--- _id: '10' abstract: - lang: eng text: Genomic imprinting is an epigenetic process that leads to parent of origin-specific gene expression in a subset of genes. Imprinted genes are essential for brain development, and deregulation of imprinting is associated with neurodevelopmental diseases and the pathogenesis of psychiatric disorders. However, the cell-type specificity of imprinting at single cell resolution, and how imprinting and thus gene dosage regulates neuronal circuit assembly is still largely unknown. Here, MADM (Mosaic Analysis with Double Markers) technology was employed to assess genomic imprinting at single cell level. By visualizing MADM-induced uniparental disomies (UPDs) in distinct colors at single cell level in genetic mosaic animals, this experimental paradigm provides a unique quantitative platform to systematically assay the UPD-mediated imbalances in imprinted gene expression at unprecedented resolution. An experimental pipeline based on FACS, RNA-seq and bioinformatics analysis was established and applied to systematically map cell-type-specific ‘imprintomes’ in the mouse brain. The results revealed that parental-specific expression of imprinted genes per se is rarely cell-type-specific even at the individual cell level. Conversely, when we extended the comparison to downstream responses resulting from imbalanced imprinted gene expression, we discovered an unexpectedly high degree of cell-type specificity. Furthermore, we determined a novel function of genomic imprinting in cortical astrocyte production and in olfactory bulb (OB) granule cell generation. These results suggest important functional implication of genomic imprinting for generating cell-type diversity in the brain. In addition, MADM provides a powerful tool to study candidate genes by concomitant genetic manipulation and fluorescent labelling of single cells. MADM-based candidate gene approach was utilized to identify potential imprinted genes involved in the generation of cortical astrocytes and OB granule cells. We investigated p57Kip2, a maternally expressed gene and known cell cycle regulator. Although we found that p57Kip2 does not play a role in these processes, we detected an unexpected function of the paternal allele previously thought to be silent. Finally, we took advantage of a key property of MADM which is to allow unambiguous investigation of environmental impact on single cells. The experimental pipeline based on FACS and RNA-seq analysis of MADM-labeled cells was established to probe the functional differences of single cell loss of gene function compared to global loss of function on a transcriptional level. With this method, both common and distinct responses were isolated due to cell-autonomous and non-autonomous effects acting on genotypically identical cells. As a result, transcriptional changes were identified which result solely from the surrounding environment. Using the MADM technology to study genomic imprinting at single cell resolution, we have identified cell-type-specific gene expression, novel gene function and the impact of environment on single cell transcriptomes. Together, these provide important insights to the understanding of mechanisms regulating cell-type specificity and thus diversity in the brain. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Susanne full_name: Laukoter, Susanne id: 2D6B7A9A-F248-11E8-B48F-1D18A9856A87 last_name: Laukoter orcid: 0000-0002-7903-3010 citation: ama: Laukoter S. Role of genomic imprinting in cerebral cortex development. 2018:1-139. doi:10.15479/AT:ISTA:th1057 apa: Laukoter, S. (2018). Role of genomic imprinting in cerebral cortex development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1057 chicago: Laukoter, Susanne. “Role of Genomic Imprinting in Cerebral Cortex Development.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1057. ieee: S. Laukoter, “Role of genomic imprinting in cerebral cortex development,” Institute of Science and Technology Austria, 2018. ista: Laukoter S. 2018. Role of genomic imprinting in cerebral cortex development. Institute of Science and Technology Austria. mla: Laukoter, Susanne. Role of Genomic Imprinting in Cerebral Cortex Development. Institute of Science and Technology Austria, 2018, pp. 1–139, doi:10.15479/AT:ISTA:th1057. short: S. Laukoter, Role of Genomic Imprinting in Cerebral Cortex Development, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:08Z date_published: 2018-11-21T00:00:00Z date_updated: 2023-09-07T12:40:44Z day: '21' ddc: - '570' degree_awarded: PhD department: - _id: SiHi doi: 10.15479/AT:ISTA:th1057 file: - access_level: closed checksum: 41fdbf5fdce312802935d88a8ad9932c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-05-10T07:47:04Z date_updated: 2019-11-23T23:30:03Z embargo_to: open_access file_id: '6396' file_name: Thesis_LaukoterSusanne_FINAL.docx file_size: 17949175 relation: source_file - access_level: open_access checksum: 53001a9a0c9e570e598d861bb0af28aa content_type: application/pdf creator: dernst date_created: 2019-05-10T07:47:04Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-21 file_id: '6397' file_name: Thesis_LaukoterSusanne_FINAL.pdf file_size: 21187245 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1 - 139 publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8046' pubrep_id: '1057' status: public supervisor: - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 title: Role of genomic imprinting in cerebral cortex development type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '323' abstract: - lang: eng text: 'In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond. ' acknowledged_ssus: - _id: NanoFab - _id: Bio - _id: PreCl - _id: EM-Fac acknowledgement: "First of all I would like to thank Michael Sixt for giving me the opportunity to work in \r\nhis group and for his support throughout the years. He is a truly inspiring person and \r\nthe best boss one can imagine. I would \ also like to thank all current and past \r\nmembers of the Sixt group for their help and the great working atmosphere in the lab. \r\nIt is a true privilege to work with such a bright, funny and friendly group of people and \r\nI’m proud \ that I could be part of it. Furthermore, I would like to say ‘thank \ you’ to Daria Siekhaus for all the meetings and discussion we had throughout the years \r\nand to Federica Benvenuti for being part of my committee. \ I am also grateful to Jack \r\nMerrin in the nanofabrication facility \ and all the people working in the bioimaging-\r\n, the electron microscopy- and the preclinical facilities." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X citation: ama: Leithner AF. Branched actin networks in dendritic cell biology. 2018. doi:10.15479/AT:ISTA:th_998 apa: Leithner, A. F. (2018). Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_998 chicago: Leithner, Alexander F. “Branched Actin Networks in Dendritic Cell Biology.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_998. ieee: A. F. Leithner, “Branched actin networks in dendritic cell biology,” Institute of Science and Technology Austria, 2018. ista: Leithner AF. 2018. Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. mla: Leithner, Alexander F. Branched Actin Networks in Dendritic Cell Biology. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_998. short: A.F. Leithner, Branched Actin Networks in Dendritic Cell Biology, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:49Z date_published: 2018-04-12T00:00:00Z date_updated: 2023-09-07T12:39:44Z day: '12' ddc: - '571' - '599' - '610' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:th_998 file: - access_level: closed checksum: d5e3edbac548c26c1fa43a4b37a54a4c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T23:30:17Z embargo_to: open_access file_id: '6219' file_name: PhD_thesis_AlexLeithner_final_version.docx file_size: 29027671 relation: source_file - access_level: open_access checksum: 071f7476db29e41146824ebd0697cb10 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-04-15 file_id: '6220' file_name: PhD_thesis_AlexLeithner.pdf file_size: 66045341 relation: main_file file_date_updated: 2021-02-11T23:30:17Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '99' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7542' pubrep_id: '998' related_material: record: - id: '1321' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: Branched actin networks in dendritic cell biology tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '539' abstract: - lang: eng text: The whole life cycle of plants as well as their responses to environmental stimuli is governed by a complex network of hormonal regulations. A number of studies have demonstrated an essential role of both auxin and cytokinin in the regulation of many aspects of plant growth and development including embryogenesis, postembryonic organogenic processes such as root, and shoot branching, root and shoot apical meristem activity and phyllotaxis. Over the last decades essential knowledge on the key molecular factors and pathways that spatio-temporally define auxin and cytokinin activities in the plant body has accumulated. However, how both hormonal pathways are interconnected by a complex network of interactions and feedback circuits that determines the final outcome of the individual hormone actions is still largely unknown. Root system architecture establishment and in particular formation of lateral organs is prime example of developmental process at whose regulation both auxin and cytokinin pathways converge. To dissect convergence points and pathways that tightly balance auxin - cytokinin antagonistic activities that determine the root branching pattern transcriptome profiling was applied. Genome wide expression analyses of the xylem pole pericycle, a tissue giving rise to lateral roots, led to identification of genes that are highly responsive to combinatorial auxin and cytokinin treatments and play an essential function in the auxin-cytokinin regulated root branching. SYNERGISTIC AUXIN CYTOKININ 1 (SYAC1) gene, which encodes for a protein of unknown function, was detected among the top candidate genes of which expression was synergistically up-regulated by simultaneous hormonal treatment. Plants with modulated SYAC1 activity exhibit severe defects in the root system establishment and attenuate developmental responses to both auxin and cytokinin. To explore the biological function of the SYAC1, we employed different strategies including expression pattern analysis, subcellular localization and phenotypic analyses of the syac1 loss-of-function and gain-of-function transgenic lines along with the identification of the SYAC1 interaction partners. Detailed functional characterization revealed that SYAC1 acts as a developmentally specific regulator of the secretory pathway to control deposition of cell wall components and thereby rapidly fine tune elongation growth. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Andrej full_name: Hurny, Andrej id: 4DC4AF46-F248-11E8-B48F-1D18A9856A87 last_name: Hurny orcid: 0000-0003-3638-1426 citation: ama: Hurny A. Identification and characterization of novel auxin-cytokinin cross-talk components. 2018. doi:10.15479/AT:ISTA:th_930 apa: Hurny, A. (2018). Identification and characterization of novel auxin-cytokinin cross-talk components. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_930 chicago: Hurny, Andrej. “Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_930. ieee: A. Hurny, “Identification and characterization of novel auxin-cytokinin cross-talk components,” Institute of Science and Technology Austria, 2018. ista: Hurny A. 2018. Identification and characterization of novel auxin-cytokinin cross-talk components. Institute of Science and Technology Austria. mla: Hurny, Andrej. Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_930. short: A. Hurny, Identification and Characterization of Novel Auxin-Cytokinin Cross-Talk Components, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:47:03Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-07T12:41:06Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: EvBe doi: 10.15479/AT:ISTA:th_930 file: - access_level: closed checksum: 0c9d6d1c80d9857e6e545213467bbcb2 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:37:56Z date_updated: 2020-12-02T23:30:08Z embargo_to: open_access file_id: '6226' file_name: 2018_Hurny_thesis_source.docx file_size: 28112114 relation: source_file - access_level: open_access checksum: ecbe481a1413d270bd501b872c7ed54f content_type: application/pdf creator: dernst date_created: 2019-04-05T09:37:55Z date_updated: 2020-12-02T09:52:16Z embargo: 2019-07-10 file_id: '6227' file_name: 2018_Hurny_thesis.pdf file_size: 12524427 relation: main_file file_date_updated: 2020-12-02T23:30:08Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '147' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7277' pubrep_id: '930' related_material: record: - id: '1024' relation: part_of_dissertation status: public status: public supervisor: - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 title: Identification and characterization of novel auxin-cytokinin cross-talk components tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '48' abstract: - lang: eng text: 'The hippocampus is a key brain region for spatial memory and navigation and is needed at all stages of memory, including encoding, consolidation, and recall. Hippocampal place cells selectively discharge at specific locations of the environment to form a cognitive map of the space. During the rest period and sleep following spatial navigation and/or learning, the waking activity of the place cells is reactivated within high synchrony events. This reactivation is thought to be important for memory consolidation and stabilization of the spatial representations. The aim of my thesis was to directly test whether the reactivation content encoded in firing patterns of place cells is important for consolidation of spatial memories. In particular, I aimed to test whether, in cases when multiple spatial memory traces are acquired during learning, the specific disruption of the reactivation of a subset of these memories leads to the selective disruption of the corresponding memory traces or through memory interference the other learned memories are disrupted as well. In this thesis, using a modified cheeseboard paradigm and a closed-loop recording setup with feedback optogenetic stimulation, I examined how the disruption of the reactivation of specific spiking patterns affects consolidation of the corresponding memory traces. To obtain multiple distinctive memories, animals had to perform a spatial task in two distinct cheeseboard environments and the reactivation of spiking patterns associated with one of the environments (target) was disrupted after learning during four hours rest period using a real-time decoding method. This real-time decoding method was capable of selectively affecting the firing rates and cofiring correlations of the target environment-encoding cells. The selective disruption led to behavioural impairment in the memory tests after the rest periods in the target environment but not in the other undisrupted control environment. In addition, the map of the target environment was less stable in the impaired memory tests compared to the learning session before than the map of the control environment. However, when the animal relearned the task, the same map recurred in the target environment that was present during learning before the disruption. Altogether my work demonstrated that the reactivation content is important: assembly-related disruption of reactivation can lead to a selective memory impairment and deficiency in map stability. These findings indeed suggest that reactivated assembly patterns reflect processes associated with the consolidation of memory traces. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Igor full_name: Gridchyn, Igor id: 4B60654C-F248-11E8-B48F-1D18A9856A87 last_name: Gridchyn orcid: 0000-0002-1807-1929 citation: ama: Gridchyn I. Reactivation content is important for consolidation of spatial memory. 2018. doi:10.15479/AT:ISTA:th_1042 apa: Gridchyn, I. (2018). Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_1042 chicago: Gridchyn, Igor. “Reactivation Content Is Important for Consolidation of Spatial Memory.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_1042. ieee: I. Gridchyn, “Reactivation content is important for consolidation of spatial memory,” Institute of Science and Technology Austria, 2018. ista: Gridchyn I. 2018. Reactivation content is important for consolidation of spatial memory. Institute of Science and Technology Austria. mla: Gridchyn, Igor. Reactivation Content Is Important for Consolidation of Spatial Memory. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_1042. short: I. Gridchyn, Reactivation Content Is Important for Consolidation of Spatial Memory, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-08-27T00:00:00Z date_updated: 2023-09-07T12:42:44Z day: '27' ddc: - '573' degree_awarded: PhD department: - _id: JoCs doi: 10.15479/AT:ISTA:th_1042 file: - access_level: closed checksum: 7db4415e435590fa33542c7b0a0321d7 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T23:30:22Z embargo_to: open_access file_id: '6236' file_name: 2018_Thesis_Gridchyn_source.docx file_size: 7666687 relation: source_file - access_level: open_access checksum: f96f3fe8979f7b1e6db6acaca962b10c content_type: application/pdf creator: dernst date_created: 2019-04-08T13:36:01Z date_updated: 2021-02-11T11:17:18Z embargo: 2019-08-29 file_id: '6237' file_name: 2018_Thesis_Gridchyn.pdf file_size: 6034153 relation: main_file file_date_updated: 2021-02-11T23:30:22Z has_accepted_license: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: '104' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8006' pubrep_id: '1042' status: public supervisor: - first_name: Jozsef L full_name: Csicsvari, Jozsef L id: 3FA14672-F248-11E8-B48F-1D18A9856A87 last_name: Csicsvari orcid: 0000-0002-5193-4036 title: Reactivation content is important for consolidation of spatial memory tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '9' abstract: - lang: eng text: 'Immune cells migrating to the sites of infection navigate through diverse tissue architectures and switch their migratory mechanisms upon demand. However, little is known about systemic regulators that could allow the acquisition of these mechanisms. We performed a genetic screen in Drosophila melanogaster to identify regulators of germband invasion by embryonic macrophages into the confined space between the ectoderm and mesoderm. We have found that bZIP circadian transcription factors (TFs) Kayak (dFos) and Vrille (dNFIL3) have opposite effects on macrophage germband infiltration: Kayak facilitated and Vrille inhibited it. These TFs are enriched in the macrophages during migration and genetically interact to control it. Kayak sets a less coordinated mode of migration of the macrophage group and increases the probability and length of Levy walks. Intriguingly, the motility of kayak mutant macrophages was also strongly affected during initial germband invasion but not along another less confined route. Inhibiting Rho1 signaling within the tail ectoderm partially rescued the Kayak mutant phenotype, strongly suggesting that migrating macrophages have to overcome a barrier imposed by the stiffness of the ectoderm. Also, Kayak appeared to be important for the maintenance of the round cell shape and the rear edge translocation of the macrophages invading the germband. Complementary to this, the cortical actin cytoskeleton of Kayak- deficient macrophages was strongly affected. RNA sequencing revealed the filamin Cheerio and tetraspanin TM4SF to be downstream of Kayak. Chromatin immunoprecipitation and immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Immunostaining revealed that the formin Diaphanous is another downstream target of Kayak. Indeed, Cheerio, TM4SF and Diaphanous are required within macrophages for germband invasion, and expression of constitutively active Diaphanous in macrophages was able to rescue the kayak mutant phenotype. Moreover, Cher and Diaphanous are also reduced in the macrophages overexpressing Vrille. We hypothesize that Kayak, through its targets, increases actin polymerization and cortical tension in macrophages and thus allows extra force generation necessary for macrophage dissemination and migration through confined stiff tissues, while Vrille counterbalances it.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Vera full_name: Belyaeva, Vera id: 47F080FE-F248-11E8-B48F-1D18A9856A87 last_name: Belyaeva citation: ama: Belyaeva V. Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . 2018. doi:10.15479/AT:ISTA:th1064 apa: Belyaeva, V. (2018). Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1064 chicago: Belyaeva, Vera. “Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1064. ieee: V. Belyaeva, “Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ,” Institute of Science and Technology Austria, 2018. ista: Belyaeva V. 2018. Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo . Institute of Science and Technology Austria. mla: Belyaeva, Vera. Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo . Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1064. short: V. Belyaeva, Transcriptional Regulation of Macrophage Migration in the Drosophila Melanogaster Embryo , Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:08Z date_published: 2018-07-01T00:00:00Z date_updated: 2023-09-07T12:43:10Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: DaSi doi: 10.15479/AT:ISTA:th1064 file: - access_level: closed checksum: d27b2465cb70d0c9678a0381b9b6ced1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T14:13:12Z date_updated: 2020-07-14T12:48:14Z embargo_to: open_access file_id: '6243' file_name: 2018_Thesis_Belyaeva_source.docx file_size: 102737483 relation: source_file - access_level: open_access checksum: a2939b61bde2de7b8ced77bbae0eaaed content_type: application/pdf creator: dernst date_created: 2019-04-08T14:14:08Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-19 file_id: '6244' file_name: 2018_Thesis_Belyaeva.pdf file_size: 88077843 relation: main_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '96' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8047' pubrep_id: '1064' status: public supervisor: - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 title: 'Transcriptional regulation of macrophage migration in the Drosophila melanogaster embryo ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '6266' abstract: - lang: eng text: 'A major challenge in neuroscience research is to dissect the circuits that orchestrate behavior in health and disease. Proteins from a wide range of non-mammalian species, such as microbial opsins, have been successfully transplanted to specific neuronal targets to override their natural communication patterns. The goal of our work is to manipulate synaptic communication in a manner that closely incorporates the functional intricacies of synapses by preserving temporal encoding (i.e. the firing pattern of the presynaptic neuron) and connectivity (i.e. target specific synapses rather than specific neurons). Our strategy to achieve this goal builds on the use of non-mammalian transplants to create a synthetic synapse. The mode of modulation comes from pre-synaptic uptake of a synthetic neurotransmitter (SN) into synaptic vesicles by means of a genetically targeted transporter selective for the SN. Upon natural vesicular release, exposure of the SN to the synaptic cleft will modify the post-synaptic potential through an orthogonal ligand gated ion channel. To achieve this goal we have functionally characterized a mixed cationic methionine-gated ion channel from Arabidopsis thaliana, designed a method to functionally characterize a synthetic transporter in isolated synaptic vesicles without the need for transgenic animals, identified and extracted multiple prokaryotic uptake systems that are substrate specific for methionine (Met), and established a primary/cell line co-culture system that would allow future combinatorial testing of this orthogonal transmitter-transporter-channel trifecta. Synthetic synapses will provide a unique opportunity to manipulate synaptic communication while maintaining the electrophysiological integrity of the pre-synaptic cell. In this way, information may be preserved that was generated in upstream circuits and that could be essential for concerted function and information processing. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Catherine full_name: Mckenzie, Catherine id: 3EEDE19A-F248-11E8-B48F-1D18A9856A87 last_name: Mckenzie citation: ama: Mckenzie C. Design and characterization of methods and biological components to realize synthetic neurotransmission . 2018. doi:10.15479/at:ista:th_1055 apa: Mckenzie, C. (2018). Design and characterization of methods and biological components to realize synthetic neurotransmission . Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th_1055 chicago: Mckenzie, Catherine. “Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission .” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/at:ista:th_1055. ieee: C. Mckenzie, “Design and characterization of methods and biological components to realize synthetic neurotransmission ,” Institute of Science and Technology Austria, 2018. ista: Mckenzie C. 2018. Design and characterization of methods and biological components to realize synthetic neurotransmission . Institute of Science and Technology Austria. mla: Mckenzie, Catherine. Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission . Institute of Science and Technology Austria, 2018, doi:10.15479/at:ista:th_1055. short: C. Mckenzie, Design and Characterization of Methods and Biological Components to Realize Synthetic Neurotransmission , Institute of Science and Technology Austria, 2018. date_created: 2019-04-09T14:13:39Z date_published: 2018-10-31T00:00:00Z date_updated: 2023-09-07T13:02:37Z day: '31' ddc: - '571' - '573' degree_awarded: PhD department: - _id: HaJa doi: 10.15479/at:ista:th_1055 file: - access_level: open_access checksum: 9d2c2dca04b00e485470c28b262af59a content_type: application/pdf creator: dernst date_created: 2019-04-09T14:12:40Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-11-24 file_id: '6267' file_name: 2018_Thesis_McKenzie.pdf file_size: 4906420 relation: main_file - access_level: closed checksum: 50b58c272899601bc6fd9642c4dc97f1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T14:12:40Z date_updated: 2020-07-14T12:47:25Z embargo_to: open_access file_id: '6268' file_name: 2018_Thesis_McKenzie_source.docx file_size: 5053545 relation: source_file file_date_updated: 2021-02-11T11:17:16Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria pubrep_id: '1055' related_material: record: - id: '7132' relation: new_edition status: public status: public supervisor: - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 title: 'Design and characterization of methods and biological components to realize synthetic neurotransmission ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '50' abstract: - lang: eng text: The Wnt/planar cell polarity (Wnt/PCP) pathway determines planar polarity of epithelial cells in both vertebrates and invertebrates. The role that Wnt/PCP signaling plays in mesenchymal contexts, however, is only poorly understood. While previous studies have demonstrated the capacity of Wnt/PCP signaling to polarize and guide directed migration of mesenchymal cells, it remains unclear whether endogenous Wnt/PCP signaling performs these functions instructively, as it does in epithelial cells. Here we developed a light-switchable version of the Wnt/PCP receptor Frizzled 7 (Fz7) to unambiguously distinguish between an instructive and a permissive role of Wnt/PCP signaling for the directional collective migration of mesendoderm progenitor cells during zebrafish gastrulation. We show that prechordal plate (ppl) cell migration is defective in maternal-zygotic fz7a and fz7b (MZ fz7a,b) double mutant embryos, and that Fz7 functions cell-autonomously in this process by promoting ppl cell protrusion formation and directed migration. We further show that local activation of Fz7 can direct ppl cell migration both in vitro and in vivo. Surprisingly, however, uniform Fz7 activation is sufficient to fully rescue the ppl cell migration defect in MZ fz7a,b mutant embryos, indicating that Wnt/PCP signaling functions permissively rather than instructively in directed mesendoderm cell migration during zebrafish gastrulation. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Daniel full_name: Capek, Daniel id: 31C42484-F248-11E8-B48F-1D18A9856A87 last_name: Capek orcid: 0000-0001-5199-9940 citation: ama: Capek D. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. 2018. doi:10.15479/AT:ISTA:TH_1031 apa: Capek, D. (2018). Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_1031 chicago: Capek, Daniel. “Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1031. ieee: D. Capek, “Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration,” Institute of Science and Technology Austria, 2018. ista: Capek D. 2018. Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration. Institute of Science and Technology Austria. mla: Capek, Daniel. Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:TH_1031. short: D. Capek, Optogenetic Frizzled 7 Reveals a Permissive Function of Wnt/PCP Signaling in Directed Mesenchymal Cell Migration, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:21Z date_published: 2018-06-22T00:00:00Z date_updated: 2023-09-07T12:48:16Z day: '22' ddc: - '570' - '591' - '596' degree_awarded: PhD department: - _id: CaHe doi: 10.15479/AT:ISTA:TH_1031 file: - access_level: open_access checksum: d3eca3dcacb67bffdde6e6609c31cdd0 content_type: application/pdf creator: dernst date_created: 2019-04-08T13:42:26Z date_updated: 2021-02-11T11:17:17Z embargo: 2019-06-25 file_id: '6238' file_name: 2018_Thesis_Capek.pdf file_size: 31576521 relation: main_file - access_level: closed checksum: 876deb14067e638aba65d209668bd821 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-08T13:42:27Z date_updated: 2021-02-11T23:30:21Z embargo_to: open_access file_id: '6239' file_name: 2018_Thesis_Capek_source.docx file_size: 38992956 relation: source_file file_date_updated: 2021-02-11T23:30:21Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '95' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8004' pubrep_id: '1031' related_material: record: - id: '1100' relation: part_of_dissertation status: public - id: '661' relation: part_of_dissertation status: public - id: '676' relation: part_of_dissertation status: public status: public supervisor: - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 title: Optogenetic Frizzled 7 reveals a permissive function of Wnt/PCP signaling in directed mesenchymal cell migration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '26' abstract: - lang: eng text: Expression of genes is a fundamental molecular phenotype that is subject to evolution by different types of mutations. Both the rate and the effect of mutations may depend on the DNA sequence context of a particular gene or a particular promoter sequence. In this thesis I investigate the nature of this dependence using simple genetic systems in Escherichia coli. With these systems I explore the evolution of constitutive gene expression from random starting sequences at different loci on the chromosome and at different locations in sequence space. First, I dissect chromosomal neighborhood effects that underlie locus-dependent differences in the potential of a gene under selection to become more highly expressed. Next, I find that the effects of point mutations in promoter sequences are dependent on sequence context, and that an existing energy matrix model performs poorly in predicting relative expression of unrelated sequences. Finally, I show that a substantial fraction of random sequences contain functional promoters and I present an extended thermodynamic model that predicts promoter strength in full sequence space. Taken together, these results provide new insights and guides on how to integrate information on sequence context to improve our qualitative and quantitative understanding of bacterial gene expression, with implications for rapid evolution of drug resistance, de novo evolution of genes, and horizontal gene transfer. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Magdalena full_name: Steinrück, Magdalena id: 2C023F40-F248-11E8-B48F-1D18A9856A87 last_name: Steinrück orcid: 0000-0003-1229-9719 citation: ama: Steinrück M. The influence of sequence context on the evolution of bacterial gene expression. 2018. doi:10.15479/AT:ISTA:th1059 apa: Steinrück, M. (2018). The influence of sequence context on the evolution of bacterial gene expression. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1059 chicago: Steinrück, Magdalena. “The Influence of Sequence Context on the Evolution of Bacterial Gene Expression.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1059. ieee: M. Steinrück, “The influence of sequence context on the evolution of bacterial gene expression,” Institute of Science and Technology Austria, 2018. ista: Steinrück M. 2018. The influence of sequence context on the evolution of bacterial gene expression. Institute of Science and Technology Austria. mla: Steinrück, Magdalena. The Influence of Sequence Context on the Evolution of Bacterial Gene Expression. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1059. short: M. Steinrück, The Influence of Sequence Context on the Evolution of Bacterial Gene Expression, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:44:14Z date_published: 2018-10-30T00:00:00Z date_updated: 2023-09-07T12:48:43Z day: '30' ddc: - '576' - '579' degree_awarded: PhD department: - _id: CaGu doi: 10.15479/AT:ISTA:th1059 file: - access_level: closed checksum: 413cbce1cd1debeae3abe2a25dbc70d1 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-02-08T10:51:22Z date_updated: 2020-07-14T12:45:43Z embargo_to: open_access file_id: '5941' file_name: Thesis_Steinrueck_final.docx file_size: 9190845 relation: source_file - access_level: open_access checksum: 3def8b7854c8b42d643597ce0215efac content_type: application/pdf creator: dernst date_created: 2019-02-08T10:51:22Z date_updated: 2021-02-11T11:17:14Z embargo: 2019-11-02 file_id: '5942' file_name: Thesis_Steinrueck_final.pdf file_size: 7521973 relation: main_file file_date_updated: 2021-02-11T11:17:14Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '109' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '8029' pubrep_id: '1059' related_material: record: - id: '704' relation: part_of_dissertation status: public status: public supervisor: - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 title: The influence of sequence context on the evolution of bacterial gene expression type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '5816' abstract: - lang: eng text: Solid-state qubit manipulation and read-out fidelities are reaching fault-tolerance, but quantum error correction requires millions of physical qubits and therefore a scalable quantum computer architecture. To solve signal-line bandwidth and fan-out problems, microwave sources required for qubit manipulation might be embedded close to the qubit chip, typically operating at temperatures below 4 K. Here, we perform the first low temperature measurements of a 130 nm BiCMOS based SiGe voltage controlled oscillator at cryogenic temperature. We determined the frequency and output power dependence on temperature and magnetic field up to 5 T and measured the temperature influence on its noise performance. The device maintains its full functionality from 300 K to 4 K. The carrier frequency at 4 K increases by 3% with respect to the carrier frequency at 300 K, and the output power at 4 K increases by 10 dB relative to the output power at 300 K. The frequency tuning range of approximately 20% remains unchanged between 300 K and 4 K. In an in-plane magnetic field of 5 T, the carrier frequency shifts by only 0.02% compared to the frequency at zero magnetic field. article_number: '114701' article_processing_charge: No author: - first_name: Arne full_name: Hollmann, Arne last_name: Hollmann - first_name: Daniel full_name: Jirovec, Daniel id: 4C473F58-F248-11E8-B48F-1D18A9856A87 last_name: Jirovec orcid: 0000-0002-7197-4801 - first_name: Maciej full_name: Kucharski, Maciej last_name: Kucharski - first_name: Dietmar full_name: Kissinger, Dietmar last_name: Kissinger - first_name: Gunter full_name: Fischer, Gunter last_name: Fischer - first_name: Lars R. full_name: Schreiber, Lars R. last_name: Schreiber citation: ama: Hollmann A, Jirovec D, Kucharski M, Kissinger D, Fischer G, Schreiber LR. 30 GHz-voltage controlled oscillator operating at 4 K. Review of Scientific Instruments. 2018;89(11). doi:10.1063/1.5038258 apa: Hollmann, A., Jirovec, D., Kucharski, M., Kissinger, D., Fischer, G., & Schreiber, L. R. (2018). 30 GHz-voltage controlled oscillator operating at 4 K. Review of Scientific Instruments. AIP Publishing. https://doi.org/10.1063/1.5038258 chicago: Hollmann, Arne, Daniel Jirovec, Maciej Kucharski, Dietmar Kissinger, Gunter Fischer, and Lars R. Schreiber. “30 GHz-Voltage Controlled Oscillator Operating at 4 K.” Review of Scientific Instruments. AIP Publishing, 2018. https://doi.org/10.1063/1.5038258. ieee: A. Hollmann, D. Jirovec, M. Kucharski, D. Kissinger, G. Fischer, and L. R. Schreiber, “30 GHz-voltage controlled oscillator operating at 4 K,” Review of Scientific Instruments, vol. 89, no. 11. AIP Publishing, 2018. ista: Hollmann A, Jirovec D, Kucharski M, Kissinger D, Fischer G, Schreiber LR. 2018. 30 GHz-voltage controlled oscillator operating at 4 K. Review of Scientific Instruments. 89(11), 114701. mla: Hollmann, Arne, et al. “30 GHz-Voltage Controlled Oscillator Operating at 4 K.” Review of Scientific Instruments, vol. 89, no. 11, 114701, AIP Publishing, 2018, doi:10.1063/1.5038258. short: A. Hollmann, D. Jirovec, M. Kucharski, D. Kissinger, G. Fischer, L.R. Schreiber, Review of Scientific Instruments 89 (2018). date_created: 2019-01-10T14:22:23Z date_published: 2018-11-01T00:00:00Z date_updated: 2024-03-27T23:30:26Z day: '01' department: - _id: GeKa doi: 10.1063/1.5038258 external_id: arxiv: - '1804.09522' isi: - '000451735700054' intvolume: ' 89' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.09522 month: '11' oa: 1 oa_version: Preprint publication: Review of Scientific Instruments publication_identifier: issn: - '00346748' publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '10058' relation: dissertation_contains status: public scopus_import: '1' status: public title: 30 GHz-voltage controlled oscillator operating at 4 K type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 89 year: '2018' ... --- _id: '6263' abstract: - lang: eng text: 'Antibiotic resistance can emerge spontaneously through genomic mutation and render treatment ineffective. To counteract this process, in addition to the discovery and description of resistance mechanisms,a deeper understanding of resistanceevolvabilityand its determinantsis needed. To address this challenge, this thesisuncoversnew genetic determinants of resistance evolvability using a customized robotic setup, exploressystematic ways in which resistance evolution is perturbed due to dose-responsecharacteristics