updated: 2020-07-22T06:17:11Z has_accepted_license: '1' intvolume: ' 230' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: EPJ Web of Conferences publication_identifier: issn: - 2100-014X publication_status: published publisher: EDP Sciences quality_controlled: '1' status: public title: Power-law correlations and coupling of active and quiet states underlie a class of complex systems with self-organization at criticality tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 230 year: '2020' ... --- _id: '8135' abstract: - lang: eng text: Discrete Morse theory has recently lead to new developments in the theory of random geometric complexes. This article surveys the methods and results obtained with this new approach, and discusses some of its shortcomings. It uses simulations to illustrate the results and to form conjectures, getting numerical estimates for combinatorial, topological, and geometric properties of weighted and unweighted Delaunay mosaics, their dual Voronoi tessellations, and the Alpha and Wrap complexes contained in the mosaics. acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 78818 Alpha and No 638176). It is also partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). alternative_title: - Abel Symposia article_processing_charge: No author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Anton full_name: Nikitenko, Anton id: 3E4FF1BA-F248-11E8-B48F-1D18A9856A87 last_name: Nikitenko - first_name: Katharina full_name: Ölsböck, Katharina id: 4D4AA390-F248-11E8-B48F-1D18A9856A87 last_name: Ölsböck - first_name: Peter full_name: Synak, Peter id: 331776E2-F248-11E8-B48F-1D18A9856A87 last_name: Synak citation: ama: 'Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In: Topological Data Analysis. Vol 15. Springer Nature; 2020:181-218. doi:10.1007/978-3-030-43408-3_8' apa: Edelsbrunner, H., Nikitenko, A., Ölsböck, K., & Synak, P. (2020). Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. In Topological Data Analysis (Vol. 15, pp. 181–218). Springer Nature. https://doi.org/10.1007/978-3-030-43408-3_8 chicago: Edelsbrunner, Herbert, Anton Nikitenko, Katharina Ölsböck, and Peter Synak. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” In Topological Data Analysis, 15:181–218. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-43408-3_8. ieee: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, and P. Synak, “Radius functions on Poisson–Delaunay mosaics and related complexes experimentally,” in Topological Data Analysis, 2020, vol. 15, pp. 181–218. ista: Edelsbrunner H, Nikitenko A, Ölsböck K, Synak P. 2020. Radius functions on Poisson–Delaunay mosaics and related complexes experimentally. Topological Data Analysis. , Abel Symposia, vol. 15, 181–218. mla: Edelsbrunner, Herbert, et al. “Radius Functions on Poisson–Delaunay Mosaics and Related Complexes Experimentally.” Topological Data Analysis, vol. 15, Springer Nature, 2020, pp. 181–218, doi:10.1007/978-3-030-43408-3_8. short: H. Edelsbrunner, A. Nikitenko, K. Ölsböck, P. Synak, in:, Topological Data Analysis, Springer Nature, 2020, pp. 181–218. date_created: 2020-07-19T22:00:59Z date_published: 2020-06-22T00:00:00Z date_updated: 2021-01-12T08:17:06Z day: '22' ddc: - '510' department: - _id: HeEd doi: 10.1007/978-3-030-43408-3_8 ec_funded: 1 file: - access_level: open_access checksum: 7b5e0de10675d787a2ddb2091370b8d8 content_type: application/pdf creator: dernst date_created: 2020-10-08T08:56:14Z date_updated: 2020-10-08T08:56:14Z file_id: '8628' file_name: 2020-B-01-PoissonExperimentalSurvey.pdf file_size: 2207071 relation: main_file success: 1 file_date_updated: 2020-10-08T08:56:14Z has_accepted_license: '1' intvolume: ' 15' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 181-218 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2533E772-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '638176' name: Efficient Simulation of Natural Phenomena at Extremely Large Scales - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Topological Data Analysis publication_identifier: eissn: - '21978549' isbn: - '9783030434076' issn: - '21932808' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Radius functions on Poisson–Delaunay mosaics and related complexes experimentally type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '8181' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. Amplified centrosomes in dendritic cells promote immune cell effector functions. 2020. doi:10.15479/AT:ISTA:8181 apa: Hauschild, R. (2020). Amplified centrosomes in dendritic cells promote immune cell effector functions. IST Austria. https://doi.org/10.15479/AT:ISTA:8181 chicago: Hauschild, Robert. “Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8181. ieee: R. Hauschild, “Amplified centrosomes in dendritic cells promote immune cell effector functions.” IST Austria, 2020. ista: Hauschild R. 2020. Amplified centrosomes in dendritic cells promote immune cell effector functions, IST Austria, 10.15479/AT:ISTA:8181. mla: Hauschild, Robert. Amplified Centrosomes in Dendritic Cells Promote Immune Cell Effector Functions. IST Austria, 2020, doi:10.15479/AT:ISTA:8181. short: R. Hauschild, (2020). date_created: 2020-07-28T16:24:37Z date_published: 2020-08-24T00:00:00Z date_updated: 2021-01-11T15:29:08Z day: '24' department: - _id: Bio doi: 10.15479/AT:ISTA:8181 file: - access_level: open_access checksum: 878c60885ce30afb59a884dd5eef451c content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:49Z date_updated: 2020-08-24T15:43:49Z file_id: '8290' file_name: centriolesDistance.m file_size: 6577 relation: main_file success: 1 - access_level: open_access checksum: 5a93ac7be2b66b28e4bd8b113ee6aade content_type: text/plain creator: rhauschild date_created: 2020-08-24T15:43:52Z date_updated: 2020-08-24T15:43:52Z file_id: '8291' file_name: goTracking.m file_size: 2680 relation: main_file success: 1 file_date_updated: 2020-08-24T15:43:52Z has_accepted_license: '1' license: https://opensource.org/licenses/BSD-3-Clause month: '08' oa: 1 publisher: IST Austria status: public title: Amplified centrosomes in dendritic cells promote immune cell effector functions tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8225' abstract: - lang: eng text: Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy. article_number: '5693' article_processing_charge: No article_type: original author: - first_name: Verena K. full_name: Köhler, Verena K. last_name: Köhler orcid: 0000-0001-5581-398X - first_name: Silvia full_name: Crescioli, Silvia last_name: Crescioli orcid: 0000-0002-1909-5957 - first_name: Judit full_name: Fazekas-Singer, Judit id: 36432834-F248-11E8-B48F-1D18A9856A87 last_name: Fazekas-Singer orcid: 0000-0002-8777-3502 - first_name: Heather J. full_name: Bax, Heather J. last_name: Bax orcid: 0000-0003-0432-4160 - first_name: Gerhard full_name: Hofer, Gerhard last_name: Hofer - first_name: Christina L. full_name: Pranger, Christina L. last_name: Pranger - first_name: Karin full_name: Hufnagl, Karin last_name: Hufnagl - first_name: Rodolfo full_name: Bianchini, Rodolfo last_name: Bianchini orcid: 0000-0003-0351-6937 - first_name: Sabine full_name: Flicker, Sabine last_name: Flicker orcid: 0000-0003-4768-8693 - first_name: Walter full_name: Keller, Walter last_name: Keller orcid: 0000-0002-2261-958X - first_name: Sophia N. full_name: Karagiannis, Sophia N. last_name: Karagiannis orcid: 0000-0002-4100-7810 - first_name: Erika full_name: Jensen-Jarolim, Erika last_name: Jensen-Jarolim orcid: 0000-0003-4019-5765 citation: ama: 'Köhler VK, Crescioli S, Singer J, et al. Filling the antibody pipeline in allergy: PIPE cloning of IgE, IgG1 and IgG4 against the major birch pollen allergen Bet v 1. International Journal of Molecular Sciences. 2020;21(16). doi:10.3390/ijms21165693' apa: 'Köhler, V. K., Crescioli, S., Singer, J., Bax, H. J., Hofer, G., Pranger, C. L., … Jensen-Jarolim, E. (2020). Filling the antibody pipeline in allergy: PIPE cloning of IgE, IgG1 and IgG4 against the major birch pollen allergen Bet v 1. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms21165693' chicago: 'Köhler, Verena K., Silvia Crescioli, Judit Singer, Heather J. Bax, Gerhard Hofer, Christina L. Pranger, Karin Hufnagl, et al. “Filling the Antibody Pipeline in Allergy: PIPE Cloning of IgE, IgG1 and IgG4 against the Major Birch Pollen Allergen Bet v 1.” International Journal of Molecular Sciences. MDPI, 2020. https://doi.org/10.3390/ijms21165693.' ieee: 'V. K. Köhler et al., “Filling the antibody pipeline in allergy: PIPE cloning of IgE, IgG1 and IgG4 against the major birch pollen allergen Bet v 1,” International Journal of Molecular Sciences, vol. 21, no. 16. MDPI, 2020.' ista: 'Köhler VK, Crescioli S, Singer J, Bax HJ, Hofer G, Pranger CL, Hufnagl K, Bianchini R, Flicker S, Keller W, Karagiannis SN, Jensen-Jarolim E. 2020. Filling the antibody pipeline in allergy: PIPE cloning of IgE, IgG1 and IgG4 against the major birch pollen allergen Bet v 1. International Journal of Molecular Sciences. 21(16), 5693.' mla: 'Köhler, Verena K., et al. “Filling the Antibody Pipeline in Allergy: PIPE Cloning of IgE, IgG1 and IgG4 against the Major Birch Pollen Allergen Bet v 1.” International Journal of Molecular Sciences, vol. 21, no. 16, 5693, MDPI, 2020, doi:10.3390/ijms21165693.' short: V.K. Köhler, S. Crescioli, J. Singer, H.J. Bax, G. Hofer, C.L. Pranger, K. Hufnagl, R. Bianchini, S. Flicker, W. Keller, S.N. Karagiannis, E. Jensen-Jarolim, International Journal of Molecular Sciences 21 (2020). date_created: 2020-08-10T11:47:29Z date_published: 2020-08-08T00:00:00Z date_updated: 2021-01-12T08:17:34Z day: '08' ddc: - '570' doi: 10.3390/ijms21165693 extern: '1' external_id: pmid: - '32784509' file: - access_level: open_access checksum: dac7ccef7cdcea9be292664d8c488425 content_type: application/pdf creator: dernst date_created: 2020-09-10T07:06:22Z date_updated: 2020-09-10T07:06:22Z file_id: '8356' file_name: 2020_IntMolecSciences_Koehler.pdf file_size: 2680908 relation: main_file success: 1 file_date_updated: 2020-09-10T07:06:22Z has_accepted_license: '1' intvolume: ' 21' issue: '16' language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: International Journal of Molecular Sciences publication_identifier: issn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: 'Filling the antibody pipeline in allergy: PIPE cloning of IgE, IgG1 and IgG4 against the major birch pollen allergen Bet v 1' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 21 year: '2020' ... --- _id: '8226' article_processing_charge: No article_type: letter_note author: - first_name: Jelena full_name: Gotovina, Jelena last_name: Gotovina orcid: 0000-0003-1503-5276 - first_name: Rodolfo full_name: Bianchini, Rodolfo last_name: Bianchini orcid: 0000-0003-0351-6937 - first_name: Judit full_name: Fazekas-Singer, Judit id: 36432834-F248-11E8-B48F-1D18A9856A87 last_name: Fazekas-Singer orcid: 0000-0002-8777-3502 - first_name: Ina full_name: Herrmann, Ina last_name: Herrmann orcid: 0000-0003-2772-9144 - first_name: Giulia full_name: Pellizzari, Giulia last_name: Pellizzari orcid: 0000-0003-0387-1912 - first_name: Ian D. full_name: Haidl, Ian D. last_name: Haidl orcid: 0000-0002-5301-0822 - first_name: Karin full_name: Hufnagl, Karin last_name: Hufnagl orcid: 0000-0002-2288-2468 - first_name: Sophia N. full_name: Karagiannis, Sophia N. last_name: Karagiannis orcid: 0000-0002-4100-7810 - first_name: Jean S. full_name: Marshall, Jean S. last_name: Marshall orcid: 0000-0002-5642-1379 - first_name: Erika full_name: Jensen‐Jarolim, Erika last_name: Jensen‐Jarolim orcid: 0000-0003-4019-5765 citation: ama: Gotovina J, Bianchini R, Singer J, et al. Epinephrine drives human M2a allergic macrophages to a regulatory phenotype reducing mast cell degranulation in vitro. Allergy. 2020. doi:10.1111/all.14299 apa: Gotovina, J., Bianchini, R., Singer, J., Herrmann, I., Pellizzari, G., Haidl, I. D., … Jensen‐Jarolim, E. (2020). Epinephrine drives human M2a allergic macrophages to a regulatory phenotype reducing mast cell degranulation in vitro. Allergy. Wiley. https://doi.org/10.1111/all.14299 chicago: Gotovina, Jelena, Rodolfo Bianchini, Judit Singer, Ina Herrmann, Giulia Pellizzari, Ian D. Haidl, Karin Hufnagl, Sophia N. Karagiannis, Jean S. Marshall, and Erika Jensen‐Jarolim. “Epinephrine Drives Human M2a Allergic Macrophages to a Regulatory Phenotype Reducing Mast Cell Degranulation in Vitro.” Allergy. Wiley, 2020. https://doi.org/10.1111/all.14299. ieee: J. Gotovina et al., “Epinephrine drives human M2a allergic macrophages to a regulatory phenotype reducing mast cell degranulation in vitro,” Allergy. Wiley, 2020. ista: Gotovina J, Bianchini R, Singer J, Herrmann I, Pellizzari G, Haidl ID, Hufnagl K, Karagiannis SN, Marshall JS, Jensen‐Jarolim E. 2020. Epinephrine drives human M2a allergic macrophages to a regulatory phenotype reducing mast cell degranulation in vitro. Allergy. mla: Gotovina, Jelena, et al. “Epinephrine Drives Human M2a Allergic Macrophages to a Regulatory Phenotype Reducing Mast Cell Degranulation in Vitro.” Allergy, Wiley, 2020, doi:10.1111/all.14299. short: J. Gotovina, R. Bianchini, J. Singer, I. Herrmann, G. Pellizzari, I.D. Haidl, K. Hufnagl, S.N. Karagiannis, J.S. Marshall, E. Jensen‐Jarolim, Allergy (2020). date_created: 2020-08-10T11:50:30Z date_published: 2020-04-04T00:00:00Z date_updated: 2021-01-12T08:17:35Z day: '04' doi: 10.1111/all.14299 extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/all.14299 month: '04' oa: 1 oa_version: Published Version publication: Allergy publication_identifier: issn: - 0105-4538 - 1398-9995 publication_status: epub_ahead publisher: Wiley quality_controlled: '1' status: public title: Epinephrine drives human M2a allergic macrophages to a regulatory phenotype reducing mast cell degranulation in vitro type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8294' abstract: - lang: eng text: 'Automated root growth analysis and tracking of root tips. ' author: - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 citation: ama: Hauschild R. RGtracker. 2020. doi:10.15479/AT:ISTA:8294 apa: Hauschild, R. (2020). RGtracker. IST Austria. https://doi.org/10.15479/AT:ISTA:8294 chicago: Hauschild, Robert. “RGtracker.” IST Austria, 2020. https://doi.org/10.15479/AT:ISTA:8294. ieee: R. Hauschild, “RGtracker.” IST Austria, 2020. ista: Hauschild R. 2020. RGtracker, IST Austria, 10.15479/AT:ISTA:8294. mla: Hauschild, Robert. RGtracker. IST Austria, 2020, doi:10.15479/AT:ISTA:8294. short: R. Hauschild, (2020). date_created: 2020-08-25T12:52:48Z date_published: 2020-09-10T00:00:00Z date_updated: 2021-01-12T08:17:56Z day: '10' ddc: - '570' department: - _id: Bio doi: 10.15479/AT:ISTA:8294 file: - access_level: open_access checksum: 108352149987ac6f066e4925bd56e35e content_type: text/plain creator: rhauschild date_created: 2020-09-08T14:26:31Z date_updated: 2020-09-08T14:26:31Z file_id: '8346' file_name: readme.txt file_size: 882 relation: main_file success: 1 - access_level: open_access checksum: ffd6c643b28e0cc7c6d0060a18a7e8ea content_type: application/octet-stream creator: rhauschild date_created: 2020-09-08T14:26:33Z date_updated: 2020-09-08T14:26:33Z file_id: '8347' file_name: RGtracker.mlappinstall file_size: 246121 relation: main_file success: 1 file_date_updated: 2020-09-08T14:26:33Z has_accepted_license: '1' month: '09' oa: 1 publisher: IST Austria status: public title: RGtracker tmp: legal_code_url: https://opensource.org/licenses/BSD-3-Clause name: The 3-Clause BSD License short: 3-Clause BSD type: software user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8307' abstract: - lang: eng text: "Classic Byzantine fault-tolerant consensus protocols forfeit liveness in the face of asynchrony in order to preserve safety, whereas most deployed blockchain protocols forfeit safety in order to remain live. In this work, we achieve the best of both worlds by proposing a novel abstractions called the finality gadget. A finality gadget allows for transactions to always optimistically commit but informs the clients that these transactions might be unsafe. As a result, a blockchain can execute transactions optimistically and only commit them after they have been sufficiently and provably audited. In\r\nthis work, we formally model the finality gadget abstraction, prove that it is impossible to solve it deterministically in full asynchrony (even though it is stronger than consensus) and provide a partially synchronous protocol which is currently securing a major blockchain. This way we show that the protocol designer can decouple safety and liveness in order to speed up recovery from failures. We believe that there can be other types of finality gadgets that provide weaker safety (e.g., probabilistic) in order to gain more efficiency and this can depend on the probability that the network is not in synchrony." article_number: '2007.01560' article_processing_charge: No author: - first_name: Alistair full_name: Stewart, Alistair last_name: Stewart - first_name: Eleftherios full_name: Kokoris Kogias, Eleftherios id: f5983044-d7ef-11ea-ac6d-fd1430a26d30 last_name: Kokoris Kogias citation: ama: 'Stewart A, Kokoris Kogias E. GRANDPA: A Byzantine finality gadget. arXiv.' apa: 'Stewart, A., & Kokoris Kogias, E. (n.d.). GRANDPA: A Byzantine finality gadget. arXiv.' chicago: 'Stewart, Alistair, and Eleftherios Kokoris Kogias. “GRANDPA: A Byzantine Finality Gadget.” ArXiv, n.d.' ieee: 'A. Stewart and E. Kokoris Kogias, “GRANDPA: A Byzantine finality gadget,” arXiv. .' ista: 'Stewart A, Kokoris Kogias E. GRANDPA: A Byzantine finality gadget. arXiv, 2007.01560.' mla: 'Stewart, Alistair, and Eleftherios Kokoris Kogias. “GRANDPA: A Byzantine Finality Gadget.” ArXiv, 2007.01560.' short: A. Stewart, E. Kokoris Kogias, ArXiv (n.d.). date_created: 2020-08-26T12:32:10Z date_published: 2020-07-03T00:00:00Z date_updated: 2021-01-12T08:18:02Z day: '03' extern: '1' external_id: arxiv: - '2007.01560' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2007.01560 month: '07' oa: 1 oa_version: Preprint publication: arXiv publication_status: submitted status: public title: 'GRANDPA: A Byzantine finality gadget' type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8322' abstract: - lang: eng text: "Reverse firewalls were introduced at Eurocrypt 2015 by Miro-nov and Stephens-Davidowitz, as a method for protecting cryptographic protocols against attacks on the devices of the honest parties. In a nutshell: a reverse firewall is placed outside of a device and its goal is to “sanitize” the messages sent by it, in such a way that a malicious device cannot leak its secrets to the outside world. It is typically assumed that the cryptographic devices are attacked in a “functionality-preserving way” (i.e. informally speaking, the functionality of the protocol remains unchanged under this attacks). In their paper, Mironov and Stephens-Davidowitz construct a protocol for passively-secure two-party computations with firewalls, leaving extension of this result to stronger models as an open question.\r\nIn this paper, we address this problem by constructing a protocol for secure computation with firewalls that has two main advantages over the original protocol from Eurocrypt 2015. Firstly, it is a multiparty computation protocol (i.e. it works for an arbitrary number n of the parties, and not just for 2). Secondly, it is secure in much stronger corruption settings, namely in the active corruption model. More precisely: we consider an adversary that can fully corrupt up to \U0001D45B−1 parties, while the remaining parties are corrupt in a functionality-preserving way.\r\nOur core techniques are: malleable commitments and malleable non-interactive zero-knowledge, which in particular allow us to create a novel protocol for multiparty augmented coin-tossing into the well with reverse firewalls (that is based on a protocol of Lindell from Crypto 2001)." acknowledgement: We would like to thank the anonymous reviewers for their helpful comments and suggestions. The work was initiated while the first author was in IIT Madras, India. Part of this work was done while the author was visiting the University of Warsaw. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT) and from the Foundation for Polish Science under grant TEAM/2016-1/4 founded within the UE 2014–2020 Smart Growth Operational Program. The last author was supported by the Independent Research Fund Denmark project BETHE and the Concordium Blockchain Research Center, Aarhus University, Denmark. alternative_title: - LNCS article_processing_charge: No author: - first_name: Suvradip full_name: Chakraborty, Suvradip id: B9CD0494-D033-11E9-B219-A439E6697425 last_name: Chakraborty - first_name: Stefan full_name: Dziembowski, Stefan last_name: Dziembowski - first_name: Jesper Buus full_name: Nielsen, Jesper Buus last_name: Nielsen citation: ama: 'Chakraborty S, Dziembowski S, Nielsen JB. Reverse firewalls for actively secure MPCs. In: Advances in Cryptology – CRYPTO 2020. Vol 12171. Springer Nature; 2020:732-762. doi:10.1007/978-3-030-56880-1_26' apa: 'Chakraborty, S., Dziembowski, S., & Nielsen, J. B. (2020). Reverse firewalls for actively secure MPCs. In Advances in Cryptology – CRYPTO 2020 (Vol. 12171, pp. 732–762). Santa Barbara, CA, United States: Springer Nature. https://doi.org/10.1007/978-3-030-56880-1_26' chicago: Chakraborty, Suvradip, Stefan Dziembowski, and Jesper Buus Nielsen. “Reverse Firewalls for Actively Secure MPCs.” In Advances in Cryptology – CRYPTO 2020, 12171:732–62. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-56880-1_26. ieee: S. Chakraborty, S. Dziembowski, and J. B. Nielsen, “Reverse firewalls for actively secure MPCs,” in Advances in Cryptology – CRYPTO 2020, Santa Barbara, CA, United States, 2020, vol. 12171, pp. 732–762. ista: 'Chakraborty S, Dziembowski S, Nielsen JB. 2020. Reverse firewalls for actively secure MPCs. Advances in Cryptology – CRYPTO 2020. CRYPTO: Annual International Cryptology Conference, LNCS, vol. 12171, 732–762.' mla: Chakraborty, Suvradip, et al. “Reverse Firewalls for Actively Secure MPCs.” Advances in Cryptology – CRYPTO 2020, vol. 12171, Springer Nature, 2020, pp. 732–62, doi:10.1007/978-3-030-56880-1_26. short: S. Chakraborty, S. Dziembowski, J.B. Nielsen, in:, Advances in Cryptology – CRYPTO 2020, Springer Nature, 2020, pp. 732–762. conference: end_date: 2020-08-21 location: Santa Barbara, CA, United States name: 'CRYPTO: Annual International Cryptology Conference' start_date: 2020-08-17 date_created: 2020-08-30T22:01:12Z date_published: 2020-08-10T00:00:00Z date_updated: 2021-01-12T08:18:08Z day: '10' department: - _id: KrPi doi: 10.1007/978-3-030-56880-1_26 ec_funded: 1 intvolume: ' 12171' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2019/1317 month: '08' oa: 1 oa_version: Preprint page: 732-762 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: Advances in Cryptology – CRYPTO 2020 publication_identifier: eissn: - '16113349' isbn: - '9783030568795' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Reverse firewalls for actively secure MPCs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12171 year: '2020' ... --- _id: '8339' abstract: - lang: eng text: "Discrete Gaussian distributions over lattices are central to lattice-based cryptography, and to the computational and mathematical aspects of lattices more broadly. The literature contains a wealth of useful theorems about the behavior of discrete Gaussians under convolutions and related operations. Yet despite their structural similarities, most of these theorems are formally incomparable, and their proofs tend to be monolithic and written nearly “from scratch,” making them unnecessarily hard to verify, understand, and extend.\r\nIn this work we present a modular framework for analyzing linear operations on discrete Gaussian distributions. The framework abstracts away the particulars of Gaussians, and usually reduces proofs to the choice of appropriate linear transformations and elementary linear algebra. To showcase the approach, we establish several general properties of discrete Gaussians, and show how to obtain all prior convolution theorems (along with some new ones) as straightforward corollaries. As another application, we describe a self-reduction for Learning With Errors (LWE) that uses a fixed number of samples to generate an unlimited number of additional ones (having somewhat larger error). The distinguishing features of our reduction are its simple analysis in our framework, and its exclusive use of discrete Gaussians without any loss in parameters relative to a prior mixed discrete-and-continuous approach.\r\nAs a contribution of independent interest, for subgaussian random matrices we prove a singular value concentration bound with explicitly stated constants, and we give tighter heuristics for specific distributions that are commonly used for generating lattice trapdoors. These bounds yield improvements in the concrete bit-security estimates for trapdoor lattice cryptosystems." alternative_title: - LNCS article_processing_charge: No author: - first_name: Nicholas full_name: Genise, Nicholas last_name: Genise - first_name: Daniele full_name: Micciancio, Daniele last_name: Micciancio - first_name: Chris full_name: Peikert, Chris last_name: Peikert - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 citation: ama: 'Genise N, Micciancio D, Peikert C, Walter M. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. Vol 12110. Springer Nature; 2020:623-651. doi:10.1007/978-3-030-45374-9_21' apa: 'Genise, N., Micciancio, D., Peikert, C., & Walter, M. (2020). Improved discrete Gaussian and subgaussian analysis for lattice cryptography. In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography (Vol. 12110, pp. 623–651). Edinburgh, United Kingdom: Springer Nature. https://doi.org/10.1007/978-3-030-45374-9_21' chicago: Genise, Nicholas, Daniele Micciancio, Chris Peikert, and Michael Walter. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” In 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, 12110:623–51. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-45374-9_21. ieee: N. Genise, D. Micciancio, C. Peikert, and M. Walter, “Improved discrete Gaussian and subgaussian analysis for lattice cryptography,” in 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Edinburgh, United Kingdom, 2020, vol. 12110, pp. 623–651. ista: 'Genise N, Micciancio D, Peikert C, Walter M. 2020. Improved discrete Gaussian and subgaussian analysis for lattice cryptography. 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography. PKC: Public-Key Cryptography, LNCS, vol. 12110, 623–651.' mla: Genise, Nicholas, et al. “Improved Discrete Gaussian and Subgaussian Analysis for Lattice Cryptography.” 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, vol. 12110, Springer Nature, 2020, pp. 623–51, doi:10.1007/978-3-030-45374-9_21. short: N. Genise, D. Micciancio, C. Peikert, M. Walter, in:, 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography, Springer Nature, 2020, pp. 623–651. conference: end_date: 2020-05-07 location: Edinburgh, United Kingdom name: 'PKC: Public-Key Cryptography' start_date: 2020-05-04 date_created: 2020-09-06T22:01:13Z date_published: 2020-05-15T00:00:00Z date_updated: 2023-02-23T13:31:06Z day: '15' department: - _id: KrPi doi: 10.1007/978-3-030-45374-9_21 ec_funded: 1 intvolume: ' 12110' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2020/337 month: '05' oa: 1 oa_version: Preprint page: 623-651 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 23rd IACR International Conference on the Practice and Theory of Public-Key Cryptography publication_identifier: eissn: - '16113349' isbn: - '9783030453732' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Improved discrete Gaussian and subgaussian analysis for lattice cryptography type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12110 year: '2020' ... --- _id: '8402' abstract: - lang: eng text: "Background: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway.\r\nResults: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins.\r\nConclusions: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins." article_number: '2' article_processing_charge: No article_type: original author: - first_name: Heike full_name: Rampelt, Heike last_name: Rampelt - first_name: Iva full_name: Sucec, Iva last_name: Sucec - first_name: Beate full_name: Bersch, Beate last_name: Bersch - first_name: Patrick full_name: Horten, Patrick last_name: Horten - first_name: Inge full_name: Perschil, Inge last_name: Perschil - first_name: Jean-Claude full_name: Martinou, Jean-Claude last_name: Martinou - first_name: Martin full_name: van der Laan, Martin last_name: van der Laan - first_name: Nils full_name: Wiedemann, Nils last_name: Wiedemann - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 - first_name: Nikolaus full_name: Pfanner, Nikolaus last_name: Pfanner citation: ama: Rampelt H, Sucec I, Bersch B, et al. The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology. 2020;18. doi:10.1186/s12915-019-0733-6 apa: Rampelt, H., Sucec, I., Bersch, B., Horten, P., Perschil, I., Martinou, J.-C., … Pfanner, N. (2020). The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology. Springer Nature. https://doi.org/10.1186/s12915-019-0733-6 chicago: Rampelt, Heike, Iva Sucec, Beate Bersch, Patrick Horten, Inge Perschil, Jean-Claude Martinou, Martin van der Laan, Nils Wiedemann, Paul Schanda, and Nikolaus Pfanner. “The Mitochondrial Carrier Pathway Transports Non-Canonical Substrates with an Odd Number of Transmembrane Segments.” BMC Biology. Springer Nature, 2020. https://doi.org/10.1186/s12915-019-0733-6. ieee: H. Rampelt et al., “The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments,” BMC Biology, vol. 18. Springer Nature, 2020. ista: Rampelt H, Sucec I, Bersch B, Horten P, Perschil I, Martinou J-C, van der Laan M, Wiedemann N, Schanda P, Pfanner N. 2020. The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biology. 18, 2. mla: Rampelt, Heike, et al. “The Mitochondrial Carrier Pathway Transports Non-Canonical Substrates with an Odd Number of Transmembrane Segments.” BMC Biology, vol. 18, 2, Springer Nature, 2020, doi:10.1186/s12915-019-0733-6. short: H. Rampelt, I. Sucec, B. Bersch, P. Horten, I. Perschil, J.-C. Martinou, M. van der Laan, N. Wiedemann, P. Schanda, N. Pfanner, BMC Biology 18 (2020). date_created: 2020-09-17T10:26:53Z date_published: 2020-01-06T00:00:00Z date_updated: 2021-01-12T08:19:02Z day: '06' doi: 10.1186/s12915-019-0733-6 extern: '1' external_id: pmid: - '31907035' intvolume: ' 18' keyword: - Biotechnology - Plant Science - General Biochemistry - Genetics and Molecular Biology - Developmental Biology - Cell Biology - Physiology - Ecology - Evolution - Behavior and Systematics - Structural Biology - General Agricultural and Biological Sciences language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1186/s12915-019-0733-6 month: '01' oa: 1 oa_version: Published Version pmid: 1 publication: BMC Biology publication_identifier: issn: - 1741-7007 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2020' ... --- _id: '8404' abstract: - lang: eng text: The mitochondrial Tim chaperones are responsible for the transport of membrane proteins across the inter-membrane space to the inner and outer mitochondrial membranes. TIM9·10, a hexameric 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase complex TIM22. The mechanism of client transport by TIM9·10 has been resolved recently, but the structure and subunit composition of the TIM9·10·12 complex remains largely unresolved. Furthermore, the assembly process of the hexameric TIM chaperones from its subunits remained elusive. We investigate the structural and dynamical properties of the Tim subunits, and show that they are highly dynamic. In their non-assembled form, the subunits behave as intrinsically disordered proteins; when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short marginally stable α-helices are formed, which are only fully stabilized upon hexamer formation to the mature chaperone. Subunits are in equilibrium between their hexamer-embedded and a free form, with exchange kinetics on a minutes time scale. Joint NMR, small-angle X-ray scattering and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, which has a 2:3:1 stoichiometry (Tim9:Tim10:Tim12) with a conserved hydrophobic client-binding groove and flexible N- and C-terminal tentacles. article_processing_charge: No author: - first_name: Katharina full_name: Weinhäupl, Katharina last_name: Weinhäupl - first_name: Yong full_name: Wang, Yong last_name: Wang - first_name: Audrey full_name: Hessel, Audrey last_name: Hessel - first_name: Martha full_name: Brennich, Martha last_name: Brennich - first_name: Kresten full_name: Lindorff-Larsen, Kresten last_name: Lindorff-Larsen - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 citation: ama: Weinhäupl K, Wang Y, Hessel A, Brennich M, Lindorff-Larsen K, Schanda P. Architecture and subunit dynamics of the mitochondrial TIM9·10·12 chaperone. bioRxiv. doi:10.1101/2020.03.13.990150 apa: Weinhäupl, K., Wang, Y., Hessel, A., Brennich, M., Lindorff-Larsen, K., & Schanda, P. (n.d.). Architecture and subunit dynamics of the mitochondrial TIM9·10·12 chaperone. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.03.13.990150 chicago: Weinhäupl, Katharina, Yong Wang, Audrey Hessel, Martha Brennich, Kresten Lindorff-Larsen, and Paul Schanda. “Architecture and Subunit Dynamics of the Mitochondrial TIM9·10·12 Chaperone.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2020.03.13.990150. ieee: K. Weinhäupl, Y. Wang, A. Hessel, M. Brennich, K. Lindorff-Larsen, and P. Schanda, “Architecture and subunit dynamics of the mitochondrial TIM9·10·12 chaperone,” bioRxiv. Cold Spring Harbor Laboratory. ista: Weinhäupl K, Wang Y, Hessel A, Brennich M, Lindorff-Larsen K, Schanda P. Architecture and subunit dynamics of the mitochondrial TIM9·10·12 chaperone. bioRxiv, 10.1101/2020.03.13.990150. mla: Weinhäupl, Katharina, et al. “Architecture and Subunit Dynamics of the Mitochondrial TIM9·10·12 Chaperone.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2020.03.13.990150. short: K. Weinhäupl, Y. Wang, A. Hessel, M. Brennich, K. Lindorff-Larsen, P. Schanda, BioRxiv (n.d.). date_created: 2020-09-17T10:27:59Z date_published: 2020-03-14T00:00:00Z date_updated: 2021-01-12T08:19:03Z day: '14' doi: 10.1101/2020.03.13.990150 extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.03.13.990150 month: '03' oa: 1 oa_version: Preprint publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory status: public title: Architecture and subunit dynamics of the mitochondrial TIM9·10·12 chaperone type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8403' abstract: - lang: eng text: Chaperones are essential for assisting protein folding, and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone–client binding, but our understanding of how additional interactions enable client specificity is sparse. Here we decipher what determines binding of two chaperones (TIM8·13, TIM9·10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1, and Tim23 which has an additional disordered hydrophilic domain. Combining NMR, SAXS and molecular dynamics simulations, we determine the structures of Tim23/TIM8·13 and Tim23/TIM9·10 complexes. TIM8·13 uses transient salt bridges to interact with the hydrophilic part of its client, but its interactions to the transmembrane part are weaker than in TIM9·10. Consequently, TIM9·10 outcompetes TIM8·13 in binding hydrophobic clients, while TIM8·13 is tuned to few clients with both hydrophilic and hydrophobic parts. Our study exemplifies how chaperones fine-tune the balance of promiscuity vs. specificity. article_processing_charge: No author: - first_name: Iva full_name: Sučec, Iva last_name: Sučec - first_name: Yong full_name: Wang, Yong last_name: Wang - first_name: Ons full_name: Dakhlaoui, Ons last_name: Dakhlaoui - first_name: Katharina full_name: Weinhäupl, Katharina last_name: Weinhäupl - first_name: Tobias full_name: Jores, Tobias last_name: Jores - first_name: Doriane full_name: Costa, Doriane last_name: Costa - first_name: Audrey full_name: Hessel, Audrey last_name: Hessel - first_name: Martha full_name: Brennich, Martha last_name: Brennich - first_name: Doron full_name: Rapaport, Doron last_name: Rapaport - first_name: Kresten full_name: Lindorff-Larsen, Kresten last_name: Lindorff-Larsen - first_name: Beate full_name: Bersch, Beate last_name: Bersch - first_name: Paul full_name: Schanda, Paul id: 7B541462-FAF6-11E9-A490-E8DFE5697425 last_name: Schanda orcid: 0000-0002-9350-7606 citation: ama: Sučec I, Wang Y, Dakhlaoui O, et al. Structural basis of client specificity in mitochondrial membrane-protein chaperones. bioRxiv. doi:10.1101/2020.06.08.140772 apa: Sučec, I., Wang, Y., Dakhlaoui, O., Weinhäupl, K., Jores, T., Costa, D., … Schanda, P. (n.d.). Structural basis of client specificity in mitochondrial membrane-protein chaperones. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.06.08.140772 chicago: Sučec, Iva, Yong Wang, Ons Dakhlaoui, Katharina Weinhäupl, Tobias Jores, Doriane Costa, Audrey Hessel, et al. “Structural Basis of Client Specificity in Mitochondrial Membrane-Protein Chaperones.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2020.06.08.140772. ieee: I. Sučec et al., “Structural basis of client specificity in mitochondrial membrane-protein chaperones,” bioRxiv. Cold Spring Harbor Laboratory. ista: Sučec I, Wang Y, Dakhlaoui O, Weinhäupl K, Jores T, Costa D, Hessel A, Brennich M, Rapaport D, Lindorff-Larsen K, Bersch B, Schanda P. Structural basis of client specificity in mitochondrial membrane-protein chaperones. bioRxiv, 10.1101/2020.06.08.140772. mla: Sučec, Iva, et al. “Structural Basis of Client Specificity in Mitochondrial Membrane-Protein Chaperones.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2020.06.08.140772. short: I. Sučec, Y. Wang, O. Dakhlaoui, K. Weinhäupl, T. Jores, D. Costa, A. Hessel, M. Brennich, D. Rapaport, K. Lindorff-Larsen, B. Bersch, P. Schanda, BioRxiv (n.d.). date_created: 2020-09-17T10:27:47Z date_published: 2020-09-17T00:00:00Z date_updated: 2021-01-12T08:19:02Z day: '17' doi: 10.1101/2020.06.08.140772 extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.06.08.140772 month: '09' oa: 1 oa_version: Preprint publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory status: public title: Structural basis of client specificity in mitochondrial membrane-protein chaperones type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8572' abstract: - lang: eng text: 'We present the results of the ARCH 2020 friendly competition for formal verification of continuous and hybrid systems with linear continuous dynamics. In its fourth edition, eight tools have been applied to solve eight different benchmark problems in the category for linear continuous dynamics (in alphabetical order): CORA, C2E2, HyDRA, Hylaa, Hylaa-Continuous, JuliaReach, SpaceEx, and XSpeed. This report is a snapshot of the current landscape of tools and the types of benchmarks they are particularly suited for. Due to the diversity of problems, we are not ranking tools, yet the presented results provide one of the most complete assessments of tools for the safety verification of continuous and hybrid systems with linear continuous dynamics up to this date.' acknowledgement: "The authors gratefully acknowledge financial support by the European Commission project\r\njustITSELF under grant number 817629, by the Austrian Science Fund (FWF) under grant\r\nZ211-N23 (Wittgenstein Award), by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411, and by the\r\nScience and Engineering Research Board (SERB) project with file number IMP/2018/000523.\r\nThis material is based upon work supported by the Air Force Office of Scientific Research under\r\naward number FA9550-19-1-0288. Any opinions, finding, and conclusions or recommendations\r\nexpressed in this material are those of the author(s) and do not necessarily reflect the views of\r\nthe United States Air Force." article_processing_charge: No author: - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Stanley full_name: Bak, Stanley last_name: Bak - first_name: Zongnan full_name: Bao, Zongnan last_name: Bao - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Goran full_name: Frehse, Goran last_name: Frehse - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: Yangge full_name: Li, Yangge last_name: Li - first_name: Sayan full_name: Mitra, Sayan last_name: Mitra - first_name: Rajarshi full_name: Ray, Rajarshi last_name: Ray - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 - first_name: Stefan full_name: Schupp, Stefan last_name: Schupp - first_name: Mark full_name: Wetzlinger, Mark last_name: Wetzlinger citation: ama: 'Althoff M, Bak S, Bao Z, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:16-48. doi:10.29007/7dt2' apa: 'Althoff, M., Bak, S., Bao, Z., Forets, M., Frehse, G., Freire, D., … Wetzlinger, M. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. In EPiC Series in Computing (Vol. 74, pp. 16–48). EasyChair. https://doi.org/10.29007/7dt2' chicago: 'Althoff, Matthias, Stanley Bak, Zongnan Bao, Marcelo Forets, Goran Frehse, Daniel Freire, Niklas Kochdumper, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” In EPiC Series in Computing, 74:16–48. EasyChair, 2020. https://doi.org/10.29007/7dt2.' ieee: 'M. Althoff et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 16–48.' ista: 'Althoff M, Bak S, Bao Z, Forets M, Frehse G, Freire D, Kochdumper N, Li Y, Mitra S, Ray R, Schilling C, Schupp S, Wetzlinger M. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 16–48.' mla: 'Althoff, Matthias, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 16–48, doi:10.29007/7dt2.' short: M. Althoff, S. Bak, Z. Bao, M. Forets, G. Frehse, D. Freire, N. Kochdumper, Y. Li, S. Mitra, R. Ray, C. Schilling, S. Schupp, M. Wetzlinger, in:, EPiC Series in Computing, EasyChair, 2020, pp. 16–48. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:49:43Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/7dt2 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/DRpS month: '09' oa: 1 oa_version: Published Version page: 16-48 project: - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with linear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8571' abstract: - lang: eng text: We present the results of a friendly competition for formal verification of continuous and hybrid systems with nonlinear continuous dynamics. The friendly competition took place as part of the workshop Applied Verification for Continuous and Hybrid Systems (ARCH) in 2020. This year, 6 tools Ariadne, CORA, DynIbex, Flow*, Isabelle/HOL, and JuliaReach (in alphabetic order) participated. These tools are applied to solve reachability analysis problems on six benchmark problems, two of them featuring hybrid dynamics. We do not rank the tools based on the results, but show the current status and discover the potential advantages of different tools. acknowledgement: Christian Schilling acknowledges support in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award) and the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No. 754411. article_processing_charge: No author: - first_name: Luca full_name: Geretti, Luca last_name: Geretti - first_name: Julien full_name: Alexandre Dit Sandretto, Julien last_name: Alexandre Dit Sandretto - first_name: Matthias full_name: Althoff, Matthias last_name: Althoff - first_name: Luis full_name: Benet, Luis last_name: Benet - first_name: Alexandre full_name: Chapoutot, Alexandre last_name: Chapoutot - first_name: Xin full_name: Chen, Xin last_name: Chen - first_name: Pieter full_name: Collins, Pieter last_name: Collins - first_name: Marcelo full_name: Forets, Marcelo last_name: Forets - first_name: Daniel full_name: Freire, Daniel last_name: Freire - first_name: Fabian full_name: Immler, Fabian last_name: Immler - first_name: Niklas full_name: Kochdumper, Niklas last_name: Kochdumper - first_name: David full_name: Sanders, David last_name: Sanders - first_name: Christian full_name: Schilling, Christian id: 3A2F4DCE-F248-11E8-B48F-1D18A9856A87 last_name: Schilling orcid: 0000-0003-3658-1065 citation: ama: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, et al. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In: EPiC Series in Computing. Vol 74. EasyChair; 2020:49-75. doi:10.29007/zkf6' apa: 'Geretti, L., Alexandre Dit Sandretto, J., Althoff, M., Benet, L., Chapoutot, A., Chen, X., … Schilling, C. (2020). ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. In EPiC Series in Computing (Vol. 74, pp. 49–75). EasyChair. https://doi.org/10.29007/zkf6' chicago: 'Geretti, Luca, Julien Alexandre Dit Sandretto, Matthias Althoff, Luis Benet, Alexandre Chapoutot, Xin Chen, Pieter Collins, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” In EPiC Series in Computing, 74:49–75. EasyChair, 2020. https://doi.org/10.29007/zkf6.' ieee: 'L. Geretti et al., “ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics,” in EPiC Series in Computing, 2020, vol. 74, pp. 49–75.' ista: 'Geretti L, Alexandre Dit Sandretto J, Althoff M, Benet L, Chapoutot A, Chen X, Collins P, Forets M, Freire D, Immler F, Kochdumper N, Sanders D, Schilling C. 2020. ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics. EPiC Series in Computing. ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems vol. 74, 49–75.' mla: 'Geretti, Luca, et al. “ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Nonlinear Dynamics.” EPiC Series in Computing, vol. 74, EasyChair, 2020, pp. 49–75, doi:10.29007/zkf6.' short: L. Geretti, J. Alexandre Dit Sandretto, M. Althoff, L. Benet, A. Chapoutot, X. Chen, P. Collins, M. Forets, D. Freire, F. Immler, N. Kochdumper, D. Sanders, C. Schilling, in:, EPiC Series in Computing, EasyChair, 2020, pp. 49–75. conference: end_date: 2020-07-12 name: 'ARCH: International Workshop on Applied Verification on Continuous and Hybrid Systems' start_date: 2020-07-12 date_created: 2020-09-26T14:41:29Z date_published: 2020-09-25T00:00:00Z date_updated: 2021-01-12T08:20:06Z day: '25' department: - _id: ToHe doi: 10.29007/zkf6 ec_funded: 1 intvolume: ' 74' language: - iso: eng main_file_link: - open_access: '1' url: https://easychair.org/publications/download/nrdD month: '09' oa: 1 oa_version: Published Version page: 49-75 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: EPiC Series in Computing publication_status: published publisher: EasyChair quality_controlled: '1' status: public title: 'ARCH-COMP20 Category Report: Continuous and hybrid systems with nonlinear dynamics' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2020' ... --- _id: '8600' abstract: - lang: eng text: 'A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with transitions between successive configurations. A probabilistic VASS consists of a VASS along with a probability distribution over the transitions for each state. Qualitative properties such as state and configuration reachability have been widely studied for VASS. In this work we consider multi-dimensional long-run average objectives for VASS and probabilistic VASS. For a counter, the cost of a configuration is the value of the counter; and the long-run average value of a computation for the counter is the long-run average of the costs of the configurations in the computation. The multi-dimensional long-run average problem given a VASS and a threshold value for each counter, asks whether there is a computation such that for each counter the long-run average value for the counter does not exceed the respective threshold. For probabilistic VASS, instead of the existence of a computation, we consider whether the expected long-run average value for each counter does not exceed the respective threshold. Our main results are as follows: we show that the multi-dimensional long-run average problem (a) is NP-complete for integer-valued VASS; (b) is undecidable for natural-valued VASS (i.e., nonnegative counters); and (c) can be solved in polynomial time for probabilistic integer-valued VASS, and probabilistic natural-valued VASS when all computations are non-terminating.' alternative_title: - LIPIcs article_number: '23' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Multi-dimensional long-run average problems for vector addition systems with states. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.23' apa: 'Chatterjee, K., Henzinger, T. A., & Otop, J. (2020). Multi-dimensional long-run average problems for vector addition systems with states. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23. ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, “Multi-dimensional long-run average problems for vector addition systems with states,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Chatterjee K, Henzinger TA, Otop J. 2020. Multi-dimensional long-run average problems for vector addition systems with states. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 23.' mla: Chatterjee, Krishnendu, et al. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” 31st International Conference on Concurrency Theory, vol. 171, 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.23. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:15Z day: '06' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.23 external_id: arxiv: - '2007.08917' file: - access_level: open_access checksum: 5039752f644c4b72b9361d21a5e31baf content_type: application/pdf creator: dernst date_created: 2020-10-05T14:04:25Z date_updated: 2020-10-05T14:04:25Z file_id: '8610' file_name: 2020_LIPIcsCONCUR_Chatterjee.pdf file_size: 601231 relation: main_file success: 1 file_date_updated: 2020-10-05T14:04:25Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Multi-dimensional long-run average problems for vector addition systems with states tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8599' abstract: - lang: eng text: A graph game is a two-player zero-sum game in which the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. In bidding games, both players have budgets, and in each turn, we hold an "auction" (bidding) to determine which player moves the token. In this survey, we consider several bidding mechanisms and study their effect on the properties of the game. Specifically, bidding games, and in particular bidding games of infinite duration, have an intriguing equivalence with random-turn games in which in each turn, the player who moves is chosen randomly. We show how minor changes in the bidding mechanism lead to unexpected differences in the equivalence with random-turn games. acknowledgement: We would like to thank all our collaborators Milad Aghajohari, Ventsislav Chonev, Rasmus Ibsen-Jensen, Ismäel Jecker, Petr Novotný, Josef Tkadlec, and Ðorđe Žikelić; we hope the collaboration was as fun and meaningful for you as it was for us. alternative_title: - LIPIcs article_number: '2' article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: 'Avni G, Henzinger TA. A survey of bidding games on graphs. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.2' apa: 'Avni, G., & Henzinger, T. A. (2020). A survey of bidding games on graphs. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2' chicago: Avni, Guy, and Thomas A Henzinger. “A Survey of Bidding Games on Graphs.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.2. ieee: G. Avni and T. A. Henzinger, “A survey of bidding games on graphs,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Avni G, Henzinger TA. 2020. A survey of bidding games on graphs. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 2.' mla: Avni, Guy, and Thomas A. Henzinger. “A Survey of Bidding Games on Graphs.” 31st International Conference on Concurrency Theory, vol. 171, 2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.2. short: G. Avni, T.A. Henzinger, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:13Z day: '06' ddc: - '000' department: - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.2 file: - access_level: open_access checksum: 8f33b098e73724e0ac817f764d8e1a2d content_type: application/pdf creator: dernst date_created: 2020-10-05T14:13:19Z date_updated: 2020-10-05T14:13:19Z file_id: '8611' file_name: 2020_LIPIcsCONCUR_Avni.pdf file_size: 868510 relation: main_file success: 1 file_date_updated: 2020-10-05T14:13:19Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: A survey of bidding games on graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8725' abstract: - lang: eng text: "The design and implementation of efficient concurrent data structures have\r\nseen significant attention. However, most of this work has focused on\r\nconcurrent data structures providing good \\emph{worst-case} guarantees. In real\r\nworkloads, objects are often accessed at different rates, since access\r\ndistributions may be non-uniform. Efficient distribution-adaptive data\r\nstructures are known in the sequential case, e.g. the splay-trees; however,\r\nthey often are hard to translate efficiently in the concurrent case.\r\n In this paper, we investigate distribution-adaptive concurrent data\r\nstructures and propose a new design called the splay-list. At a high level, the\r\nsplay-list is similar to a standard skip-list, with the key distinction that\r\nthe height of each element adapts dynamically to its access rate: popular\r\nelements ``move up,'' whereas rarely-accessed elements decrease in height. We\r\nshow that the splay-list provides order-optimal amortized complexity bounds for\r\na subset of operations while being amenable to efficient concurrent\r\nimplementation. Experimental results show that the splay-list can leverage\r\ndistribution-adaptivity to improve on the performance of classic concurrent\r\ndesigns, and can outperform the only previously-known distribution-adaptive\r\ndesign in certain settings." acknowledgement: "Vitaly Aksenov: Government of Russian Federation (Grant 08-08).\r\nDan Alistarh: ERC Starting Grant 805223 ScaleML." article_processing_charge: No author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Alexandra full_name: Drozdova, Alexandra last_name: Drozdova - first_name: Amirkeivan full_name: Mohtashami, Amirkeivan last_name: Mohtashami citation: ama: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. The splay-list: A distribution-adaptive concurrent skip-list. In: 34th International Symposium on Distributed Computing. Vol 179. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020:3:1-3:18. doi:10.4230/LIPIcs.DISC.2020.3' apa: 'Aksenov, V., Alistarh, D.-A., Drozdova, A., & Mohtashami, A. (2020). The splay-list: A distribution-adaptive concurrent skip-list. In 34th International Symposium on Distributed Computing (Vol. 179, p. 3:1-3:18). Freiburg, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2020.3' chicago: 'Aksenov, Vitaly, Dan-Adrian Alistarh, Alexandra Drozdova, and Amirkeivan Mohtashami. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” In 34th International Symposium on Distributed Computing, 179:3:1-3:18. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.DISC.2020.3.' ieee: 'V. Aksenov, D.-A. Alistarh, A. Drozdova, and A. Mohtashami, “The splay-list: A distribution-adaptive concurrent skip-list,” in 34th International Symposium on Distributed Computing, Freiburg, Germany, 2020, vol. 179, p. 3:1-3:18.' ista: 'Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. 2020. The splay-list: A distribution-adaptive concurrent skip-list. 34th International Symposium on Distributed Computing. DISC: Symposium on Distributed ComputingLIPIcs vol. 179, 3:1-3:18.' mla: 'Aksenov, Vitaly, et al. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” 34th International Symposium on Distributed Computing, vol. 179, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18, doi:10.4230/LIPIcs.DISC.2020.3.' short: V. Aksenov, D.-A. Alistarh, A. Drozdova, A. Mohtashami, in:, 34th International Symposium on Distributed Computing, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18. conference: end_date: 2020-10-16 location: Freiburg, Germany name: 'DISC: Symposium on Distributed Computing' start_date: 2020-10-12 date_created: 2020-11-05T15:26:17Z date_published: 2020-08-03T00:00:00Z date_updated: 2023-02-23T13:41:40Z day: '03' ddc: - '000' department: - _id: DaAl doi: 10.4230/LIPIcs.DISC.2020.3 ec_funded: 1 external_id: arxiv: - '2008.01009' file: - access_level: open_access checksum: a626a9c47df52b6f6d97edd910dae4ba content_type: application/pdf creator: dernst date_created: 2021-03-11T12:33:35Z date_updated: 2021-03-11T12:33:35Z file_id: '9237' file_name: 2020_LIPIcs_Aksenov.pdf file_size: 740358 relation: main_file success: 1 file_date_updated: 2021-03-11T12:33:35Z has_accepted_license: '1' intvolume: ' 179' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 3:1-3:18 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: 34th International Symposium on Distributed Computing publication_identifier: isbn: - '9783959771689' issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' series_title: LIPIcs status: public title: 'The splay-list: A distribution-adaptive concurrent skip-list' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 179 year: '2020' ... --- _id: '8726' abstract: - lang: eng text: Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measurable consequences. Here, we capture the essential features of spin-orbital entanglement in complex quantum matter utilizing 1D spin-orbital model which accommodates SU(2)⊗SU(2) symmetric Kugel-Khomskii superexchange as well as the Ising on-site spin-orbit coupling. Building on the results obtained for full and effective models in the regime of strong spin-orbit coupling, we address the question whether the entanglement found on superexchange bonds always increases when the Ising spin-orbit coupling is added. We show that (i) quantum entanglement is amplified by strong spin-orbit coupling and, surprisingly, (ii) almost classical disentangled states are possible. We complete the latter case by analyzing how the entanglement existing for intermediate values of spin-orbit coupling can disappear for higher values of this coupling. article_number: '53' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Andrzej M. full_name: Oleś, Andrzej M. last_name: Oleś citation: ama: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 2020;5(3). doi:10.3390/condmat5030053 apa: Gotfryd, D., Paerschke, E., Wohlfeld, K., & Oleś, A. M. (2020). Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. MDPI. https://doi.org/10.3390/condmat5030053 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Krzysztof Wohlfeld, and Andrzej M. Oleś. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter. MDPI, 2020. https://doi.org/10.3390/condmat5030053. ieee: D. Gotfryd, E. Paerschke, K. Wohlfeld, and A. M. Oleś, “Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling,” Condensed Matter, vol. 5, no. 3. MDPI, 2020. ista: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. 2020. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 5(3), 53. mla: Gotfryd, Dorota, et al. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter, vol. 5, no. 3, 53, MDPI, 2020, doi:10.3390/condmat5030053. short: D. Gotfryd, E. Paerschke, K. Wohlfeld, A.M. Oleś, Condensed Matter 5 (2020). date_created: 2020-11-06T07:21:00Z date_published: 2020-08-26T00:00:00Z date_updated: 2021-01-12T08:20:46Z day: '26' ddc: - '530' department: - _id: MiLe doi: 10.3390/condmat5030053 ec_funded: 1 external_id: arxiv: - '2009.11773' file: - access_level: open_access checksum: a57a698ff99a11b6665bafd1bac7afbc content_type: application/pdf creator: dernst date_created: 2020-11-06T07:24:40Z date_updated: 2020-11-06T07:24:40Z file_id: '8727' file_name: 2020_CondensedMatter_Gotfryd.pdf file_size: 768336 relation: main_file success: 1 file_date_updated: 2020-11-06T07:24:40Z has_accepted_license: '1' intvolume: ' 5' issue: '3' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Condensed Matter publication_identifier: issn: - 2410-3896 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '9040' abstract: - lang: eng text: Machine learning and formal methods have complimentary benefits and drawbacks. In this work, we address the controller-design problem with a combination of techniques from both fields. The use of black-box neural networks in deep reinforcement learning (deep RL) poses a challenge for such a combination. Instead of reasoning formally about the output of deep RL, which we call the wizard, we extract from it a decision-tree based model, which we refer to as the magic book. Using the extracted model as an intermediary, we are able to handle problems that are infeasible for either deep RL or formal methods by themselves. First, we suggest, for the first time, a synthesis procedure that is based on a magic book. We synthesize a stand-alone correct-by-design controller that enjoys the favorable performance of RL. Second, we incorporate a magic book in a bounded model checking (BMC) procedure. BMC allows us to find numerous traces of the plant under the control of the wizard, which a user can use to increase the trustworthiness of the wizard and direct further training. acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). article_processing_charge: No author: - first_name: Par Alizadeh full_name: Alamdari, Par Alizadeh last_name: Alamdari - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Anna full_name: Lukina, Anna id: CBA4D1A8-0FE8-11E9-BDE6-07BFE5697425 last_name: Lukina citation: ama: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. Formal methods with a touch of magic. In: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. TU Wien Academic Press; 2020:138-147. doi:10.34727/2020/isbn.978-3-85448-042-6_21' apa: 'Alamdari, P. A., Avni, G., Henzinger, T. A., & Lukina, A. (2020). Formal methods with a touch of magic. In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design (pp. 138–147). Online Conference: TU Wien Academic Press. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21' chicago: Alamdari, Par Alizadeh, Guy Avni, Thomas A Henzinger, and Anna Lukina. “Formal Methods with a Touch of Magic.” In Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, 138–47. TU Wien Academic Press, 2020. https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_21. ieee: P. A. Alamdari, G. Avni, T. A. Henzinger, and A. Lukina, “Formal methods with a touch of magic,” in Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, Online Conference, 2020, pp. 138–147. ista: 'Alamdari PA, Avni G, Henzinger TA, Lukina A. 2020. Formal methods with a touch of magic. Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design. FMCAD: Formal Methods in Computer-Aided Design, 138–147.' mla: Alamdari, Par Alizadeh, et al. “Formal Methods with a Touch of Magic.” Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–47, doi:10.34727/2020/isbn.978-3-85448-042-6_21. short: P.A. Alamdari, G. Avni, T.A. Henzinger, A. Lukina, in:, Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design, TU Wien Academic Press, 2020, pp. 138–147. conference: end_date: 2020-09-24 location: Online Conference name: ' FMCAD: Formal Methods in Computer-Aided Design' start_date: 2020-09-21 date_created: 2021-01-24T23:01:10Z date_published: 2020-09-21T00:00:00Z date_updated: 2021-02-09T09:39:59Z day: '21' ddc: - '000' department: - _id: ToHe doi: 10.34727/2020/isbn.978-3-85448-042-6_21 file: - access_level: open_access checksum: d616d549a0ade78606b16f8a9540820f content_type: application/pdf creator: dernst date_created: 2021-02-09T09:39:02Z date_updated: 2021-02-09T09:39:02Z file_id: '9109' file_name: 2020_FMCAD_Alamdari.pdf file_size: 990999 relation: main_file success: 1 file_date_updated: 2021-02-09T09:39:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 138-147 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 20th Conference on Formal Methods in Computer-Aided Design publication_identifier: eissn: - 2708-7824 isbn: - '9783854480426' publication_status: published publisher: TU Wien Academic Press quality_controlled: '1' scopus_import: '1' status: public title: Formal methods with a touch of magic tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '9126' abstract: - lang: eng text: The goal of this study is to understand the mechanisms controlling the isotopic composition of the water vapor near the surface of tropical oceans, at the scale of about a hundred kilometers and a month. In the tropics, it has long been observed that the isotopic compositions of rain and vapor near the surface are more depleted when the precipitation rate is high. This is called the “amount effect.” Previous studies, based on observations or models with parameterized convection, have highlighted the roles of deep convective and mesoscale downdrafts and rain evaporation. But the relative importance of these processes has never been quantified. We hypothesize that it can be quantified using an analytical model constrained by large‐eddy simulations. Results from large‐eddy simulations confirm that the classical amount effect can be simulated only if precipitation rate changes result from changes in the large‐scale circulation. We find that the main process depleting the water vapor compared to the equilibrium with the ocean is the fact that updrafts stem from areas where the water vapor is more enriched. The main process responsible for the amount effect is the fact that when the large‐scale ascent increases, isotopic vertical gradients are steeper, so that updrafts and downdrafts deplete the subcloud layer more efficiently. article_number: e2020MS002106 article_processing_charge: No article_type: original author: - first_name: Camille full_name: Risi, Camille last_name: Risi - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 - first_name: Peter full_name: Blossey, Peter last_name: Blossey citation: ama: Risi C, Muller CJ, Blossey P. What controls the water vapor isotopic composition near the surface of tropical oceans? Results from an analytical model constrained by large‐eddy simulations. Journal of Advances in Modeling Earth Systems. 2020;12(8). doi:10.1029/2020ms002106 apa: Risi, C., Muller, C. J., & Blossey, P. (2020). What controls the water vapor isotopic composition near the surface of tropical oceans? Results from an analytical model constrained by large‐eddy simulations. Journal of Advances in Modeling Earth Systems. American Geophysical Union. https://doi.org/10.1029/2020ms002106 chicago: Risi, Camille, Caroline J Muller, and Peter Blossey. “What Controls the Water Vapor Isotopic Composition near the Surface of Tropical Oceans? Results from an Analytical Model Constrained by Large‐eddy Simulations.” Journal of Advances in Modeling Earth Systems. American Geophysical Union, 2020. https://doi.org/10.1029/2020ms002106. ieee: C. Risi, C. J. Muller, and P. Blossey, “What controls the water vapor isotopic composition near the surface of tropical oceans? Results from an analytical model constrained by large‐eddy simulations,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 8. American Geophysical Union, 2020. ista: Risi C, Muller CJ, Blossey P. 2020. What controls the water vapor isotopic composition near the surface of tropical oceans? Results from an analytical model constrained by large‐eddy simulations. Journal of Advances in Modeling Earth Systems. 12(8), e2020MS002106. mla: Risi, Camille, et al. “What Controls the Water Vapor Isotopic Composition near the Surface of Tropical Oceans? Results from an Analytical Model Constrained by Large‐eddy Simulations.” Journal of Advances in Modeling Earth Systems, vol. 12, no. 8, e2020MS002106, American Geophysical Union, 2020, doi:10.1029/2020ms002106. short: C. Risi, C.J. Muller, P. Blossey, Journal of Advances in Modeling Earth Systems 12 (2020). date_created: 2021-02-15T14:06:38Z date_published: 2020-08-01T00:00:00Z date_updated: 2022-01-24T12:28:12Z day: '01' doi: 10.1029/2020ms002106 extern: '1' intvolume: ' 12' issue: '8' keyword: - Global and Planetary Change - General Earth and Planetary Sciences - Environmental Chemistry language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1029/2020MS002106 month: '08' oa: 1 oa_version: Published Version publication: Journal of Advances in Modeling Earth Systems publication_identifier: issn: - 1942-2466 - 1942-2466 publication_status: published publisher: American Geophysical Union quality_controlled: '1' status: public title: What controls the water vapor isotopic composition near the surface of tropical oceans? Results from an analytical model constrained by large‐eddy simulations type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 12 year: '2020' ... --- _id: '9127' abstract: - lang: eng text: Nearly all regions in the world are projected to become dryer in a warming climate. Here, we investigate the Mediterranean region, often referred to as a climate change “hot spot”. From regional climate simulations, it is shown that although enhanced warming and drying over land is projected, the spatial pattern displays high variability. Indeed, drying is largely caused by enhanced warming over land. However, in Northern Europe, soil moisture alleviates warming induced drying by up to 50% due to humidity uptake from land. In already arid regions, the Mediterranean Sea is generally the only humidity source, and drying is only due to land warming. However, over Sahara and the Iberian Peninsula, enhanced warming over land is insufficient to explain the extreme drying. These regions are also isolated from humidity advection by heat lows, which are cyclonic circulation anomalies associated with surface heating over land. The cyclonic circulation scales with the temperature gradient between land and ocean which increases with climate change, reinforcing the cyclonic circulation over Sahara and the Iberian Peninsula, both diverting the zonal advection of humidity to the south of the Iberian Peninsula. The dynamics are therefore key in the warming and drying of the Mediterranean region, with extreme aridification over the Sahara and Iberian Peninsula. In these regions, the risk for human health due to the thermal load which accounts for air temperature and humidity is therefore projected to increase significantly with climate change at a level of extreme danger. article_number: '78' article_processing_charge: No article_type: original author: - first_name: Philippe full_name: Drobinski, Philippe last_name: Drobinski - first_name: Nicolas full_name: Da Silva, Nicolas last_name: Da Silva - first_name: Sophie full_name: Bastin, Sophie last_name: Bastin - first_name: Sylvain full_name: Mailler, Sylvain last_name: Mailler - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 - first_name: Bodo full_name: Ahrens, Bodo last_name: Ahrens - first_name: Ole B. full_name: Christensen, Ole B. last_name: Christensen - first_name: Piero full_name: Lionello, Piero last_name: Lionello citation: ama: Drobinski P, Da Silva N, Bastin S, et al. How warmer and drier will the Mediterranean region be at the end of the twenty-first century? Regional Environmental Change. 2020;20(9). doi:10.1007/s10113-020-01659-w apa: Drobinski, P., Da Silva, N., Bastin, S., Mailler, S., Muller, C. J., Ahrens, B., … Lionello, P. (2020). How warmer and drier will the Mediterranean region be at the end of the twenty-first century? Regional Environmental Change. Springer Nature. https://doi.org/10.1007/s10113-020-01659-w chicago: Drobinski, Philippe, Nicolas Da Silva, Sophie Bastin, Sylvain Mailler, Caroline J Muller, Bodo Ahrens, Ole B. Christensen, and Piero Lionello. “How Warmer and Drier Will the Mediterranean Region Be at the End of the Twenty-First Century?” Regional Environmental Change. Springer Nature, 2020. https://doi.org/10.1007/s10113-020-01659-w. ieee: P. Drobinski et al., “How warmer and drier will the Mediterranean region be at the end of the twenty-first century?,” Regional Environmental Change, vol. 20, no. 9. Springer Nature, 2020. ista: Drobinski P, Da Silva N, Bastin S, Mailler S, Muller CJ, Ahrens B, Christensen OB, Lionello P. 2020. How warmer and drier will the Mediterranean region be at the end of the twenty-first century? Regional Environmental Change. 20(9), 78. mla: Drobinski, Philippe, et al. “How Warmer and Drier Will the Mediterranean Region Be at the End of the Twenty-First Century?” Regional Environmental Change, vol. 20, no. 9, 78, Springer Nature, 2020, doi:10.1007/s10113-020-01659-w. short: P. Drobinski, N. Da Silva, S. Bastin, S. Mailler, C.J. Muller, B. Ahrens, O.B. Christensen, P. Lionello, Regional Environmental Change 20 (2020). date_created: 2021-02-15T14:06:58Z date_published: 2020-09-11T00:00:00Z date_updated: 2022-01-24T12:28:49Z day: '11' doi: 10.1007/s10113-020-01659-w extern: '1' intvolume: ' 20' issue: '9' keyword: - Global and Planetary Change language: - iso: eng main_file_link: - open_access: '1' url: https://hal-insu.archives-ouvertes.fr/insu-02881534 month: '09' oa: 1 oa_version: Submitted Version publication: Regional Environmental Change publication_identifier: issn: - 1436-3798 - 1436-378X publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: How warmer and drier will the Mediterranean region be at the end of the twenty-first century? type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 20 year: '2020' ... --- _id: '9128' abstract: - lang: eng text: This paper reviews recent important advances in our understanding of the response of precipitation extremes to warming from theory and from idealized cloud-resolving simulations. A theoretical scaling for precipitation extremes has been proposed and refined in the past decades, allowing to address separately the contributions from the thermodynamics, the dynamics and the microphysics. Theoretical constraints, as well as remaining uncertainties, associated with each of these three contributions to precipitation extremes, are discussed. Notably, although to leading order precipitation extremes seem to follow the thermodynamic theoretical expectation in idealized simulations, considerable uncertainty remains regarding the response of the dynamics and of the microphysics to warming, and considerable departure from this theoretical expectation is found in observations and in more realistic simulations. We also emphasize key outstanding questions, in particular the response of mesoscale convective organization to warming. Observations suggest that extreme rainfall often comes from an organized system in very moist environments. Improved understanding of the physical processes behind convective organization is needed in order to achieve accurate extreme rainfall prediction in our current, and in a warming climate. article_number: '035001' article_processing_charge: No article_type: letter_note author: - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 - first_name: Yukari full_name: Takayabu, Yukari last_name: Takayabu citation: ama: 'Muller CJ, Takayabu Y. Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned? Environmental Research Letters. 2020;15(3). doi:10.1088/1748-9326/ab7130' apa: 'Muller, C. J., & Takayabu, Y. (2020). Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned? Environmental Research Letters. IOP Publishing. https://doi.org/10.1088/1748-9326/ab7130' chicago: 'Muller, Caroline J, and Yukari Takayabu. “Response of Precipitation Extremes to Warming: What Have We Learned from Theory and Idealized Cloud-Resolving Simulations, and What Remains to Be Learned?” Environmental Research Letters. IOP Publishing, 2020. https://doi.org/10.1088/1748-9326/ab7130.' ieee: 'C. J. Muller and Y. Takayabu, “Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned?,” Environmental Research Letters, vol. 15, no. 3. IOP Publishing, 2020.' ista: 'Muller CJ, Takayabu Y. 2020. Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned? Environmental Research Letters. 15(3), 035001.' mla: 'Muller, Caroline J., and Yukari Takayabu. “Response of Precipitation Extremes to Warming: What Have We Learned from Theory and Idealized Cloud-Resolving Simulations, and What Remains to Be Learned?” Environmental Research Letters, vol. 15, no. 3, 035001, IOP Publishing, 2020, doi:10.1088/1748-9326/ab7130.' short: C.J. Muller, Y. Takayabu, Environmental Research Letters 15 (2020). date_created: 2021-02-15T14:07:14Z date_published: 2020-02-18T00:00:00Z date_updated: 2022-01-24T12:29:46Z day: '18' doi: 10.1088/1748-9326/ab7130 extern: '1' intvolume: ' 15' issue: '3' keyword: - Renewable Energy - Sustainability and the Environment - Public Health - Environmental and Occupational Health - General Environmental Science language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1088/1748-9326/ab7130 month: '02' oa: 1 oa_version: Published Version publication: Environmental Research Letters publication_identifier: issn: - 1748-9326 publication_status: published publisher: IOP Publishing quality_controlled: '1' status: public title: 'Response of precipitation extremes to warming: What have we learned from theory and idealized cloud-resolving simulations, and what remains to be learned?' type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 15 year: '2020' ... --- _id: '9125' abstract: - lang: eng text: This study investigates the feedbacks between an interactive sea surface temperature (SST) and the self‐aggregation of deep convective clouds, using a cloud‐resolving model in nonrotating radiative‐convective equilibrium. The ocean is modeled as one layer slab with a temporally fixed mean but spatially varying temperature. We find that the interactive SST decelerates the aggregation and that the deceleration is larger with a shallower slab, consistent with earlier studies. The surface temperature anomaly in dry regions is positive at first, thus opposing the diverging shallow circulation known to favor self‐aggregation, consistent with the slower aggregation. But surprisingly, the driest columns then have a negative SST anomaly, thus strengthening the diverging shallow circulation and favoring aggregation. This diverging circulation out of dry regions is found to be well correlated with the aggregation speed. It can be linked to a positive surface pressure anomaly (PSFC), itself the consequence of SST anomalies and boundary layer radiative cooling. The latter cools and dries the boundary layer, thus increasing PSFC anomalies through virtual effects and hydrostasy. Sensitivity experiments confirm the key role played by boundary layer radiative cooling in determining PSFC anomalies in dry regions, and thus the shallow diverging circulation and the aggregation speed. article_number: e2020MS002164 article_processing_charge: No article_type: original author: - first_name: S. full_name: Shamekh, S. last_name: Shamekh - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 - first_name: J.‐P. full_name: Duvel, J.‐P. last_name: Duvel - first_name: F. full_name: D'Andrea, F. last_name: D'Andrea citation: ama: Shamekh S, Muller CJ, Duvel J ‐P., D’Andrea F. Self‐aggregation of convective clouds with interactive sea surface temperature. Journal of Advances in Modeling Earth Systems. 2020;12(11). doi:10.1029/2020ms002164 apa: Shamekh, S., Muller, C. J., Duvel, J. ‐P., & D’Andrea, F. (2020). Self‐aggregation of convective clouds with interactive sea surface temperature. Journal of Advances in Modeling Earth Systems. American Geophysical Union. https://doi.org/10.1029/2020ms002164 chicago: Shamekh, S., Caroline J Muller, J.‐P. Duvel, and F. D’Andrea. “Self‐aggregation of Convective Clouds with Interactive Sea Surface Temperature.” Journal of Advances in Modeling Earth Systems. American Geophysical Union, 2020. https://doi.org/10.1029/2020ms002164. ieee: S. Shamekh, C. J. Muller, J. ‐P. Duvel, and F. D’Andrea, “Self‐aggregation of convective clouds with interactive sea surface temperature,” Journal of Advances in Modeling Earth Systems, vol. 12, no. 11. American Geophysical Union, 2020. ista: Shamekh S, Muller CJ, Duvel J ‐P., D’Andrea F. 2020. Self‐aggregation of convective clouds with interactive sea surface temperature. Journal of Advances in Modeling Earth Systems. 12(11), e2020MS002164. mla: Shamekh, S., et al. “Self‐aggregation of Convective Clouds with Interactive Sea Surface Temperature.” Journal of Advances in Modeling Earth Systems, vol. 12, no. 11, e2020MS002164, American Geophysical Union, 2020, doi:10.1029/2020ms002164. short: S. Shamekh, C.J. Muller, J. ‐P. Duvel, F. D’Andrea, Journal of Advances in Modeling Earth Systems 12 (2020). date_created: 2021-02-15T14:06:23Z date_published: 2020-11-01T00:00:00Z date_updated: 2022-01-24T12:27:38Z day: '01' doi: 10.1029/2020ms002164 extern: '1' intvolume: ' 12' issue: '11' keyword: - Global and Planetary Change - General Earth and Planetary Sciences - Environmental Chemistry language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1029/2020MS002164 month: '11' oa: 1 oa_version: Published Version publication: Journal of Advances in Modeling Earth Systems publication_identifier: issn: - 1942-2466 - 1942-2466 publication_status: published publisher: American Geophysical Union quality_controlled: '1' status: public title: Self‐aggregation of convective clouds with interactive sea surface temperature type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 12 year: '2020' ... --- _id: '9124' abstract: - lang: eng text: The couplings among clouds, convection, and circulation in trade-wind regimes remain a fundamental puzzle that limits our ability to constrain future climate change. Radiative heating plays an important role in these couplings. Here we calculate the clear-sky radiative profiles from 2001 in-situ soundings (978 dropsondes and 1023 radiosondes) collected during the EUREC4A field campaign, which took place south and east of Barbados in January–February 2020. We describe the method used to calculate these radiative profiles and present preliminary results sampling variability at multiple scales, from the variability across all soundings to groupings by diurnal cycle and mesoscale organization state, as well as individual soundings associated with elevated moisture layers. This clear-sky radiative profiles data set can provide important missing detail to what can be learned from calculations based on passive remote sensing and help in investigating the role of radiation in dynamic and thermodynamic variability in trade-wind regimes. All data are archived and freely available for public access on AERIS (Albright et al. (2020), https://doi.org/10.25326/78). article_processing_charge: No author: - first_name: Anna Lea full_name: Albright, Anna Lea last_name: Albright - first_name: Benjamin full_name: Fildier, Benjamin last_name: Fildier - first_name: Ludovic full_name: Touzé-Peiffer, Ludovic last_name: Touzé-Peiffer - first_name: Robert full_name: Pincus, Robert last_name: Pincus - first_name: Jessica full_name: Vial, Jessica last_name: Vial - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 citation: ama: Albright AL, Fildier B, Touzé-Peiffer L, Pincus R, Vial J, Muller CJ. Atmospheric radiative profiles during EUREC4A. Earth System Science Data. doi:10.5194/essd-2020-269 apa: Albright, A. L., Fildier, B., Touzé-Peiffer, L., Pincus, R., Vial, J., & Muller, C. J. (n.d.). Atmospheric radiative profiles during EUREC4A. Earth System Science Data. Copernicus Publications. https://doi.org/10.5194/essd-2020-269 chicago: Albright, Anna Lea, Benjamin Fildier, Ludovic Touzé-Peiffer, Robert Pincus, Jessica Vial, and Caroline J Muller. “Atmospheric Radiative Profiles during EUREC4A.” Earth System Science Data. Copernicus Publications, n.d. https://doi.org/10.5194/essd-2020-269. ieee: A. L. Albright, B. Fildier, L. Touzé-Peiffer, R. Pincus, J. Vial, and C. J. Muller, “Atmospheric radiative profiles during EUREC4A,” Earth System Science Data. Copernicus Publications. ista: Albright AL, Fildier B, Touzé-Peiffer L, Pincus R, Vial J, Muller CJ. Atmospheric radiative profiles during EUREC4A. Earth System Science Data, 10.5194/essd-2020-269. mla: Albright, Anna Lea, et al. “Atmospheric Radiative Profiles during EUREC4A.” Earth System Science Data, Copernicus Publications, doi:10.5194/essd-2020-269. short: A.L. Albright, B. Fildier, L. Touzé-Peiffer, R. Pincus, J. Vial, C.J. Muller, Earth System Science Data (n.d.). date_created: 2021-02-15T14:05:54Z date_published: 2020-09-24T00:00:00Z date_updated: 2022-01-24T12:27:08Z day: '24' doi: 10.5194/essd-2020-269 extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.5194/essd-2020-269 month: '09' oa: 1 oa_version: Preprint publication: Earth System Science Data publication_status: submitted publisher: Copernicus Publications status: public title: Atmospheric radiative profiles during EUREC4A type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '9162' abstract: - lang: eng text: Active navigation relies on effectively extracting information from the surrounding environment, and often features the tracking of gradients of a relevant signal—such as the concentration of molecules. Microfluidic networks of closed pathways pose the challenge of determining the shortest exit pathway, which involves the proper local decision-making at each bifurcating junction. Here, we focus on the basic decision faced at a T-junction by a microscopic particle, which orients among possible paths via its sensing of a diffusible substance's concentration. We study experimentally the navigation of colloidal particles following concentration gradients by diffusiophoresis. We treat the situation as a mean first passage time (MFPT) problem that unveils the important role of a separatrix in the concentration field to determine the statistics of path taking. Further, we use numerical experiments to study different strategies, including biomimetic ones such as run and tumble or Markovian chemotactic migration. The discontinuity in the MFPT at the junction makes it remarkably difficult for microscopic agents to follow the shortest path, irrespective of adopted navigation strategy. In contrast, increasing the size of the sensing agents improves the efficiency of short-path taking by harvesting information on a larger scale. It inspires the development of a run-and-whirl dynamics that takes advantage of the mathematical properties of harmonic functions to emulate particles beyond their own size. article_number: '104202' article_processing_charge: No article_type: original author: - first_name: Tanvi full_name: Gandhi, Tanvi last_name: Gandhi - first_name: Jinzi full_name: Mac Huang, Jinzi last_name: Mac Huang - first_name: Antoine full_name: Aubret, Antoine last_name: Aubret - first_name: Yaocheng full_name: Li, Yaocheng last_name: Li - first_name: Sophie full_name: Ramananarivo, Sophie last_name: Ramananarivo - first_name: Massimo full_name: Vergassola, Massimo last_name: Vergassola - first_name: Jérémie A full_name: Palacci, Jérémie A id: 8fb92548-2b22-11eb-b7c1-a3f0d08d7c7d last_name: Palacci orcid: 0000-0002-7253-9465 citation: ama: Gandhi T, Mac Huang J, Aubret A, et al. Decision-making at a T-junction by gradient-sensing microscopic agents. Physical Review Fluids. 2020;5(10). doi:10.1103/physrevfluids.5.104202 apa: Gandhi, T., Mac Huang, J., Aubret, A., Li, Y., Ramananarivo, S., Vergassola, M., & Palacci, J. A. (2020). Decision-making at a T-junction by gradient-sensing microscopic agents. Physical Review Fluids. American Physical Society. https://doi.org/10.1103/physrevfluids.5.104202 chicago: Gandhi, Tanvi, Jinzi Mac Huang, Antoine Aubret, Yaocheng Li, Sophie Ramananarivo, Massimo Vergassola, and Jérémie A Palacci. “Decision-Making at a T-Junction by Gradient-Sensing Microscopic Agents.” Physical Review Fluids. American Physical Society, 2020. https://doi.org/10.1103/physrevfluids.5.104202. ieee: T. Gandhi et al., “Decision-making at a T-junction by gradient-sensing microscopic agents,” Physical Review Fluids, vol. 5, no. 10. American Physical Society, 2020. ista: Gandhi T, Mac Huang J, Aubret A, Li Y, Ramananarivo S, Vergassola M, Palacci JA. 2020. Decision-making at a T-junction by gradient-sensing microscopic agents. Physical Review Fluids. 5(10), 104202. mla: Gandhi, Tanvi, et al. “Decision-Making at a T-Junction by Gradient-Sensing Microscopic Agents.” Physical Review Fluids, vol. 5, no. 10, 104202, American Physical Society, 2020, doi:10.1103/physrevfluids.5.104202. short: T. Gandhi, J. Mac Huang, A. Aubret, Y. Li, S. Ramananarivo, M. Vergassola, J.A. Palacci, Physical Review Fluids 5 (2020). date_created: 2021-02-18T14:07:16Z date_published: 2020-10-14T00:00:00Z date_updated: 2023-02-23T13:50:55Z day: '14' ddc: - '530' doi: 10.1103/physrevfluids.5.104202 extern: '1' file: - access_level: open_access checksum: dfecfadbd79fd760fb4db20d1e667f17 content_type: application/pdf creator: cziletti date_created: 2021-02-18T14:12:24Z date_updated: 2021-02-18T14:12:24Z file_id: '9163' file_name: 2020_PhysRevFluids_Gandhi.pdf file_size: 730504 relation: main_file success: 1 file_date_updated: 2021-02-18T14:12:24Z has_accepted_license: '1' intvolume: ' 5' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: Physical Review Fluids publication_identifier: issn: - 2469-990X publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Decision-making at a T-junction by gradient-sensing microscopic agents tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 5 year: '2020' ... --- _id: '9164' article_number: '060201' article_processing_charge: No article_type: letter_note author: - first_name: Thomas full_name: Speck, Thomas last_name: Speck - first_name: Julien full_name: Tailleur, Julien last_name: Tailleur - first_name: Jérémie A full_name: Palacci, Jérémie A id: 8fb92548-2b22-11eb-b7c1-a3f0d08d7c7d last_name: Palacci orcid: 0000-0002-7253-9465 citation: ama: Speck T, Tailleur J, Palacci JA. Focus on active colloids and nanoparticles. New Journal of Physics. 2020;22(6). doi:10.1088/1367-2630/ab90d9 apa: Speck, T., Tailleur, J., & Palacci, J. A. (2020). Focus on active colloids and nanoparticles. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/ab90d9 chicago: Speck, Thomas, Julien Tailleur, and Jérémie A Palacci. “Focus on Active Colloids and Nanoparticles.” New Journal of Physics. IOP Publishing, 2020. https://doi.org/10.1088/1367-2630/ab90d9. ieee: T. Speck, J. Tailleur, and J. A. Palacci, “Focus on active colloids and nanoparticles,” New Journal of Physics, vol. 22, no. 6. IOP Publishing, 2020. ista: Speck T, Tailleur J, Palacci JA. 2020. Focus on active colloids and nanoparticles. New Journal of Physics. 22(6), 060201. mla: Speck, Thomas, et al. “Focus on Active Colloids and Nanoparticles.” New Journal of Physics, vol. 22, no. 6, 060201, IOP Publishing, 2020, doi:10.1088/1367-2630/ab90d9. short: T. Speck, J. Tailleur, J.A. Palacci, New Journal of Physics 22 (2020). date_created: 2021-02-18T14:17:32Z date_published: 2020-06-01T00:00:00Z date_updated: 2021-02-18T14:57:39Z day: '01' ddc: - '530' doi: 10.1088/1367-2630/ab90d9 extern: '1' file: - access_level: open_access checksum: 02759f3ab228c1a061e747155a20f851 content_type: application/pdf creator: cziletti date_created: 2021-02-18T14:53:33Z date_updated: 2021-02-18T14:53:33Z file_id: '9169' file_name: 2020_NewJournPhys_Speck.pdf file_size: 953338 relation: main_file success: 1 file_date_updated: 2021-02-18T14:53:33Z has_accepted_license: '1' intvolume: ' 22' issue: '6' keyword: - General Physics and Astronomy language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: New Journal of Physics publication_identifier: issn: - 1367-2630 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Focus on active colloids and nanoparticles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 22 year: '2020' ... --- _id: '9249' abstract: - lang: eng text: Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In this paper, we describe a new coordinate system where every 3-integer coordinates grid point corresponds to a rhombic dodecahedron centroid. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. We also present the characterization of 3D digital lines and study it as the intersection of multiple digital planes. Characterization of 3D digital sphere with relevant topological features is proposed as well along with the 48-symmetry appearing in the new coordinate system. acknowledgement: "This work has been partially supported by the European Research Council (ERC) under\r\nthe European Union’s Horizon 2020 research and innovation programme, grant no. 788183, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, Austrian Science Fund (FWF), grant no. I 02979-N35. " article_processing_charge: No article_type: original author: - first_name: Ranita full_name: Biswas, Ranita id: 3C2B033E-F248-11E8-B48F-1D18A9856A87 last_name: Biswas orcid: 0000-0002-5372-7890 - first_name: Gaëlle full_name: Largeteau-Skapin, Gaëlle last_name: Largeteau-Skapin - first_name: Rita full_name: Zrour, Rita last_name: Zrour - first_name: Eric full_name: Andres, Eric last_name: Andres citation: ama: Biswas R, Largeteau-Skapin G, Zrour R, Andres E. Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. 2020;4(1):143-158. doi:10.1515/mathm-2020-0106 apa: Biswas, R., Largeteau-Skapin, G., Zrour, R., & Andres, E. (2020). Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. De Gruyter. https://doi.org/10.1515/mathm-2020-0106 chicago: Biswas, Ranita, Gaëlle Largeteau-Skapin, Rita Zrour, and Eric Andres. “Digital Objects in Rhombic Dodecahedron Grid.” Mathematical Morphology - Theory and Applications. De Gruyter, 2020. https://doi.org/10.1515/mathm-2020-0106. ieee: R. Biswas, G. Largeteau-Skapin, R. Zrour, and E. Andres, “Digital objects in rhombic dodecahedron grid,” Mathematical Morphology - Theory and Applications, vol. 4, no. 1. De Gruyter, pp. 143–158, 2020. ista: Biswas R, Largeteau-Skapin G, Zrour R, Andres E. 2020. Digital objects in rhombic dodecahedron grid. Mathematical Morphology - Theory and Applications. 4(1), 143–158. mla: Biswas, Ranita, et al. “Digital Objects in Rhombic Dodecahedron Grid.” Mathematical Morphology - Theory and Applications, vol. 4, no. 1, De Gruyter, 2020, pp. 143–58, doi:10.1515/mathm-2020-0106. short: R. Biswas, G. Largeteau-Skapin, R. Zrour, E. Andres, Mathematical Morphology - Theory and Applications 4 (2020) 143–158. date_created: 2021-03-16T08:55:19Z date_published: 2020-11-17T00:00:00Z date_updated: 2021-03-22T09:01:50Z day: '17' ddc: - '510' department: - _id: HeEd doi: 10.1515/mathm-2020-0106 ec_funded: 1 file: - access_level: open_access checksum: 4a1043fa0548a725d464017fe2483ce0 content_type: application/pdf creator: dernst date_created: 2021-03-22T08:56:37Z date_updated: 2021-03-22T08:56:37Z file_id: '9272' file_name: 2020_MathMorpholTheoryAppl_Biswas.pdf file_size: 3668725 relation: main_file success: 1 file_date_updated: 2021-03-22T08:56:37Z has_accepted_license: '1' intvolume: ' 4' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 143-158 project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended - _id: 2561EBF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I02979-N35 name: Persistence and stability of geometric complexes publication: Mathematical Morphology - Theory and Applications publication_identifier: issn: - 2353-3390 publication_status: published publisher: De Gruyter quality_controlled: '1' status: public title: Digital objects in rhombic dodecahedron grid tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2020' ... --- _id: '9299' abstract: - lang: eng text: We call a multigraph non-homotopic if it can be drawn in the plane in such a way that no two edges connecting the same pair of vertices can be continuously transformed into each other without passing through a vertex, and no loop can be shrunk to its end-vertex in the same way. It is easy to see that a non-homotopic multigraph on n>1 vertices can have arbitrarily many edges. We prove that the number of crossings between the edges of a non-homotopic multigraph with n vertices and m>4n edges is larger than cm2n for some constant c>0 , and that this bound is tight up to a polylogarithmic factor. We also show that the lower bound is not asymptotically sharp as n is fixed and m⟶∞ . acknowledgement: Supported by the National Research, Development and Innovation Office, NKFIH, KKP-133864, K-131529, K-116769, K-132696, by the Higher Educational Institutional Excellence Program 2019 NKFIH-1158-6/2019, the Austrian Science Fund (FWF), grant Z 342-N31, by the Ministry of Education and Science of the Russian Federation MegaGrant No. 075-15-2019-1926, and by the ERC Synergy Grant “Dynasnet” No. 810115. A full version can be found at https://arxiv.org/abs/2006.14908. article_processing_charge: No author: - first_name: János full_name: Pach, János id: E62E3130-B088-11EA-B919-BF823C25FEA4 last_name: Pach - first_name: Gábor full_name: Tardos, Gábor last_name: Tardos - first_name: Géza full_name: Tóth, Géza last_name: Tóth citation: ama: 'Pach J, Tardos G, Tóth G. Crossings between non-homotopic edges. In: 28th International Symposium on Graph Drawing and Network Visualization. Vol 12590. LNCS. Springer Nature; 2020:359-371. doi:10.1007/978-3-030-68766-3_28' apa: 'Pach, J., Tardos, G., & Tóth, G. (2020). Crossings between non-homotopic edges. In 28th International Symposium on Graph Drawing and Network Visualization (Vol. 12590, pp. 359–371). Virtual, Online: Springer Nature. https://doi.org/10.1007/978-3-030-68766-3_28' chicago: Pach, János, Gábor Tardos, and Géza Tóth. “Crossings between Non-Homotopic Edges.” In 28th International Symposium on Graph Drawing and Network Visualization, 12590:359–71. LNCS. Springer Nature, 2020. https://doi.org/10.1007/978-3-030-68766-3_28. ieee: J. Pach, G. Tardos, and G. Tóth, “Crossings between non-homotopic edges,” in 28th International Symposium on Graph Drawing and Network Visualization, Virtual, Online, 2020, vol. 12590, pp. 359–371. ista: 'Pach J, Tardos G, Tóth G. 2020. Crossings between non-homotopic edges. 28th International Symposium on Graph Drawing and Network Visualization. GD: Graph Drawing and Network VisualizationLNCS vol. 12590, 359–371.' mla: Pach, János, et al. “Crossings between Non-Homotopic Edges.” 28th International Symposium on Graph Drawing and Network Visualization, vol. 12590, Springer Nature, 2020, pp. 359–71, doi:10.1007/978-3-030-68766-3_28. short: J. Pach, G. Tardos, G. Tóth, in:, 28th International Symposium on Graph Drawing and Network Visualization, Springer Nature, 2020, pp. 359–371. conference: end_date: 2020-09-18 location: Virtual, Online name: 'GD: Graph Drawing and Network Visualization' start_date: 2020-09-16 date_created: 2021-03-28T22:01:44Z date_published: 2020-09-20T00:00:00Z date_updated: 2021-04-06T11:32:32Z day: '20' department: - _id: HeEd doi: 10.1007/978-3-030-68766-3_28 external_id: arxiv: - '2006.14908' intvolume: ' 12590' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.14908 month: '09' oa: 1 oa_version: Preprint page: 359-371 project: - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize publication: 28th International Symposium on Graph Drawing and Network Visualization publication_identifier: eissn: - 1611-3349 isbn: - '9783030687656' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: Crossings between non-homotopic edges type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12590 year: '2020' ... --- _id: '9576' abstract: - lang: eng text: In 1989, Rota made the following conjecture. Given n bases B1,…,Bn in an n-dimensional vector space V⁠, one can always find n disjoint bases of V⁠, each containing exactly one element from each Bi (we call such bases transversal bases). Rota’s basis conjecture remains wide open despite its apparent simplicity and the efforts of many researchers (e.g., the conjecture was recently the subject of the collaborative “Polymath” project). In this paper we prove that one can always find (1/2−o(1))n disjoint transversal bases, improving on the previous best bound of Ω(n/logn)⁠. Our results also apply to the more general setting of matroids. article_processing_charge: No article_type: original author: - first_name: Matija full_name: Bucić, Matija last_name: Bucić - first_name: Matthew Alan full_name: Kwan, Matthew Alan id: 5fca0887-a1db-11eb-95d1-ca9d5e0453b3 last_name: Kwan orcid: 0000-0002-4003-7567 - first_name: Alexey full_name: Pokrovskiy, Alexey last_name: Pokrovskiy - first_name: Benny full_name: Sudakov, Benny last_name: Sudakov citation: ama: Bucić M, Kwan MA, Pokrovskiy A, Sudakov B. Halfway to Rota’s basis conjecture. International Mathematics Research Notices. 2020;2020(21):8007-8026. doi:10.1093/imrn/rnaa004 apa: Bucić, M., Kwan, M. A., Pokrovskiy, A., & Sudakov, B. (2020). Halfway to Rota’s basis conjecture. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rnaa004 chicago: Bucić, Matija, Matthew Alan Kwan, Alexey Pokrovskiy, and Benny Sudakov. “Halfway to Rota’s Basis Conjecture.” International Mathematics Research Notices. Oxford University Press, 2020. https://doi.org/10.1093/imrn/rnaa004. ieee: M. Bucić, M. A. Kwan, A. Pokrovskiy, and B. Sudakov, “Halfway to Rota’s basis conjecture,” International Mathematics Research Notices, vol. 2020, no. 21. Oxford University Press, pp. 8007–8026, 2020. ista: Bucić M, Kwan MA, Pokrovskiy A, Sudakov B. 2020. Halfway to Rota’s basis conjecture. International Mathematics Research Notices. 2020(21), 8007–8026. mla: Bucić, Matija, et al. “Halfway to Rota’s Basis Conjecture.” International Mathematics Research Notices, vol. 2020, no. 21, Oxford University Press, 2020, pp. 8007–26, doi:10.1093/imrn/rnaa004. short: M. Bucić, M.A. Kwan, A. Pokrovskiy, B. Sudakov, International Mathematics Research Notices 2020 (2020) 8007–8026. date_created: 2021-06-21T08:12:30Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-02-23T14:01:30Z day: '01' doi: 10.1093/imrn/rnaa004 extern: '1' external_id: arxiv: - '1810.07462' intvolume: ' 2020' issue: '21' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv-export-lb.library.cornell.edu/abs/1810.07462 month: '11' oa: 1 oa_version: Preprint page: 8007-8026 publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Halfway to Rota’s basis conjecture type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 2020 year: '2020' ... --- _id: '9577' abstract: - lang: eng text: An n-vertex graph is called C-Ramsey if it has no clique or independent set of size Clogn⁠. All known constructions of Ramsey graphs involve randomness in an essential way, and there is an ongoing line of research towards showing that in fact all Ramsey graphs must obey certain “richness” properties characteristic of random graphs. Motivated by an old problem of Erd̋s and McKay, recently Narayanan, Sahasrabudhe, and Tomon conjectured that for any fixed C, every n-vertex C-Ramsey graph induces subgraphs of Θ(n2) different sizes. In this paper we prove this conjecture. article_processing_charge: No article_type: original author: - first_name: Matthew Alan full_name: Kwan, Matthew Alan id: 5fca0887-a1db-11eb-95d1-ca9d5e0453b3 last_name: Kwan orcid: 0000-0002-4003-7567 - first_name: Benny full_name: Sudakov, Benny last_name: Sudakov citation: ama: Kwan MA, Sudakov B. Ramsey graphs induce subgraphs of quadratically many sizes. International Mathematics Research Notices. 2020;2020(6):1621–1638. doi:10.1093/imrn/rny064 apa: Kwan, M. A., & Sudakov, B. (2020). Ramsey graphs induce subgraphs of quadratically many sizes. International Mathematics Research Notices. Oxford University Press. https://doi.org/10.1093/imrn/rny064 chicago: Kwan, Matthew Alan, and Benny Sudakov. “Ramsey Graphs Induce Subgraphs of Quadratically Many Sizes.” International Mathematics Research Notices. Oxford University Press, 2020. https://doi.org/10.1093/imrn/rny064. ieee: M. A. Kwan and B. Sudakov, “Ramsey graphs induce subgraphs of quadratically many sizes,” International Mathematics Research Notices, vol. 2020, no. 6. Oxford University Press, pp. 1621–1638, 2020. ista: Kwan MA, Sudakov B. 2020. Ramsey graphs induce subgraphs of quadratically many sizes. International Mathematics Research Notices. 2020(6), 1621–1638. mla: Kwan, Matthew Alan, and Benny Sudakov. “Ramsey Graphs Induce Subgraphs of Quadratically Many Sizes.” International Mathematics Research Notices, vol. 2020, no. 6, Oxford University Press, 2020, pp. 1621–1638, doi:10.1093/imrn/rny064. short: M.A. Kwan, B. Sudakov, International Mathematics Research Notices 2020 (2020) 1621–1638. date_created: 2021-06-21T08:30:12Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-02-23T14:01:33Z day: '01' doi: 10.1093/imrn/rny064 extern: '1' external_id: arxiv: - '1711.02937' intvolume: ' 2020' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/imrn/rny064 month: '03' oa: 1 oa_version: Published Version page: 1621–1638 publication: International Mathematics Research Notices publication_identifier: eissn: - 1687-0247 issn: - 1073-7928 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Ramsey graphs induce subgraphs of quadratically many sizes type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 2020 year: '2020' ... --- _id: '9573' abstract: - lang: eng text: It is a classical fact that for any ε>0, a random permutation of length n=(1+ε)k2/4 typically contains a monotone subsequence of length k. As a far-reaching generalization, Alon conjectured that a random permutation of this same length n is typically k-universal, meaning that it simultaneously contains every pattern of length k. He also made the simple observation that for n=O(k2logk), a random length-n permutation is typically k-universal. We make the first significant progress towards Alon's conjecture by showing that n=2000k2loglogk suffices. article_processing_charge: No article_type: original author: - first_name: Xiaoyu full_name: He, Xiaoyu last_name: He - first_name: Matthew Alan full_name: Kwan, Matthew Alan id: 5fca0887-a1db-11eb-95d1-ca9d5e0453b3 last_name: Kwan orcid: 0000-0002-4003-7567 citation: ama: He X, Kwan MA. Universality of random permutations. Bulletin of the London Mathematical Society. 2020;52(3):515-529. doi:10.1112/blms.12345 apa: He, X., & Kwan, M. A. (2020). Universality of random permutations. Bulletin of the London Mathematical Society. Wiley. https://doi.org/10.1112/blms.12345 chicago: He, Xiaoyu, and Matthew Alan Kwan. “Universality of Random Permutations.” Bulletin of the London Mathematical Society. Wiley, 2020. https://doi.org/10.1112/blms.12345. ieee: X. He and M. A. Kwan, “Universality of random permutations,” Bulletin of the London Mathematical Society, vol. 52, no. 3. Wiley, pp. 515–529, 2020. ista: He X, Kwan MA. 2020. Universality of random permutations. Bulletin of the London Mathematical Society. 52(3), 515–529. mla: He, Xiaoyu, and Matthew Alan Kwan. “Universality of Random Permutations.” Bulletin of the London Mathematical Society, vol. 52, no. 3, Wiley, 2020, pp. 515–29, doi:10.1112/blms.12345. short: X. He, M.A. Kwan, Bulletin of the London Mathematical Society 52 (2020) 515–529. date_created: 2021-06-21T06:23:42Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-02-23T14:01:23Z day: '01' doi: 10.1112/blms.12345 extern: '1' external_id: arxiv: - '1911.12878' intvolume: ' 52' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1911.12878 month: '06' oa: 1 oa_version: Preprint page: 515-529 publication: Bulletin of the London Mathematical Society publication_identifier: eissn: - 1469-2120 issn: - 0024-6093 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Universality of random permutations type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 52 year: '2020' ... --- _id: '9632' abstract: - lang: eng text: "Second-order information, in the form of Hessian- or Inverse-Hessian-vector products, is a fundamental tool for solving optimization problems. Recently, there has been significant interest in utilizing this information in the context of deep\r\nneural networks; however, relatively little is known about the quality of existing approximations in this context. Our work examines this question, identifies issues with existing approaches, and proposes a method called WoodFisher to compute a faithful and efficient estimate of the inverse Hessian. Our main application is to neural network compression, where we build on the classic Optimal Brain Damage/Surgeon framework. We demonstrate that WoodFisher significantly outperforms popular state-of-the-art methods for oneshot pruning. Further, even when iterative, gradual pruning is allowed, our method results in a gain in test accuracy over the state-of-the-art approaches, for standard image classification datasets such as ImageNet ILSVRC. We examine how our method can be extended to take into account first-order information, as well as\r\nillustrate its ability to automatically set layer-wise pruning thresholds and perform compression in the limited-data regime. The code is available at the following link, https://github.com/IST-DASLab/WoodFisher." acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML). Also, we would like to thank Alexander Shevchenko, Alexandra Peste, and other members of the group for fruitful discussions. article_processing_charge: No author: - first_name: Sidak Pal full_name: Singh, Sidak Pal id: DD138E24-D89D-11E9-9DC0-DEF6E5697425 last_name: Singh - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X citation: ama: 'Singh SP, Alistarh D-A. WoodFisher: Efficient second-order approximation for neural network compression. In: Advances in Neural Information Processing Systems. Vol 33. Curran Associates; 2020:18098-18109.' apa: 'Singh, S. P., & Alistarh, D.-A. (2020). WoodFisher: Efficient second-order approximation for neural network compression. In Advances in Neural Information Processing Systems (Vol. 33, pp. 18098–18109). Vancouver, Canada: Curran Associates.' chicago: 'Singh, Sidak Pal, and Dan-Adrian Alistarh. “WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.” In Advances in Neural Information Processing Systems, 33:18098–109. Curran Associates, 2020.' ieee: 'S. P. Singh and D.-A. Alistarh, “WoodFisher: Efficient second-order approximation for neural network compression,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 18098–18109.' ista: 'Singh SP, Alistarh D-A. 2020. WoodFisher: Efficient second-order approximation for neural network compression. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. 33, 18098–18109.' mla: 'Singh, Sidak Pal, and Dan-Adrian Alistarh. “WoodFisher: Efficient Second-Order Approximation for Neural Network Compression.” Advances in Neural Information Processing Systems, vol. 33, Curran Associates, 2020, pp. 18098–109.' short: S.P. Singh, D.-A. Alistarh, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 18098–18109. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Conference on Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-07-04T22:01:26Z date_published: 2020-12-06T00:00:00Z date_updated: 2023-02-23T14:03:06Z day: '06' department: - _id: DaAl - _id: ToHe ec_funded: 1 external_id: arxiv: - '2004.14340' intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2020/hash/d1ff1ec86b62cd5f3903ff19c3a326b2-Abstract.html month: '12' oa: 1 oa_version: Published Version page: 18098-18109 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Advances in Neural Information Processing Systems publication_identifier: isbn: - '9781713829546' issn: - '10495258' publication_status: published publisher: Curran Associates quality_controlled: '1' scopus_import: '1' status: public title: 'WoodFisher: Efficient second-order approximation for neural network compression' type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 33 year: '2020' ... --- _id: '9630' abstract: - lang: eng text: Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context. acknowledgement: This research is partially supported by the Office of Naval Research, through grant no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF). article_processing_charge: Yes article_type: original author: - first_name: Herbert full_name: Edelsbrunner, Herbert id: 3FB178DA-F248-11E8-B48F-1D18A9856A87 last_name: Edelsbrunner orcid: 0000-0002-9823-6833 - first_name: Ziga full_name: Virk, Ziga id: 2E36B656-F248-11E8-B48F-1D18A9856A87 last_name: Virk - first_name: Hubert full_name: Wagner, Hubert id: 379CA8B8-F248-11E8-B48F-1D18A9856A87 last_name: Wagner citation: ama: Edelsbrunner H, Virk Z, Wagner H. Topological data analysis in information space. Journal of Computational Geometry. 2020;11(2):162-182. doi:10.20382/jocg.v11i2a7 apa: Edelsbrunner, H., Virk, Z., & Wagner, H. (2020). Topological data analysis in information space. Journal of Computational Geometry. Carleton University. https://doi.org/10.20382/jocg.v11i2a7 chicago: Edelsbrunner, Herbert, Ziga Virk, and Hubert Wagner. “Topological Data Analysis in Information Space.” Journal of Computational Geometry. Carleton University, 2020. https://doi.org/10.20382/jocg.v11i2a7. ieee: H. Edelsbrunner, Z. Virk, and H. Wagner, “Topological data analysis in information space,” Journal of Computational Geometry, vol. 11, no. 2. Carleton University, pp. 162–182, 2020. ista: Edelsbrunner H, Virk Z, Wagner H. 2020. Topological data analysis in information space. Journal of Computational Geometry. 11(2), 162–182. mla: Edelsbrunner, Herbert, et al. “Topological Data Analysis in Information Space.” Journal of Computational Geometry, vol. 11, no. 2, Carleton University, 2020, pp. 162–82, doi:10.20382/jocg.v11i2a7. short: H. Edelsbrunner, Z. Virk, H. Wagner, Journal of Computational Geometry 11 (2020) 162–182. date_created: 2021-07-04T22:01:26Z date_published: 2020-12-14T00:00:00Z date_updated: 2021-08-11T12:26:34Z day: '14' ddc: - '510' - '000' department: - _id: HeEd doi: 10.20382/jocg.v11i2a7 file: - access_level: open_access checksum: f02d0b2b3838e7891a6c417fc34ffdcd content_type: application/pdf creator: asandaue date_created: 2021-08-11T11:55:11Z date_updated: 2021-08-11T11:55:11Z file_id: '9882' file_name: 2020_JournalOfComputationalGeometry_Edelsbrunner.pdf file_size: 1449234 relation: main_file success: 1 file_date_updated: 2021-08-11T11:55:11Z has_accepted_license: '1' intvolume: ' 11' issue: '2' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 162-182 project: - _id: 0aa4bc98-070f-11eb-9043-e6fff9c6a316 grant_number: I4887 name: Discretization in Geometry and Dynamics publication: Journal of Computational Geometry publication_identifier: eissn: - 1920180X publication_status: published publisher: Carleton University quality_controlled: '1' scopus_import: '1' status: public title: Topological data analysis in information space tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 11 year: '2020' ... --- _id: '9631' abstract: - lang: eng text: The ability to leverage large-scale hardware parallelism has been one of the key enablers of the accelerated recent progress in machine learning. Consequently, there has been considerable effort invested into developing efficient parallel variants of classic machine learning algorithms. However, despite the wealth of knowledge on parallelization, some classic machine learning algorithms often prove hard to parallelize efficiently while maintaining convergence. In this paper, we focus on efficient parallel algorithms for the key machine learning task of inference on graphical models, in particular on the fundamental belief propagation algorithm. We address the challenge of efficiently parallelizing this classic paradigm by showing how to leverage scalable relaxed schedulers in this context. We present an extensive empirical study, showing that our approach outperforms previous parallel belief propagation implementations both in terms of scalability and in terms of wall-clock convergence time, on a range of practical applications. acknowledgement: "We thank Marco Mondelli for discussions related to LDPC decoding, and Giorgi Nadiradze for discussions on analysis of relaxed schedulers. This project has received funding from the European Research Council (ERC) under the European\r\nUnion’s Horizon 2020 research and innovation programme (grant agreement No 805223 ScaleML)." article_processing_charge: No author: - first_name: Vitaly full_name: Aksenov, Vitaly last_name: Aksenov - first_name: Dan-Adrian full_name: Alistarh, Dan-Adrian id: 4A899BFC-F248-11E8-B48F-1D18A9856A87 last_name: Alistarh orcid: 0000-0003-3650-940X - first_name: Janne full_name: Korhonen, Janne id: C5402D42-15BC-11E9-A202-CA2BE6697425 last_name: Korhonen citation: ama: 'Aksenov V, Alistarh D-A, Korhonen J. Scalable belief propagation via relaxed scheduling. In: Advances in Neural Information Processing Systems. Vol 33. Curran Associates; 2020:22361-22372.' apa: 'Aksenov, V., Alistarh, D.-A., & Korhonen, J. (2020). Scalable belief propagation via relaxed scheduling. In Advances in Neural Information Processing Systems (Vol. 33, pp. 22361–22372). Vancouver, Canada: Curran Associates.' chicago: Aksenov, Vitaly, Dan-Adrian Alistarh, and Janne Korhonen. “Scalable Belief Propagation via Relaxed Scheduling.” In Advances in Neural Information Processing Systems, 33:22361–72. Curran Associates, 2020. ieee: V. Aksenov, D.-A. Alistarh, and J. Korhonen, “Scalable belief propagation via relaxed scheduling,” in Advances in Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 22361–22372. ista: 'Aksenov V, Alistarh D-A, Korhonen J. 2020. Scalable belief propagation via relaxed scheduling. Advances in Neural Information Processing Systems. NeurIPS: Conference on Neural Information Processing Systems vol. 33, 22361–22372.' mla: Aksenov, Vitaly, et al. “Scalable Belief Propagation via Relaxed Scheduling.” Advances in Neural Information Processing Systems, vol. 33, Curran Associates, 2020, pp. 22361–72. short: V. Aksenov, D.-A. Alistarh, J. Korhonen, in:, Advances in Neural Information Processing Systems, Curran Associates, 2020, pp. 22361–22372. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Conference on Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-07-04T22:01:26Z date_published: 2020-12-06T00:00:00Z date_updated: 2023-02-23T14:03:03Z day: '06' department: - _id: DaAl ec_funded: 1 external_id: arxiv: - '2002.11505' intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://proceedings.neurips.cc/paper/2020/hash/fdb2c3bab9d0701c4a050a4d8d782c7f-Abstract.html month: '12' oa: 1 oa_version: Published Version page: 22361-22372 project: - _id: 268A44D6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '805223' name: Elastic Coordination for Scalable Machine Learning publication: Advances in Neural Information Processing Systems publication_identifier: isbn: - '9781713829546' issn: - '10495258' publication_status: published publisher: Curran Associates quality_controlled: '1' scopus_import: '1' status: public title: Scalable belief propagation via relaxed scheduling type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 33 year: '2020' ... --- _id: '9666' abstract: - lang: eng text: Predicting phase stabilities of crystal polymorphs is central to computational materials science and chemistry. Such predictions are challenging because they first require searching for potential energy minima and then performing arduous free-energy calculations to account for entropic effects at finite temperatures. Here, we develop a framework that facilitates such predictions by exploiting all the information obtained from random searches of crystal structures. This framework combines automated clustering, classification and visualisation of crystal structures with machine-learning estimation of their enthalpy and entropy. We demonstrate the framework on the technologically important system of TiO2, which has many polymorphs, without relying on prior knowledge of known phases. We find a number of new phases and predict the phase diagram and metastabilities of crystal polymorphs at 1600 K, benchmarking the results against full free-energy calculations. article_processing_charge: No article_type: original author: - first_name: Aleks full_name: Reinhardt, Aleks last_name: Reinhardt - first_name: Chris J. full_name: Pickard, Chris J. last_name: Pickard - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 citation: ama: Reinhardt A, Pickard CJ, Cheng B. Predicting the phase diagram of titanium dioxide with random search and pattern recognition. Physical Chemistry Chemical Physics. 2020;22(22):12697-12705. doi:10.1039/d0cp02513e apa: Reinhardt, A., Pickard, C. J., & Cheng, B. (2020). Predicting the phase diagram of titanium dioxide with random search and pattern recognition. Physical Chemistry Chemical Physics. Royal Society of Chemistry. https://doi.org/10.1039/d0cp02513e chicago: Reinhardt, Aleks, Chris J. Pickard, and Bingqing Cheng. “Predicting the Phase Diagram of Titanium Dioxide with Random Search and Pattern Recognition.” Physical Chemistry Chemical Physics. Royal Society of Chemistry, 2020. https://doi.org/10.1039/d0cp02513e. ieee: A. Reinhardt, C. J. Pickard, and B. Cheng, “Predicting the phase diagram of titanium dioxide with random search and pattern recognition,” Physical Chemistry Chemical Physics, vol. 22, no. 22. Royal Society of Chemistry, pp. 12697–12705, 2020. ista: Reinhardt A, Pickard CJ, Cheng B. 2020. Predicting the phase diagram of titanium dioxide with random search and pattern recognition. Physical Chemistry Chemical Physics. 22(22), 12697–12705. mla: Reinhardt, Aleks, et al. “Predicting the Phase Diagram of Titanium Dioxide with Random Search and Pattern Recognition.” Physical Chemistry Chemical Physics, vol. 22, no. 22, Royal Society of Chemistry, 2020, pp. 12697–705, doi:10.1039/d0cp02513e. short: A. Reinhardt, C.J. Pickard, B. Cheng, Physical Chemistry Chemical Physics 22 (2020) 12697–12705. date_created: 2021-07-15T12:37:27Z date_published: 2020-06-14T00:00:00Z date_updated: 2023-02-23T14:04:16Z day: '14' ddc: - '530' doi: 10.1039/d0cp02513e extern: '1' external_id: arxiv: - '1909.08934' pmid: - '32459228' file: - access_level: open_access checksum: 0a6872972b1b2e60f9095d39b01753fa content_type: application/pdf creator: asandaue date_created: 2021-07-15T12:43:51Z date_updated: 2021-07-15T12:43:51Z file_id: '9667' file_name: 202_PhysicalChemistryChemicalPhysics_Reinhardt.pdf file_size: 3151206 relation: main_file success: 1 file_date_updated: 2021-07-15T12:43:51Z has_accepted_license: '1' intvolume: ' 22' issue: '22' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 12697-12705 pmid: 1 publication: Physical Chemistry Chemical Physics publication_identifier: eissn: - 1463-9084 issn: - 1463-9076 publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' scopus_import: '1' status: public title: Predicting the phase diagram of titanium dioxide with random search and pattern recognition tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 22 year: '2020' ... --- _id: '9671' abstract: - lang: eng text: Water molecules can arrange into a liquid with complex hydrogen-bond networks and at least 17 experimentally confirmed ice phases with enormous structural diversity. It remains a puzzle how or whether this multitude of arrangements in different phases of water are related. Here we investigate the structural similarities between liquid water and a comprehensive set of 54 ice phases in simulations, by directly comparing their local environments using general atomic descriptors, and also by demonstrating that a machine-learning potential trained on liquid water alone can predict the densities, lattice energies, and vibrational properties of the ices. The finding that the local environments characterising the different ice phases are found in water sheds light on the phase behavior of water, and rationalizes the transferability of water models between different phases. article_number: '5757' article_processing_charge: No article_type: original author: - first_name: Bartomeu full_name: Monserrat, Bartomeu last_name: Monserrat - first_name: Jan Gerit full_name: Brandenburg, Jan Gerit last_name: Brandenburg - first_name: Edgar A. full_name: Engel, Edgar A. last_name: Engel - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 citation: ama: Monserrat B, Brandenburg JG, Engel EA, Cheng B. Liquid water contains the building blocks of diverse ice phases. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-19606-y apa: Monserrat, B., Brandenburg, J. G., Engel, E. A., & Cheng, B. (2020). Liquid water contains the building blocks of diverse ice phases. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-19606-y chicago: Monserrat, Bartomeu, Jan Gerit Brandenburg, Edgar A. Engel, and Bingqing Cheng. “Liquid Water Contains the Building Blocks of Diverse Ice Phases.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-19606-y. ieee: B. Monserrat, J. G. Brandenburg, E. A. Engel, and B. Cheng, “Liquid water contains the building blocks of diverse ice phases,” Nature Communications, vol. 11, no. 1. Springer Nature, 2020. ista: Monserrat B, Brandenburg JG, Engel EA, Cheng B. 2020. Liquid water contains the building blocks of diverse ice phases. Nature Communications. 11(1), 5757. mla: Monserrat, Bartomeu, et al. “Liquid Water Contains the Building Blocks of Diverse Ice Phases.” Nature Communications, vol. 11, no. 1, 5757, Springer Nature, 2020, doi:10.1038/s41467-020-19606-y. short: B. Monserrat, J.G. Brandenburg, E.A. Engel, B. Cheng, Nature Communications 11 (2020). date_created: 2021-07-15T14:01:35Z date_published: 2020-11-13T00:00:00Z date_updated: 2023-02-23T14:04:25Z day: '13' ddc: - '530' - '540' doi: 10.1038/s41467-020-19606-y extern: '1' file: - access_level: open_access checksum: 1edd9b6d8fa791f8094d87bd6453955b content_type: application/pdf creator: asandaue date_created: 2021-07-15T14:05:45Z date_updated: 2021-07-15T14:05:45Z file_id: '9672' file_name: 2020_NatureCommunications_Monserrat.pdf file_size: 1385954 relation: main_file success: 1 file_date_updated: 2021-07-15T14:05:45Z has_accepted_license: '1' intvolume: ' 11' issue: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Liquid water contains the building blocks of diverse ice phases tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 11 year: '2020' ... --- _id: '8533' abstract: - lang: eng text: Game of Life is a simple and elegant model to study dynamical system over networks. The model consists of a graph where every vertex has one of two types, namely, dead or alive. A configuration is a mapping of the vertices to the types. An update rule describes how the type of a vertex is updated given the types of its neighbors. In every round, all vertices are updated synchronously, which leads to a configuration update. While in general, Game of Life allows a broad range of update rules, we focus on two simple families of update rules, namely, underpopulation and overpopulation, that model several interesting dynamics studied in the literature. In both settings, a dead vertex requires at least a desired number of live neighbors to become alive. For underpopulation (resp., overpopulation), a live vertex requires at least (resp. at most) a desired number of live neighbors to remain alive. We study the basic computation problems, e.g., configuration reachability, for these two families of rules. For underpopulation rules, we show that these problems can be solved in polynomial time, whereas for overpopulation rules they are PSPACE-complete. acknowledgement: "Krishnendu Chatterjee: The research was partially supported by the Vienna Science and\r\nTechnology Fund (WWTF) Project ICT15-003.\r\nIsmaël Jecker: This project has received funding from the European Union’s Horizon 2020 research\r\nand innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411." alternative_title: - LIPIcs article_number: 22:1-22:13 article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Jakub full_name: Svoboda, Jakub id: 130759D2-D7DD-11E9-87D2-DE0DE6697425 last_name: Svoboda citation: ama: 'Chatterjee K, Ibsen-Jensen R, Jecker IR, Svoboda J. Simplified game of life: Algorithms and complexity. In: 45th International Symposium on Mathematical Foundations of Computer Science. Vol 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.MFCS.2020.22' apa: 'Chatterjee, K., Ibsen-Jensen, R., Jecker, I. R., & Svoboda, J. (2020). Simplified game of life: Algorithms and complexity. In 45th International Symposium on Mathematical Foundations of Computer Science (Vol. 170). Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2020.22' chicago: 'Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, Ismael R Jecker, and Jakub Svoboda. “Simplified Game of Life: Algorithms and Complexity.” In 45th International Symposium on Mathematical Foundations of Computer Science, Vol. 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.MFCS.2020.22.' ieee: 'K. Chatterjee, R. Ibsen-Jensen, I. R. Jecker, and J. Svoboda, “Simplified game of life: Algorithms and complexity,” in 45th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 2020, vol. 170.' ista: 'Chatterjee K, Ibsen-Jensen R, Jecker IR, Svoboda J. 2020. Simplified game of life: Algorithms and complexity. 45th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 170, 22:1-22:13.' mla: 'Chatterjee, Krishnendu, et al. “Simplified Game of Life: Algorithms and Complexity.” 45th International Symposium on Mathematical Foundations of Computer Science, vol. 170, 22:1-22:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.MFCS.2020.22.' short: K. Chatterjee, R. Ibsen-Jensen, I.R. Jecker, J. Svoboda, in:, 45th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-08-28 location: Prague, Czech Republic name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2020-08-24 date_created: 2020-09-20T22:01:36Z date_published: 2020-08-18T00:00:00Z date_updated: 2021-01-12T08:19:55Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2020.22 ec_funded: 1 external_id: arxiv: - '2007.02894' file: - access_level: open_access checksum: bbd7c4f55d45f2ff2a0a4ef0e10a77b1 content_type: application/pdf creator: dernst date_created: 2020-09-21T13:57:34Z date_updated: 2020-09-21T13:57:34Z file_id: '8550' file_name: 2020_LIPIcs_Chatterjee.pdf file_size: 491374 relation: main_file success: 1 file_date_updated: 2020-09-21T13:57:34Z has_accepted_license: '1' intvolume: ' 170' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 45th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - '9783959771597' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'Simplified game of life: Algorithms and complexity' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 170 year: '2020' ... --- _id: '8534' abstract: - lang: eng text: A regular language L of finite words is composite if there are regular languages L₁,L₂,…,L_t such that L = ⋂_{i = 1}^t L_i and the index (number of states in a minimal DFA) of every language L_i is strictly smaller than the index of L. Otherwise, L is prime. Primality of regular languages was introduced and studied in [O. Kupferman and J. Mosheiff, 2015], where the complexity of deciding the primality of the language of a given DFA was left open, with a doubly-exponential gap between the upper and lower bounds. We study primality for unary regular languages, namely regular languages with a singleton alphabet. A unary language corresponds to a subset of ℕ, making the study of unary prime languages closer to that of primality in number theory. We show that the setting of languages is richer. In particular, while every composite number is the product of two smaller numbers, the number t of languages necessary to decompose a composite unary language induces a strict hierarchy. In addition, a primality witness for a unary language L, namely a word that is not in L but is in all products of languages that contain L and have an index smaller than L’s, may be of exponential length. Still, we are able to characterize compositionality by structural properties of a DFA for L, leading to a LogSpace algorithm for primality checking of unary DFAs. acknowledgement: "Ismaël Jecker: This project has received funding from the European Union’s Horizon\r\n2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No.\r\n754411. Nicolas Mazzocchi: PhD fellowship FRIA from the F.R.S.-FNRS." alternative_title: - LIPIcs article_number: 51:1-51:12 article_processing_charge: No author: - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman - first_name: Nicolas full_name: Mazzocchi, Nicolas last_name: Mazzocchi citation: ama: 'Jecker IR, Kupferman O, Mazzocchi N. Unary prime languages. In: 45th International Symposium on Mathematical Foundations of Computer Science. Vol 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.MFCS.2020.51' apa: 'Jecker, I. R., Kupferman, O., & Mazzocchi, N. (2020). Unary prime languages. In 45th International Symposium on Mathematical Foundations of Computer Science (Vol. 170). Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2020.51' chicago: Jecker, Ismael R, Orna Kupferman, and Nicolas Mazzocchi. “Unary Prime Languages.” In 45th International Symposium on Mathematical Foundations of Computer Science, Vol. 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.MFCS.2020.51. ieee: I. R. Jecker, O. Kupferman, and N. Mazzocchi, “Unary prime languages,” in 45th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 2020, vol. 170. ista: 'Jecker IR, Kupferman O, Mazzocchi N. 2020. Unary prime languages. 45th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 170, 51:1-51:12.' mla: Jecker, Ismael R., et al. “Unary Prime Languages.” 45th International Symposium on Mathematical Foundations of Computer Science, vol. 170, 51:1-51:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.MFCS.2020.51. short: I.R. Jecker, O. Kupferman, N. Mazzocchi, in:, 45th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-08-28 location: Prague, Czech Republic name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2020-08-24 date_created: 2020-09-20T22:01:36Z date_published: 2020-08-18T00:00:00Z date_updated: 2021-01-12T08:19:56Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2020.51 ec_funded: 1 file: - access_level: open_access checksum: 2dc9e2fad6becd4563aef3e27a473f70 content_type: application/pdf creator: dernst date_created: 2020-09-21T14:17:08Z date_updated: 2020-09-21T14:17:08Z file_id: '8552' file_name: 2020_LIPIcsMFCS_Jecker.pdf file_size: 597977 relation: main_file success: 1 file_date_updated: 2020-09-21T14:17:08Z has_accepted_license: '1' intvolume: ' 170' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 45th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - '9783959771597' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Unary prime languages tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 170 year: '2020' ... --- _id: '8538' abstract: - lang: eng text: We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods. acknowledgement: " This paper would not be written if not for Dan Reznik’s curiosity and persistence; we are very grateful to him. We also thank R. Garcia and J. Koiller for interesting discussions. It is a pleasure to thank the Mathematical Institute of the University of Heidelberg for its stimulating atmosphere. ST thanks M. Bialy for interesting discussions and the Tel Aviv\r\nUniversity for its invariable hospitality. AA was supported by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 78818 Alpha). RS is supported by NSF Grant DMS-1807320. ST was supported by NSF grant DMS-1510055 and SFB/TRR 191." article_processing_charge: No article_type: original author: - first_name: Arseniy full_name: Akopyan, Arseniy id: 430D2C90-F248-11E8-B48F-1D18A9856A87 last_name: Akopyan orcid: 0000-0002-2548-617X - first_name: Richard full_name: Schwartz, Richard last_name: Schwartz - first_name: Serge full_name: Tabachnikov, Serge last_name: Tabachnikov citation: ama: Akopyan A, Schwartz R, Tabachnikov S. Billiards in ellipses revisited. European Journal of Mathematics. 2020. doi:10.1007/s40879-020-00426-9 apa: Akopyan, A., Schwartz, R., & Tabachnikov, S. (2020). Billiards in ellipses revisited. European Journal of Mathematics. Springer Nature. https://doi.org/10.1007/s40879-020-00426-9 chicago: Akopyan, Arseniy, Richard Schwartz, and Serge Tabachnikov. “Billiards in Ellipses Revisited.” European Journal of Mathematics. Springer Nature, 2020. https://doi.org/10.1007/s40879-020-00426-9. ieee: A. Akopyan, R. Schwartz, and S. Tabachnikov, “Billiards in ellipses revisited,” European Journal of Mathematics. Springer Nature, 2020. ista: Akopyan A, Schwartz R, Tabachnikov S. 2020. Billiards in ellipses revisited. European Journal of Mathematics. mla: Akopyan, Arseniy, et al. “Billiards in Ellipses Revisited.” European Journal of Mathematics, Springer Nature, 2020, doi:10.1007/s40879-020-00426-9. short: A. Akopyan, R. Schwartz, S. Tabachnikov, European Journal of Mathematics (2020). date_created: 2020-09-20T22:01:38Z date_published: 2020-09-09T00:00:00Z date_updated: 2021-12-02T15:10:17Z day: '09' department: - _id: HeEd doi: 10.1007/s40879-020-00426-9 ec_funded: 1 external_id: arxiv: - '2001.02934' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2001.02934 month: '09' oa: 1 oa_version: Preprint project: - _id: 266A2E9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '788183' name: Alpha Shape Theory Extended publication: European Journal of Mathematics publication_identifier: eissn: - 2199-6768 issn: - 2199-675X publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Billiards in ellipses revisited type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '8616' abstract: - lang: eng text: The brain vasculature supplies neurons with glucose and oxygen, but little is known about how vascular plasticity contributes to brain function. Using longitudinal in vivo imaging, we reported that a substantial proportion of blood vessels in the adult brain sporadically occluded and regressed. Their regression proceeded through sequential stages of blood-flow occlusion, endothelial cell collapse, relocation or loss of pericytes, and retraction of glial endfeet. Regressing vessels were found to be widespread in mouse, monkey and human brains. Both brief occlusions of the middle cerebral artery and lipopolysaccharide-mediated inflammation induced an increase of vessel regression. Blockage of leukocyte adhesion to endothelial cells alleviated LPS-induced vessel regression. We further revealed that blood vessel regression caused a reduction of neuronal activity due to a dysfunction in mitochondrial metabolism and glutamate production. Our results elucidate the mechanism of vessel regression and its role in neuronal function in the adult brain. acknowledgement: 'The project was initiated in the Jan lab at UCSF. We thank Lily Jan and Yuh-Nung Jan’s generous support. We thank Liqun Luo’s lab for providing MADM-7 mice and Rolf A Brekken for VEGF-antibodies. Drs. Yuanquan Song (UPenn), Zhaozhu Hu (JHU), Ji Hu (ShanghaiTech), Yang Xiang (U. Mass), Hao Wang (Zhejiang U.) and Ruikang Wang (U. Washington) for critical input, colleagues at Children’s Research Institute, Departments of Neuroscience, Neurology and Neurotherapeutics, Pediatrics from UT Southwestern, and colleagues from the Jan lab for discussion. Dr. Bridget Samuels, Sean Morrison (UT Southwestern), and Nannan Lu (Zhejiang U.) for critical reading. We acknowledge the assistance of the CIBR Imaging core. We also thank UT Southwestern Live Cell Imaging Facility, a Shared Resource of the Harold C. Simmons Cancer Center, supported in part by an NCI Cancer Center Support Grant, P30 CA142543K. This work is supported by CIBR funds and the American Heart Association AWRP Summer 2016 Innovative Research Grant (17IRG33410377) to W-P.G.; National Natural Science Foundation of China (No.81370031) to Z.Z.;National Key Research and Development Program of China (2016YFE0125400)to F.H.;National Natural Science Foundations of China (No. 81473202) to Y.L.; National Natural Science Foundation of China (No.31600839) and Shenzhen Science and Technology Research Program (JCYJ20170818163320865) to B.P.; National Natural Science Foundation of China (No. 31800864) and Westlake University start-up funds to J-M. J. NIH R01NS088627 to W.L.J.; NIH: R01 AG020670 and RF1AG054111 to H.Z.; R01 NS088555 to A.M.S., and European Research Council No.725780 to S.H.;W-P.G. was a recipient of Bugher-American Heart Association Dan Adams Thinking Outside the Box Award.' article_processing_charge: No author: - first_name: Xiaofei full_name: Gao, Xiaofei last_name: Gao - first_name: Jun-Liszt full_name: Li, Jun-Liszt last_name: Li - first_name: Xingjun full_name: Chen, Xingjun last_name: Chen - first_name: Bo full_name: Ci, Bo last_name: Ci - first_name: Fei full_name: Chen, Fei last_name: Chen - first_name: Nannan full_name: Lu, Nannan last_name: Lu - first_name: Bo full_name: Shen, Bo last_name: Shen - first_name: Lijun full_name: Zheng, Lijun last_name: Zheng - first_name: Jie-Min full_name: Jia, Jie-Min last_name: Jia - first_name: Yating full_name: Yi, Yating last_name: Yi - first_name: Shiwen full_name: Zhang, Shiwen last_name: Zhang - first_name: Ying-Chao full_name: Shi, Ying-Chao last_name: Shi - first_name: Kaibin full_name: Shi, Kaibin last_name: Shi - first_name: Nicholas E full_name: Propson, Nicholas E last_name: Propson - first_name: Yubin full_name: Huang, Yubin last_name: Huang - first_name: Katherine full_name: Poinsatte, Katherine last_name: Poinsatte - first_name: Zhaohuan full_name: Zhang, Zhaohuan last_name: Zhang - first_name: Yuanlei full_name: Yue, Yuanlei last_name: Yue - first_name: Dale B full_name: Bosco, Dale B last_name: Bosco - first_name: Ying-mei full_name: Lu, Ying-mei last_name: Lu - first_name: Shi-bing full_name: Yang, Shi-bing last_name: Yang - first_name: Ralf H. full_name: Adams, Ralf H. last_name: Adams - first_name: Volkhard full_name: Lindner, Volkhard last_name: Lindner - first_name: Fen full_name: Huang, Fen last_name: Huang - first_name: Long-Jun full_name: Wu, Long-Jun last_name: Wu - first_name: Hui full_name: Zheng, Hui last_name: Zheng - first_name: Feng full_name: Han, Feng last_name: Han - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Ann M. full_name: Stowe, Ann M. last_name: Stowe - first_name: Bo full_name: Peng, Bo last_name: Peng - first_name: Marta full_name: Margeta, Marta last_name: Margeta - first_name: Xiaoqun full_name: Wang, Xiaoqun last_name: Wang - first_name: Qiang full_name: Liu, Qiang last_name: Liu - first_name: Jakob full_name: Körbelin, Jakob last_name: Körbelin - first_name: Martin full_name: Trepel, Martin last_name: Trepel - first_name: Hui full_name: Lu, Hui last_name: Lu - first_name: Bo O. full_name: Zhou, Bo O. last_name: Zhou - first_name: Hu full_name: Zhao, Hu last_name: Zhao - first_name: Wenzhi full_name: Su, Wenzhi last_name: Su - first_name: Robert M. full_name: Bachoo, Robert M. last_name: Bachoo - first_name: Woo-ping full_name: Ge, Woo-ping last_name: Ge citation: ama: Gao X, Li J-L, Chen X, et al. Reduction of neuronal activity mediated by blood-vessel regression in the brain. bioRxiv. doi:10.1101/2020.09.15.262782 apa: Gao, X., Li, J.-L., Chen, X., Ci, B., Chen, F., Lu, N., … Ge, W. (n.d.). Reduction of neuronal activity mediated by blood-vessel regression in the brain. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2020.09.15.262782 chicago: Gao, Xiaofei, Jun-Liszt Li, Xingjun Chen, Bo Ci, Fei Chen, Nannan Lu, Bo Shen, et al. “Reduction of Neuronal Activity Mediated by Blood-Vessel Regression in the Brain.” BioRxiv. Cold Spring Harbor Laboratory, n.d. https://doi.org/10.1101/2020.09.15.262782. ieee: X. Gao et al., “Reduction of neuronal activity mediated by blood-vessel regression in the brain,” bioRxiv. Cold Spring Harbor Laboratory. ista: Gao X, Li J-L, Chen X, Ci B, Chen F, Lu N, Shen B, Zheng L, Jia J-M, Yi Y, Zhang S, Shi Y-C, Shi K, Propson NE, Huang Y, Poinsatte K, Zhang Z, Yue Y, Bosco DB, Lu Y, Yang S, Adams RH, Lindner V, Huang F, Wu L-J, Zheng H, Han F, Hippenmeyer S, Stowe AM, Peng B, Margeta M, Wang X, Liu Q, Körbelin J, Trepel M, Lu H, Zhou BO, Zhao H, Su W, Bachoo RM, Ge W. Reduction of neuronal activity mediated by blood-vessel regression in the brain. bioRxiv, 10.1101/2020.09.15.262782. mla: Gao, Xiaofei, et al. “Reduction of Neuronal Activity Mediated by Blood-Vessel Regression in the Brain.” BioRxiv, Cold Spring Harbor Laboratory, doi:10.1101/2020.09.15.262782. short: X. Gao, J.-L. Li, X. Chen, B. Ci, F. Chen, N. Lu, B. Shen, L. Zheng, J.-M. Jia, Y. Yi, S. Zhang, Y.-C. Shi, K. Shi, N.E. Propson, Y. Huang, K. Poinsatte, Z. Zhang, Y. Yue, D.B. Bosco, Y. Lu, S. Yang, R.H. Adams, V. Lindner, F. Huang, L.-J. Wu, H. Zheng, F. Han, S. Hippenmeyer, A.M. Stowe, B. Peng, M. Margeta, X. Wang, Q. Liu, J. Körbelin, M. Trepel, H. Lu, B.O. Zhou, H. Zhao, W. Su, R.M. Bachoo, W. Ge, BioRxiv (n.d.). date_created: 2020-10-06T08:58:59Z date_published: 2020-09-15T00:00:00Z date_updated: 2021-01-12T08:20:19Z day: '15' department: - _id: SiHi doi: 10.1101/2020.09.15.262782 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.09.15.262782 month: '09' oa: 1 oa_version: Preprint project: - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: bioRxiv publication_status: submitted publisher: Cold Spring Harbor Laboratory status: public title: Reduction of neuronal activity mediated by blood-vessel regression in the brain type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8695' abstract: - lang: eng text: A look at international activities on Open Science reveals a broad spectrum from individual institutional policies to national action plans. The present Recommendations for a National Open Science Strategy in Austria are based on these international initiatives and present practical considerations for their coordinated implementation with regard to strategic developments in research, technology and innovation (RTI) in Austria until 2030. They are addressed to all relevant actors in the RTI system, in particular to Research Performing Organisations, Research Funding Organisations, Research Policy, memory institutions such as Libraries and Researchers. The recommendation paper was developed from 2018 to 2020 by the OANA working group "Open Science Strategy" and published for the first time in spring 2020 for a public consultation. The now available final version of the recommendation document, which contains feedback and comments from the consultation, is intended to provide an impetus for further discussion and implementation of Open Science in Austria and serves as a contribution and basis for a potential national Open Science Strategy in Austria. The document builds on the diverse expertise of the authors (academia, administration, library and archive, information technology, science policy, funding system, etc.) and reflects their personal experiences and opinions. - lang: ger text: Der Blick auf internationale Aktivitäten zu Open Science zeigt ein breites Spektrum von einzelnen institutionellen Policies bis hin zu nationalen Aktionsplänen. Die vorliegenden Empfehlungen für eine nationale Open Science Strategie in Österreich orientieren sich an diesen internationalen Initiativen und stellen praktische Überlegungen für ihre koordinierte Implementierung im Hinblick auf strategische Entwicklungen in Forschung, Technologie und Innovation (FTI) bis 2030 in Österreich dar. Dabei richten sie sich an alle relevanten Akteur*innen im FTI System, im Besonderen an Forschungsstätten, Forschungsförderer, Forschungspolitik, Gedächtnisinstitutionen wie Bibliotheken und Wissenschafter*innen. Das Empfehlungspapier wurde von 2018 bis 2020 von der OANA-Arbeitsgruppe "Open Science Strategie" entwickelt und im Frühling 2020 das erste Mal für eine öffentliche Konsultation veröffentlicht. Die nun vorliegende finale Version des Empfehlungsdokuments, die Feedback und Kommentare aus der Konsultation enthält, soll ein Anstoß für die weitere Diskussion und Umsetzung von Open Science in Österreich sein und als Beitrag und Grundlage einer potentiellen nationalen Open Science Strategie in Österreich dienen. Das Dokument baut auf der vielfältigen Expertise der Autor*innen auf (Wissenschaft, Administration, Bibliothek und Archiv, Informationstechnologie, Wissenschaftspolitik, Förderwesen etc.) und spiegelt deren persönliche Erfahrungen und Meinung wider. article_processing_charge: No author: - first_name: Katja full_name: Mayer, Katja last_name: Mayer - first_name: Katharina full_name: Rieck, Katharina last_name: Rieck - first_name: Stefan full_name: Reichmann, Stefan last_name: Reichmann - first_name: Patrick full_name: Danowski, Patrick id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 last_name: Danowski orcid: 0000-0002-6026-4409 - first_name: Anton full_name: Graschopf, Anton last_name: Graschopf - first_name: Thomas full_name: König, Thomas last_name: König - first_name: Peter full_name: Kraker, Peter last_name: Kraker - first_name: Patrick full_name: Lehner, Patrick last_name: Lehner - first_name: Falk full_name: Reckling, Falk last_name: Reckling - first_name: Tony full_name: Ross-Hellauer, Tony last_name: Ross-Hellauer - first_name: Daniel full_name: Spichtinger, Daniel last_name: Spichtinger - first_name: Michalis full_name: Tzatzanis, Michalis last_name: Tzatzanis - first_name: Stefanie full_name: Schürz, Stefanie last_name: Schürz citation: ama: Mayer K, Rieck K, Reichmann S, et al. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA; 2020. doi:10.5281/ZENODO.4109242 apa: Mayer, K., Rieck, K., Reichmann, S., Danowski, P., Graschopf, A., König, T., … Schürz, S. (2020). Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA. https://doi.org/10.5281/ZENODO.4109242 chicago: Mayer, Katja, Katharina Rieck, Stefan Reichmann, Patrick Danowski, Anton Graschopf, Thomas König, Peter Kraker, et al. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA, 2020. https://doi.org/10.5281/ZENODO.4109242. ieee: K. Mayer et al., Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA, 2020. ista: Mayer K, Rieck K, Reichmann S, Danowski P, Graschopf A, König T, Kraker P, Lehner P, Reckling F, Ross-Hellauer T, Spichtinger D, Tzatzanis M, Schürz S. 2020. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria, OANA, 36p. mla: Mayer, Katja, et al. Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria. OANA, 2020, doi:10.5281/ZENODO.4109242. short: K. Mayer, K. Rieck, S. Reichmann, P. Danowski, A. Graschopf, T. König, P. Kraker, P. Lehner, F. Reckling, T. Ross-Hellauer, D. Spichtinger, M. Tzatzanis, S. Schürz, Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria, OANA, 2020. date_created: 2020-10-23T09:08:28Z date_published: 2020-10-21T00:00:00Z date_updated: 2020-10-23T09:34:40Z day: '21' ddc: - '020' department: - _id: E-Lib doi: 10.5281/ZENODO.4109242 file: - access_level: open_access checksum: 8eba912bb4b20b4f82f8010f2110461a content_type: application/pdf creator: dernst date_created: 2020-10-23T09:29:45Z date_updated: 2020-10-23T09:29:45Z file_id: '8696' file_name: 2020_OANA_Mayer.pdf file_size: 2298363 relation: main_file success: 1 file_date_updated: 2020-10-23T09:29:45Z has_accepted_license: '1' language: - iso: ger month: '10' oa: 1 oa_version: Published Version page: '36' publication_status: published publisher: OANA status: public title: Empfehlungen für eine nationale Open Science Strategie in Österreich / Recommendations for a National Open Science Strategy in Austria tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: working_paper user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8694' abstract: - lang: eng text: "We develop algorithms and techniques to compute rigorous bounds for finite pieces of orbits of the critical points, for intervals of parameter values, in the quadratic family of one-dimensional maps fa(x)=a−x2. We illustrate the effectiveness of our approach by constructing a dynamically defined partition \U0001D4AB of the parameter interval Ω=[1.4,2] into almost 4×106 subintervals, for each of which we compute to high precision the orbits of the critical points up to some time N and other dynamically relevant quantities, several of which can vary greatly, possibly spanning several orders of magnitude. We also subdivide \U0001D4AB into a family \U0001D4AB+ of intervals, which we call stochastic intervals, and a family \U0001D4AB− of intervals, which we call regular intervals. We numerically prove that each interval ω∈\U0001D4AB+ has an escape time, which roughly means that some iterate of the critical point taken over all the parameters in ω has considerable width in the phase space. This suggests, in turn, that most parameters belonging to the intervals in \U0001D4AB+ are stochastic and most parameters belonging to the intervals in \U0001D4AB− are regular, thus the names. We prove that the intervals in \U0001D4AB+ occupy almost 90% of the total measure of Ω. The software and the data are freely available at http://www.pawelpilarczyk.com/quadr/, and a web page is provided for carrying out the calculations. The ideas and procedures can be easily generalized to apply to other parameterized families of dynamical systems." article_number: '073143' article_processing_charge: No article_type: original author: - first_name: Ali full_name: Golmakani, Ali last_name: Golmakani - first_name: Edmond full_name: Koudjinan, Edmond id: 52DF3E68-AEFA-11EA-95A4-124A3DDC885E last_name: Koudjinan orcid: 0000-0003-2640-4049 - first_name: Stefano full_name: Luzzatto, Stefano last_name: Luzzatto - first_name: Pawel full_name: Pilarczyk, Pawel last_name: Pilarczyk citation: ama: Golmakani A, Koudjinan E, Luzzatto S, Pilarczyk P. Rigorous numerics for critical orbits in the quadratic family. Chaos. 2020;30(7). doi:10.1063/5.0012822 apa: Golmakani, A., Koudjinan, E., Luzzatto, S., & Pilarczyk, P. (2020). Rigorous numerics for critical orbits in the quadratic family. Chaos. AIP. https://doi.org/10.1063/5.0012822 chicago: Golmakani, Ali, Edmond Koudjinan, Stefano Luzzatto, and Pawel Pilarczyk. “Rigorous Numerics for Critical Orbits in the Quadratic Family.” Chaos. AIP, 2020. https://doi.org/10.1063/5.0012822. ieee: A. Golmakani, E. Koudjinan, S. Luzzatto, and P. Pilarczyk, “Rigorous numerics for critical orbits in the quadratic family,” Chaos, vol. 30, no. 7. AIP, 2020. ista: Golmakani A, Koudjinan E, Luzzatto S, Pilarczyk P. 2020. Rigorous numerics for critical orbits in the quadratic family. Chaos. 30(7), 073143. mla: Golmakani, Ali, et al. “Rigorous Numerics for Critical Orbits in the Quadratic Family.” Chaos, vol. 30, no. 7, 073143, AIP, 2020, doi:10.1063/5.0012822. short: A. Golmakani, E. Koudjinan, S. Luzzatto, P. Pilarczyk, Chaos 30 (2020). date_created: 2020-10-21T15:43:05Z date_published: 2020-07-31T00:00:00Z date_updated: 2021-01-12T08:20:34Z day: '31' doi: 10.1063/5.0012822 extern: '1' external_id: arxiv: - '2004.13444' intvolume: ' 30' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2004.13444 month: '07' oa: 1 oa_version: Preprint publication: Chaos publication_status: published publisher: AIP quality_controlled: '1' status: public title: Rigorous numerics for critical orbits in the quadratic family type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 30 year: '2020' ... --- _id: '8691' abstract: - lang: eng text: Given l>2ν>2d≥4, we prove the persistence of a Cantor--family of KAM tori of measure O(ε1/2−ν/l) for any non--degenerate nearly integrable Hamiltonian system of class Cl(D×Td), where D⊂Rd is a bounded domain, provided that the size ε of the perturbation is sufficiently small. This extends a result by D. Salamon in \cite{salamon2004kolmogorov} according to which we do have the persistence of a single KAM torus in the same framework. Moreover, it is well--known that, for the persistence of a single torus, the regularity assumption can not be improved. article_processing_charge: No article_type: original author: - first_name: Edmond full_name: Koudjinan, Edmond id: 52DF3E68-AEFA-11EA-95A4-124A3DDC885E last_name: Koudjinan orcid: 0000-0003-2640-4049 citation: ama: Koudjinan E. A KAM theorem for finitely differentiable Hamiltonian systems. Journal of Differential Equations. 2020;269(6):4720-4750. doi:10.1016/j.jde.2020.03.044 apa: Koudjinan, E. (2020). A KAM theorem for finitely differentiable Hamiltonian systems. Journal of Differential Equations. Elsevier. https://doi.org/10.1016/j.jde.2020.03.044 chicago: Koudjinan, Edmond. “A KAM Theorem for Finitely Differentiable Hamiltonian Systems.” Journal of Differential Equations. Elsevier, 2020. https://doi.org/10.1016/j.jde.2020.03.044. ieee: E. Koudjinan, “A KAM theorem for finitely differentiable Hamiltonian systems,” Journal of Differential Equations, vol. 269, no. 6. Elsevier, pp. 4720–4750, 2020. ista: Koudjinan E. 2020. A KAM theorem for finitely differentiable Hamiltonian systems. Journal of Differential Equations. 269(6), 4720–4750. mla: Koudjinan, Edmond. “A KAM Theorem for Finitely Differentiable Hamiltonian Systems.” Journal of Differential Equations, vol. 269, no. 6, Elsevier, 2020, pp. 4720–50, doi:10.1016/j.jde.2020.03.044. short: E. Koudjinan, Journal of Differential Equations 269 (2020) 4720–4750. date_created: 2020-10-21T15:03:05Z date_published: 2020-09-05T00:00:00Z date_updated: 2021-01-12T08:20:33Z day: '05' doi: 10.1016/j.jde.2020.03.044 extern: '1' external_id: arxiv: - '1909.04099' intvolume: ' 269' issue: '6' keyword: - Analysis language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1909.04099 month: '09' oa: 1 oa_version: Preprint page: 4720-4750 publication: Journal of Differential Equations publication_identifier: issn: - 0022-0396 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: A KAM theorem for finitely differentiable Hamiltonian systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 269 year: '2020' ... --- _id: '8706' abstract: - lang: eng text: As part of the Austrian Transition to Open Access (AT2OA) project, subproject TP1-B is working on designing a monitoring solution for the output of Open Access publications in Austria. This report on a potential Open Access monitoring approach in Austria is one of the results of these efforts and can serve as a basis for discussion on an international level. - lang: ger text: Als Teil des Hochschulraumstrukturmittel-Projekts Austrian Transition to Open Access (AT2OA) befasst sich das Teilprojekt TP1-B mit der Konzeption einer Monitoring-Lösung für den Open Access-Publikationsoutput in Österreich. Der nun vorliegende Bericht zu einem potentiellen Open Access-Monitoring in Österreich ist eines der Ergebnisse dieser Bemühungen und kann als Grundlage einer Diskussion auf internationaler Ebene dienen. article_processing_charge: No article_type: original author: - first_name: Patrick full_name: Danowski, Patrick id: 2EBD1598-F248-11E8-B48F-1D18A9856A87 last_name: Danowski orcid: 0000-0002-6026-4409 - first_name: Andreas full_name: Ferus, Andreas last_name: Ferus - first_name: Anna-Laetitia full_name: Hikl, Anna-Laetitia last_name: Hikl - first_name: Gerda full_name: McNeill, Gerda last_name: McNeill - first_name: Clemens full_name: Miniberger, Clemens last_name: Miniberger - first_name: Steve full_name: Reding, Steve last_name: Reding - first_name: Tobias full_name: Zarka, Tobias last_name: Zarka - first_name: Michael full_name: Zojer, Michael last_name: Zojer citation: ama: Danowski P, Ferus A, Hikl A-L, et al. „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B. Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 2020;73(2):278-284. doi:10.31263/voebm.v73i2.3941 apa: Danowski, P., Ferus, A., Hikl, A.-L., McNeill, G., Miniberger, C., Reding, S., … Zojer, M. (2020). „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B. Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare. https://doi.org/10.31263/voebm.v73i2.3941 chicago: Danowski, Patrick, Andreas Ferus, Anna-Laetitia Hikl, Gerda McNeill, Clemens Miniberger, Steve Reding, Tobias Zarka, and Michael Zojer. “„Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B.” Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare, 2020. https://doi.org/10.31263/voebm.v73i2.3941. ieee: P. Danowski et al., “„Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B,” Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare, vol. 73, no. 2. Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare, pp. 278–284, 2020. ista: Danowski P, Ferus A, Hikl A-L, McNeill G, Miniberger C, Reding S, Zarka T, Zojer M. 2020. „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B. Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare. 73(2), 278–284. mla: Danowski, Patrick, et al. “„Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B.” Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare, vol. 73, no. 2, Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare, 2020, pp. 278–84, doi:10.31263/voebm.v73i2.3941. short: P. Danowski, A. Ferus, A.-L. Hikl, G. McNeill, C. Miniberger, S. Reding, T. Zarka, M. Zojer, Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare 73 (2020) 278–284. date_created: 2020-10-25T23:01:19Z date_published: 2020-07-14T00:00:00Z date_updated: 2021-01-12T08:20:40Z day: '14' ddc: - '020' department: - _id: E-Lib doi: 10.31263/voebm.v73i2.3941 file: - access_level: open_access checksum: 37443c34d91d5bdbeb38c78b14792537 content_type: application/pdf creator: kschuh date_created: 2020-10-27T16:27:25Z date_updated: 2020-10-27T16:27:25Z file_id: '8714' file_name: 2020_VOEB_Danowski.pdf file_size: 960317 relation: main_file success: 1 file_date_updated: 2020-10-27T16:27:25Z has_accepted_license: '1' intvolume: ' 73' issue: '2' language: - iso: ger month: '07' oa: 1 oa_version: Published Version page: 278-284 publication: Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen und Bibliothekare publication_identifier: eissn: - '10222588' publication_status: published publisher: Vereinigung Osterreichischer Bibliothekarinnen und Bibliothekare quality_controlled: '1' scopus_import: '1' status: public title: „Recommendation“ for the further procedure for open access monitoring. Deliverable of the AT2OA subproject TP1-B tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 73 year: '2020' ... --- _id: '8978' abstract: - lang: eng text: "Mosaic analysis with double markers (MADM) technology enables concomitant fluorescent cell labeling and induction of uniparental chromosome disomy (UPD) with single-cell resolution. In UPD, imprinted genes are either overexpressed 2-fold or are not expressed. Here, the MADM platform is utilized to probe imprinting phenotypes at the transcriptional level. This protocol highlights major steps for the generation and isolation of projection neurons and astrocytes with MADM-induced UPD from mouse cerebral cortex for downstream single-cell and low-input sample RNA-sequencing experiments.\r\n\r\nFor complete details on the use and execution of this protocol, please refer to Laukoter et al. (2020b)." acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: This research was supported by the Scientific Service Units (SSU) at IST Austria through resources provided by the Bioimaging (BIF) and Preclinical Facilities (PCF). N.A received support from the FWF Firnberg-Programm (T 1031). This work was also supported by IST Austria institutional funds; FWF SFB F78 to S.H.; NÖ Forschung und Bildung n[f+b] life science call grant (C13-002) to S.H.; the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 618444 to S.H.; and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725780 LinPro) to S.H. article_number: '100215' article_processing_charge: No article_type: original author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter - first_name: Nicole full_name: Amberg, Nicole id: 4CD6AAC6-F248-11E8-B48F-1D18A9856A87 last_name: Amberg orcid: 0000-0002-3183-8207 - first_name: Florian full_name: Pauler, Florian id: 48EA0138-F248-11E8-B48F-1D18A9856A87 last_name: Pauler - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 citation: ama: Laukoter S, Amberg N, Pauler F, Hippenmeyer S. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 2020;1(3). doi:10.1016/j.xpro.2020.100215 apa: Laukoter, S., Amberg, N., Pauler, F., & Hippenmeyer, S. (2020). Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. Elsevier. https://doi.org/10.1016/j.xpro.2020.100215 chicago: Laukoter, Susanne, Nicole Amberg, Florian Pauler, and Simon Hippenmeyer. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols. Elsevier, 2020. https://doi.org/10.1016/j.xpro.2020.100215. ieee: S. Laukoter, N. Amberg, F. Pauler, and S. Hippenmeyer, “Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy,” STAR Protocols, vol. 1, no. 3. Elsevier, 2020. ista: Laukoter S, Amberg N, Pauler F, Hippenmeyer S. 2020. Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy. STAR Protocols. 1(3), 100215. mla: Laukoter, Susanne, et al. “Generation and Isolation of Single Cells from Mouse Brain with Mosaic Analysis with Double Markers-Induced Uniparental Chromosome Disomy.” STAR Protocols, vol. 1, no. 3, 100215, Elsevier, 2020, doi:10.1016/j.xpro.2020.100215. short: S. Laukoter, N. Amberg, F. Pauler, S. Hippenmeyer, STAR Protocols 1 (2020). date_created: 2020-12-30T10:17:07Z date_published: 2020-12-18T00:00:00Z date_updated: 2021-01-12T08:21:36Z day: '18' ddc: - '570' department: - _id: SiHi doi: 10.1016/j.xpro.2020.100215 ec_funded: 1 external_id: pmid: - '33377108' file: - access_level: open_access checksum: f1e9a433e9cb0f41f7b6df6b76db1f6e content_type: application/pdf creator: dernst date_created: 2021-01-07T15:57:27Z date_updated: 2021-01-07T15:57:27Z file_id: '8996' file_name: 2020_STARProtocols_Laukoter.pdf file_size: 4031449 relation: main_file success: 1 file_date_updated: 2021-01-07T15:57:27Z has_accepted_license: '1' intvolume: ' 1' issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 268F8446-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: T0101031 name: Role of Eed in neural stem cell lineage progression - _id: 059F6AB4-7A3F-11EA-A408-12923DDC885E grant_number: F07805 name: Molecular Mechanisms of Neural Stem Cell Lineage Progression - _id: 25D92700-B435-11E9-9278-68D0E5697425 grant_number: LS13-002 name: Mapping Cell-Type Specificity of the Genomic Imprintome in the Brain - _id: 25D61E48-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618444' name: Molecular Mechanisms of Cerebral Cortex Development - _id: 260018B0-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '725780' name: Principles of Neural Stem Cell Lineage Progression in Cerebral Cortex Development publication: STAR Protocols publication_identifier: issn: - 2666-1667 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Generation and isolation of single cells from mouse brain with mosaic analysis with double markers-induced uniparental chromosome disomy tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2020' ... --- _id: '9067' abstract: - lang: eng text: Gadolinium silicide (Gd5Si4) nanoparticles are an interesting class of materials due to their high magnetization, low Curie temperature, low toxicity in biological environments and their multifunctional properties. We report the magnetic and magnetothermal properties of gadolinium silicide (Gd5Si4) nanoparticles prepared by surfactant-assisted ball milling of arc melted bulk ingots of the compound. Using different milling times and speeds, a wide range of crystallite sizes (13–43 nm) could be produced and a reduction in Curie temperature (TC) from 340 K to 317 K was achieved, making these nanoparticles suitable for self-controlled magnetic hyperthermia applications. The magnetothermal effect was measured in applied AC magnetic fields of amplitude 164–239 Oe and frequencies 163–519 kHz. All particles showed magnetic heating with a strong dependence of the specific absorption rate (SAR) on the average crystallite size. The highest SAR of 3.7 W g−1 was measured for 43 nm sized nanoparticles of Gd5Si4. The high SAR and low TC, (within the therapeutic range for magnetothermal therapy) makes the Gd5Si4 behave like self-regulating heat switches that would be suitable for self-controlled magnetic hyperthermia applications after biocompatibility and cytotoxicity tests. article_processing_charge: No article_type: original author: - first_name: Muhammad full_name: Nauman, Muhammad id: 32c21954-2022-11eb-9d5f-af9f93c24e71 last_name: Nauman orcid: 0000-0002-2111-4846 - first_name: Muhammad Hisham full_name: Alnasir, Muhammad Hisham last_name: Alnasir - first_name: Muhammad Asif full_name: Hamayun, Muhammad Asif last_name: Hamayun - first_name: YiXu full_name: Wang, YiXu last_name: Wang - first_name: Michael full_name: Shatruk, Michael last_name: Shatruk - first_name: Sadia full_name: Manzoor, Sadia last_name: Manzoor citation: ama: Nauman M, Alnasir MH, Hamayun MA, Wang Y, Shatruk M, Manzoor S. Size-dependent magnetic and magnetothermal properties of gadolinium silicide nanoparticles. RSC Advances. 2020;10(47):28383-28389. doi:10.1039/d0ra05394e apa: Nauman, M., Alnasir, M. H., Hamayun, M. A., Wang, Y., Shatruk, M., & Manzoor, S. (2020). Size-dependent magnetic and magnetothermal properties of gadolinium silicide nanoparticles. RSC Advances. Royal Society of Chemistry. https://doi.org/10.1039/d0ra05394e chicago: Nauman, Muhammad, Muhammad Hisham Alnasir, Muhammad Asif Hamayun, YiXu Wang, Michael Shatruk, and Sadia Manzoor. “Size-Dependent Magnetic and Magnetothermal Properties of Gadolinium Silicide Nanoparticles.” RSC Advances. Royal Society of Chemistry, 2020. https://doi.org/10.1039/d0ra05394e. ieee: M. Nauman, M. H. Alnasir, M. A. Hamayun, Y. Wang, M. Shatruk, and S. Manzoor, “Size-dependent magnetic and magnetothermal properties of gadolinium silicide nanoparticles,” RSC Advances, vol. 10, no. 47. Royal Society of Chemistry, pp. 28383–28389, 2020. ista: Nauman M, Alnasir MH, Hamayun MA, Wang Y, Shatruk M, Manzoor S. 2020. Size-dependent magnetic and magnetothermal properties of gadolinium silicide nanoparticles. RSC Advances. 10(47), 28383–28389. mla: Nauman, Muhammad, et al. “Size-Dependent Magnetic and Magnetothermal Properties of Gadolinium Silicide Nanoparticles.” RSC Advances, vol. 10, no. 47, Royal Society of Chemistry, 2020, pp. 28383–89, doi:10.1039/d0ra05394e. short: M. Nauman, M.H. Alnasir, M.A. Hamayun, Y. Wang, M. Shatruk, S. Manzoor, RSC Advances 10 (2020) 28383–28389. date_created: 2021-02-02T15:51:23Z date_published: 2020-07-29T00:00:00Z date_updated: 2021-02-04T07:16:37Z day: '29' doi: 10.1039/d0ra05394e extern: '1' intvolume: ' 10' issue: '47' keyword: - General Chemistry - General Chemical Engineering language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1039/d0ra05394e month: '07' oa: 1 oa_version: Published Version page: 28383-28389 publication: RSC Advances publication_identifier: issn: - 2046-2069 publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' status: public title: Size-dependent magnetic and magnetothermal properties of gadolinium silicide nanoparticles type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2020' ... --- _id: '9103' abstract: - lang: eng text: 'We introduce LRT-NG, a set of techniques and an associated toolset that computes a reachtube (an over-approximation of the set of reachable states over a given time horizon) of a nonlinear dynamical system. LRT-NG significantly advances the state-of-the-art Langrangian Reachability and its associated tool LRT. From a theoretical perspective, LRT-NG is superior to LRT in three ways. First, it uses for the first time an analytically computed metric for the propagated ball which is proven to minimize the ball’s volume. We emphasize that the metric computation is the centerpiece of all bloating-based techniques. Secondly, it computes the next reachset as the intersection of two balls: one based on the Cartesian metric and the other on the new metric. While the two metrics were previously considered opposing approaches, their joint use considerably tightens the reachtubes. Thirdly, it avoids the "wrapping effect" associated with the validated integration of the center of the reachset, by optimally absorbing the interval approximation in the radius of the next ball. From a tool-development perspective, LRT-NG is superior to LRT in two ways. First, it is a standalone tool that no longer relies on CAPD. This required the implementation of the Lohner method and a Runge-Kutta time-propagation method. Secondly, it has an improved interface, allowing the input model and initial conditions to be provided as external input files. Our experiments on a comprehensive set of benchmarks, including two Neural ODEs, demonstrates LRT-NG’s superior performance compared to LRT, CAPD, and Flow*.' acknowledgement: "The authors would like to thank Ramin Hasani and Guillaume Berger for intellectual discussions about the research which lead to the generation of new ideas. ML was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Smolka’s research was supported by NSF grants CPS-1446832 and CCF-1918225. Gruenbacher is funded by FWF project W1255-N23. JC was partially supported by NAWA Polish Returns grant\r\nPPN/PPO/2018/1/00029.\r\n" article_processing_charge: No author: - first_name: Sophie full_name: Gruenbacher, Sophie last_name: Gruenbacher - first_name: Jacek full_name: Cyranka, Jacek last_name: Cyranka - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Md Ariful full_name: Islam, Md Ariful last_name: Islam - first_name: Scott A. full_name: Smolka, Scott A. last_name: Smolka - first_name: Radu full_name: Grosu, Radu last_name: Grosu citation: ama: 'Gruenbacher S, Cyranka J, Lechner M, Islam MA, Smolka SA, Grosu R. Lagrangian reachtubes: The next generation. In: Proceedings of the 59th IEEE Conference on Decision and Control. Vol 2020. IEEE; 2020:1556-1563. doi:10.1109/CDC42340.2020.9304042' apa: 'Gruenbacher, S., Cyranka, J., Lechner, M., Islam, M. A., Smolka, S. A., & Grosu, R. (2020). Lagrangian reachtubes: The next generation. In Proceedings of the 59th IEEE Conference on Decision and Control (Vol. 2020, pp. 1556–1563). Jeju Islang, Korea (South): IEEE. https://doi.org/10.1109/CDC42340.2020.9304042' chicago: 'Gruenbacher, Sophie, Jacek Cyranka, Mathias Lechner, Md Ariful Islam, Scott A. Smolka, and Radu Grosu. “Lagrangian Reachtubes: The next Generation.” In Proceedings of the 59th IEEE Conference on Decision and Control, 2020:1556–63. IEEE, 2020. https://doi.org/10.1109/CDC42340.2020.9304042.' ieee: 'S. Gruenbacher, J. Cyranka, M. Lechner, M. A. Islam, S. A. Smolka, and R. Grosu, “Lagrangian reachtubes: The next generation,” in Proceedings of the 59th IEEE Conference on Decision and Control, Jeju Islang, Korea (South), 2020, vol. 2020, pp. 1556–1563.' ista: 'Gruenbacher S, Cyranka J, Lechner M, Islam MA, Smolka SA, Grosu R. 2020. Lagrangian reachtubes: The next generation. Proceedings of the 59th IEEE Conference on Decision and Control. CDC: Conference on Decision and Control vol. 2020, 1556–1563.' mla: 'Gruenbacher, Sophie, et al. “Lagrangian Reachtubes: The next Generation.” Proceedings of the 59th IEEE Conference on Decision and Control, vol. 2020, IEEE, 2020, pp. 1556–63, doi:10.1109/CDC42340.2020.9304042.' short: S. Gruenbacher, J. Cyranka, M. Lechner, M.A. Islam, S.A. Smolka, R. Grosu, in:, Proceedings of the 59th IEEE Conference on Decision and Control, IEEE, 2020, pp. 1556–1563. conference: end_date: 2020-12-18 location: Jeju Islang, Korea (South) name: 'CDC: Conference on Decision and Control' start_date: 2020-12-14 date_created: 2021-02-07T23:01:14Z date_published: 2020-12-14T00:00:00Z date_updated: 2021-02-09T09:20:58Z day: '14' department: - _id: ToHe doi: 10.1109/CDC42340.2020.9304042 external_id: arxiv: - '2012.07458' intvolume: ' 2020' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2012.07458 month: '12' oa: 1 oa_version: Preprint page: 1556-1563 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Proceedings of the 59th IEEE Conference on Decision and Control publication_identifier: isbn: - '9781728174471' issn: - '07431546' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: 'Lagrangian reachtubes: The next generation' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2020 year: '2020' ... --- _id: '9150' abstract: - lang: eng text: The goal of this study is twofold. First, we aim at developing a simple model as an interpretative framework for the water vapor isotopic variations in the tropical troposphere over the ocean. We use large-eddy simulations to justify the underlying assumptions of this simple model, to constrain its input parameters and to evaluate its results. Second, we aim at interpreting the depletion of the water vapor isotopic composition in the lower and mid-troposphere as precipitation increases, which is a salient feature in tropical oceanic observations. This feature constitutes a stringent test on the relevance of our interpretative framework. Previous studies, based on observations or on models with parameterized convection, have highlighted the roles of deep convective and meso-scale downdrafts, rain evaporation, rain-vapor diffusive exchanges and mixing processes. The interpretative framework that we develop is a two-column model representing the net ascent in clouds and the net descent in the environment. We show that the mechanisms for depleting the troposphere when precipitation rate increases all stem from the higher tropospheric relative humidity. First, when the relative humidity is larger, less snow sublimates before melting and a smaller fraction of rain evaporates. Both effects lead to more depleted rain evaporation and eventually more depleted water vapor. This mechanism dominates in regimes of large-scale ascent. Second, the entrainment of dry air into clouds reduces the vertical isotopic gradient and limits the depletion of tropospheric water vapor. This mechanism dominates in regimes of large-scale descent. article_processing_charge: No author: - first_name: Camille full_name: Risi, Camille last_name: Risi - first_name: Caroline J full_name: Muller, Caroline J id: f978ccb0-3f7f-11eb-b193-b0e2bd13182b last_name: Muller orcid: 0000-0001-5836-5350 - first_name: Peter N. full_name: Blossey, Peter N. last_name: Blossey citation: ama: Risi C, Muller CJ, Blossey PN. Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to  large-eddy simulations and a two-column model. doi:10.1002/essoar.10504670.1 apa: Risi, C., Muller, C. J., & Blossey, P. N. (n.d.). Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to  large-eddy simulations and a two-column model. ESSOAr. https://doi.org/10.1002/essoar.10504670.1 chicago: Risi, Camille, Caroline J Muller, and Peter N. Blossey. “Rain Evaporation, Snow Melt and Entrainment at the Heart of Water Vapor Isotopic Variations in the Tropical Troposphere, According to  Large-Eddy Simulations and a Two-Column Model.” ESSOAr, n.d. https://doi.org/10.1002/essoar.10504670.1. ieee: C. Risi, C. J. Muller, and P. N. Blossey, “Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to  large-eddy simulations and a two-column model.” ESSOAr. ista: Risi C, Muller CJ, Blossey PN. Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to  large-eddy simulations and a two-column model. 10.1002/essoar.10504670.1. mla: Risi, Camille, et al. Rain Evaporation, Snow Melt and Entrainment at the Heart of Water Vapor Isotopic Variations in the Tropical Troposphere, According to  Large-Eddy Simulations and a Two-Column Model. ESSOAr, doi:10.1002/essoar.10504670.1. short: C. Risi, C.J. Muller, P.N. Blossey, (n.d.). date_created: 2021-02-15T15:08:06Z date_published: 2020-11-24T00:00:00Z date_updated: 2022-01-24T12:32:10Z day: '24' doi: 10.1002/essoar.10504670.1 extern: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1002/essoar.10504670.1 month: '11' oa: 1 oa_version: Preprint publication_status: submitted publisher: ESSOAr status: public title: Rain evaporation, snow melt and entrainment at the heart of water vapor isotopic variations in the tropical troposphere, according to large-eddy simulations and a two-column model type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2020' ... --- _id: '9221' abstract: - lang: eng text: "Recent works have shown that gradient descent can find a global minimum for over-parameterized neural networks where the widths of all the hidden layers scale polynomially with N (N being the number of training samples). In this paper, we prove that, for deep networks, a single layer of width N following the input layer suffices to ensure a similar guarantee. In particular, all the remaining layers are allowed to have constant widths, and form a pyramidal topology. We show an application of our result to the widely used LeCun’s initialization and obtain an over-parameterization requirement for the single wide layer of order N2.\r\n" acknowledgement: The authors would like to thank Jan Maas, Mahdi Soltanolkotabi, and Daniel Soudry for the helpful discussions, Marius Kloft, Matthias Hein and Quoc Dinh Tran for proofreading portions of a prior version of this paper, and James Martens for a clarification concerning LeCun’s initialization. M. Mondelli was partially supported by the 2019 Lopez-Loreta Prize. Q. Nguyen was partially supported by the German Research Foundation (DFG) award KL 2698/2-1. article_processing_charge: No author: - first_name: Quynh full_name: Nguyen, Quynh last_name: Nguyen - first_name: Marco full_name: Mondelli, Marco id: 27EB676C-8706-11E9-9510-7717E6697425 last_name: Mondelli orcid: 0000-0002-3242-7020 citation: ama: 'Nguyen Q, Mondelli M. Global convergence of deep networks with one wide layer followed by pyramidal topology. In: 34th Conference on Neural Information Processing Systems. Vol 33. Curran Associates; 2020:11961–11972.' apa: 'Nguyen, Q., & Mondelli, M. (2020). Global convergence of deep networks with one wide layer followed by pyramidal topology. In 34th Conference on Neural Information Processing Systems (Vol. 33, pp. 11961–11972). Vancouver, Canada: Curran Associates.' chicago: Nguyen, Quynh, and Marco Mondelli. “Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology.” In 34th Conference on Neural Information Processing Systems, 33:11961–11972. Curran Associates, 2020. ieee: Q. Nguyen and M. Mondelli, “Global convergence of deep networks with one wide layer followed by pyramidal topology,” in 34th Conference on Neural Information Processing Systems, Vancouver, Canada, 2020, vol. 33, pp. 11961–11972. ista: 'Nguyen Q, Mondelli M. 2020. Global convergence of deep networks with one wide layer followed by pyramidal topology. 34th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems vol. 33, 11961–11972.' mla: Nguyen, Quynh, and Marco Mondelli. “Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology.” 34th Conference on Neural Information Processing Systems, vol. 33, Curran Associates, 2020, pp. 11961–11972. short: Q. Nguyen, M. Mondelli, in:, 34th Conference on Neural Information Processing Systems, Curran Associates, 2020, pp. 11961–11972. conference: end_date: 2020-12-12 location: Vancouver, Canada name: 'NeurIPS: Neural Information Processing Systems' start_date: 2020-12-06 date_created: 2021-03-03T12:06:02Z date_published: 2020-07-07T00:00:00Z date_updated: 2022-01-04T09:24:41Z day: '07' department: - _id: MaMo external_id: arxiv: - '2002.07867' intvolume: ' 33' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2002.07867 month: '07' oa: 1 oa_version: Preprint page: 11961–11972 project: - _id: 059876FA-7A3F-11EA-A408-12923DDC885E name: Prix Lopez-Loretta 2019 - Marco Mondelli publication: 34th Conference on Neural Information Processing Systems publication_status: published publisher: Curran Associates quality_controlled: '1' status: public title: Global convergence of deep networks with one wide layer followed by pyramidal topology type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 33 year: '2020' ...