of drugs and mutation rate differences,and mathematically investigates the evolutionary fate of one specific type of evolvability modifier -a stress-induced mutagenesis allele.We find severalgenes which strongly inhibit or potentiate resistance evolution. In order to identify them, we first developedan automated high-throughput feedback-controlled protocol whichkeeps the population size and selection pressure approximately constant for hundreds of cultures by dynamically re-diluting the cultures and adjusting the antibiotic concentration. We implementedthis protocol on a customized liquid handling robot and propagated 100 different gene deletion strains of Escherichia coliin triplicate for over 100 generations in tetracycline and in chloramphenicol, and comparedtheir adaptation rates.We find a diminishing returns pattern, where initially sensitive strains adapted more compared to less sensitive ones. Our data uncover that deletions of certain genes which do not affect mutation rate,including efflux pump components, a chaperone and severalstructural and regulatory genes can strongly and reproducibly alterresistance evolution. Sequencing analysis of evolved populations indicates that epistasis with resistance mutations is the most likelyexplanation. This work could inspire treatment strategies in which targeted inhibitors of evolvability mechanisms will be given alongside antibiotics to slow down resistance evolution and extend theefficacy of antibiotics.We implemented astochasticpopulation genetics model, toverifyways in which general properties, namely, dose-response characteristics of drugs and mutation rates, influence evolutionary dynamics. In particular, under the exposure to antibiotics with shallow dose-response curves,bacteria have narrower distributions of fitness effects of new mutations. We show that in silicothis also leads to slower resistance evolution. We see and confirm with experiments that increased mutation rates, apart from speeding up evolution, also leadto high reproducibility of phenotypic adaptation in a context of continually strong selection pressure.Knowledge of these patterns can aid in predicting the dynamics of antibiotic resistance evolutionand adapting treatment schemes accordingly.Focusing on a previously described type of evolvability modifier –a stress-induced mutagenesis allele –we find conditions under which it can persist in a population under periodic selectionakin to clinical treatment. We set up a deterministic infinite populationcontinuous time model tracking the frequencies of a mutator and resistance allele and evaluate various treatment schemes in how well they maintain a stress-induced mutator allele. In particular,a high diversity of stresses is crucial for the persistence of the mutator allele. This leads to a general trade-off where exactly those diversifying treatment schemes which are likely to decrease levels of resistance could lead to stronger selection of highly evolvable genotypes.In the long run, this work will lead to a deeper understanding of the genetic and cellular mechanisms involved in antibiotic resistance evolution and could inspire new strategies for slowing down its rate. ' acknowledged_ssus: - _id: M-Shop - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 citation: ama: Lukacisinova M. Genetic determinants of antibiotic resistance evolution. 2018. doi:10.15479/AT:ISTA:th1072 apa: Lukacisinova, M. (2018). Genetic determinants of antibiotic resistance evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th1072 chicago: Lukacisinova, Marta. “Genetic Determinants of Antibiotic Resistance Evolution.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th1072. ieee: M. Lukacisinova, “Genetic determinants of antibiotic resistance evolution,” Institute of Science and Technology Austria, 2018. ista: Lukacisinova M. 2018. Genetic determinants of antibiotic resistance evolution. Institute of Science and Technology Austria. mla: Lukacisinova, Marta. Genetic Determinants of Antibiotic Resistance Evolution. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th1072. short: M. Lukacisinova, Genetic Determinants of Antibiotic Resistance Evolution, Institute of Science and Technology Austria, 2018. date_created: 2019-04-09T13:57:15Z date_published: 2018-12-28T00:00:00Z date_updated: 2023-09-22T09:20:37Z day: '28' ddc: - '570' - '576' - '579' degree_awarded: PhD department: - _id: ToBo doi: 10.15479/AT:ISTA:th1072 file: - access_level: open_access checksum: fc60585c9eaad868ac007004ef130908 content_type: application/pdf creator: dernst date_created: 2019-04-09T13:49:24Z date_updated: 2021-02-11T11:17:17Z embargo: 2020-01-25 file_id: '6264' file_name: 2018_Thesis_Lukacisinova.pdf file_size: 5656866 relation: main_file - access_level: closed checksum: 264057ec0a92ab348cc83b41f021ba92 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T13:49:23Z date_updated: 2020-07-14T12:47:25Z embargo_to: open_access file_id: '6265' file_name: 2018_Thesis_Lukacisinova_source.docx file_size: 5168054 relation: source_file file_date_updated: 2021-02-11T11:17:17Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '91' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1619' relation: part_of_dissertation status: public - id: '696' relation: part_of_dissertation status: public - id: '1027' relation: part_of_dissertation status: public status: public supervisor: - first_name: Tobias full_name: Bollenbach, Tobias id: 3E6DB97A-F248-11E8-B48F-1D18A9856A87 last_name: Bollenbach orcid: 0000-0003-4398-476X title: Genetic determinants of antibiotic resistance evolution type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ...